Ordering number : EN 💥 3966A

Preliminary

OVERVIEW

The LC573404A and LC573406A are low-power 4-bit microcontrollers with built-in 4- and 6-Kbyte ROMs, respectively.

They incorporate a 120-segment LCD driver, RAM, a 4-bit parallel-processing ALU, a 16-bit timer and a carrier output for infrared remote control applications.

The LC573404A and LC573406A are ideal for use in battery-operated measuring instruments,

products that require timing functions, and LCD and remote controller applications. The LC573404A and LC573406A operate from a 2.3 to 6.0 V supply and are available in 64-pin QFPs and as dice.

FEATURES

```
1) ROM 6 Kbytes (LC573406A)
4 Kbytes (LC573404A)
2) RAM 512-bit (128 × 4)
3) 4-bit parallel-processing ALU
4) 120-segment LCD controller/driver
·30 segment outputs
·Four common outputs
120-segment capability when using 1/4 duty
90-segment capability when using 1/3 duty
60-segment capability when using 1/2 duty
30-segment capability when using static drive
SEG16 to SEG30 can be used as normal, p-channel open-drain output ports.
```

5)16-bit software-controllable timer

6)455 kHz ceramic resonator timebase •Configurable as a 15-bit free-running timer •108 ms HALT-mode cancel signal output

7) HALT mode

Reduces current consumption.
Suspends program execution.
Exited by a system reset or the HALT-mode cancel signal.

8) STOP mode

•Stops the ceramic resonator oscillator. •Exited by a system reset or under program control.

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

D2694JN/2182JN No.3966-1/30

9)HOLD mode

•Stops the ceramic resonator oscillator. •Exited by a system reset or a HIGH level on ports S or M.

10)Two-level subroutine stack

11)Cycle Time

+17.6 $\,\mu\,s$ and 122 $\,\mu\,s$ cycle times at f = 455 kHz and 32.768 kHz, respectively

12)Software-controllable remote control carrier signal generator

-Software-controllable frequency and duty cycle

- •1 to 200 kHz
- •Three fixed waveforms
- 38 kHz with 1/3 duty
- 38 kHz with 1/2 duty
- 57 kHz with 1/2 duty

13)Built-in ceramic and crystal oscillators 14)Ports •Two 4-bit keyscan input ports •Two 4-bit keyscan output ports •One 2-bit keyscan expansion or LED driver port 15)Voltage •2.3 to 6.0 V supply voltage 16)Factory shipment

·64-pin QFP and 66-pad die

PINOUT

Do not use a soldering iron when mounting the package.

No.3966-2/30

DIE SPECIFICATIONS

Chip size	:3.89 mm $ imes$ 3.59 mm
Pad size	:120 μ m $ imes$ 120 μ m
Chip thickness	:480 μm

Pad Layout

Pin Assignment of Package Chip thickness $: 330 \ \mu$ m

No.3966-3/30

Pad Coordinates

QFP64 Pin No	pad No.	Pad Name	Χ (μm)	Υ (μm)	QFP64 Pin No	pad No.	Pad Name	Χ (μm)	Υ (μm)
45	1	VDD	720	-1530	14	36	SEG14	-1210	1600
46	2	CA	975	-1530	15	37	SEG15	-1390	- 1600
-	3	TEST	1155	-1530	16	38	SEG16	-1570	1600
-	4	TEST	1335	-1530	17	39	SEG17	-1750	1600
47	5	P20	1515	-1530	18	40	SEG18	-1750	1385
48	6	P21	1700	-1530	19	41	SEG19	-1750	1205
49	7	P00	1690	-1170	20	42	SEG20	-1750	1025
50	8	P01	1690	- 990	21	43	SEG21	-1750	845
51	9	P02	1690	- 810	22	44	SEG22	-1750	665
52	10	P03	1690	- 630	23	45	SEG23	-1750	48
53	11	P10	1690	- 450	24	46	SEG24	-1750	309
54	12	P11	1690	- 270	25	47	SEG25	-1750	12
55	13	P12	1690	- 90	26	48	SEG26	-1750	- 5
56	14	P13	1690	90	27	49	SEG27	-1750	- 23
57	15	S1	1690	310	28	50	SEG28	-1750	- 41
58	16	S2	1690	490	29	51	SEG29	-1750	- 59
59	17	S3	1690	670	30	52	SEG30	-1750	- 77
60	18	S4	1690	850	31	53	COM4	-1750	- 95
61	19	M1	1690	1030	32	54	COM3	-1750	-153
62	20	M2	1690	1210	33	55	COM2	-1570	-153
63	21	МЗ	1690	1390	34	56	COM1	-1390	-153
64	22	M4	1690	1570	35	57	CUP1	-1160	-153
1	23	SEG1	1130	1600	36	58	CUP2	- 980	-153
2	24	SEG2	950	1600	37	59	RES	- 800	-153
3	25	SEG3	770	1600	38	60	VDD1	- 620	-153
4	26	SEG4	590	1600	39	61	VDD2	- 440	-153
5	27	SEG5	410	1600	40	62	XT2	- 260	-153
6	28	SEG6	230	1600	41	63	XT1	- 80	-153
7	29	SEG7	50	1600	42	64	VSS	100	-153
8	30	SEG8	- 130	1600	43	65	CF1	360	-153
9	31	SEG9	- 310	1600	44	66	CF2	540	-153
10	32	SEG10	- 490	1600				L	
11	33	SEG11	- 670	1600					
12	34	SEG12	- 850	1600					
	35	SEG13	-1030	1600					

■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

- Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - 2 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guarant-eed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

No.3966-4/30

•

BLOCK DIAGRAM

•

No.3966-5/30

•

PIN DESCRIPTION

-

Num	ber	NI	D
QFP64	Die	Name	Description
45	1	VDD	Supply voltage. See figure 1.
42	64	VSS	Ground. See figure 1.
38 39	60 61	VDD1 VDD2	LCD driver supply voltage inputs. See figure 1.
35 36	57 58	CUP1 CUP2	LCD driver external coupling capacitor. A non-polarized capacitor should be connected between CUP1 and CUP2 when using 1/2 or 1/3 bias.
43	65	CF1	455kHz ceramic resonator oscillator input
44	66	CF2	455kHz ceramic resonator oscillator output
41	63	XT1	32.768 kHz crystal oscillator input
40	62	XT2	32.768 kHz crystal oscillator output
57 to 60	15 to 18	S1 to S4	Input port S.
61 to 64	19 to 22	M1 to M4	Input port M
49 to 52	7 to 10	P00 to P03	Bidirectional port PO. P-channel open-drain outputs
53 to 56	11 to 14	P10 to P13	Bidirectional port P1. P-channel open-drain outputs
47 48	5 6	P20 P21	Bidirectional port P2. P-channel open-drain outputs. P20 and P21 can be used to directly drive a LED in remote control applications.

No.3966-6/30

•

1

.

•

Nun	Number		Description								
QFP64	Die	Name		Description							
46	2	CA	Re	emote co	ntrol ca	rrier ou	tput				
37	59	RES	Re	eset inp	ut. Inte	rnal pul	l-up res	istor			
34 33 32 31	56 55 54 53	COM1 COM2 COM3 COM4	re	LCD common driver outputs. The pins required for the various operating modes are indicated in the following table.							
51	53	COM4	1			Du	ty				
				Pin	Static (64Hz)	1/2 (32Hz)	1/3 (42Hz)	1/4 (32Hz)			
				COM1 COM2 COM3 COM4	O × × ×	0 0 × ×	0 0 0 X				
1 to 15	23 to 37	SEG1 to SEG15	L	CD segme	nt drive	r output	S				
16 to 30	38 to 52	SEG16 to SEG30	a	P-channel open-drain outputs. Configurable as either LCD segment drivers or normal output ports.							
	3	TEST		est inpu peration	ts. Leav	e open f	or norma	ıl			

.

No.3966-7/30

-

Supply connections

.

Figure 1. Supply Connections

No.3966-8/30

-

SPECIFICATIONS

.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
	Vdd	-0.3 to 7.0	v
Supply voltage range	V _{DD1}	-0.3 to V _{DD}	v
		-0.3 to V _{DD}	v
Input voltage range	V 1	-0.3 to V _{DD} +0.3	v
Output voltage range	Vo	-0.3 to V _{DD} +0.3	v
CA output current	I oı	25	mA
Ports PO and P1 output current	I 02	0.5	mA
Port P2 output current	I 03	10	mA
Output current for all other ports	I 04	0.5	mA
Total output current of all pins except CA	Ios	25	mA
Operating temperature range	Topr	-30 to 70	°C
Storage temperature range	Tstg	-40 to 125	°C

Recommended Operating Conditions Vss = 0 V, Ta= 25 $^{\circ}\!\mathrm{C}$

Parameter	Symbol	Rating	Unit
Supply voltage	Vdd	3	v
Supply voltage range	Vdd	2.3 to 6.0	v

No.3966-9/30

·

-

Electrical	Characteristics
$V_{SS} = 0 V,$	Ta= −30 to 70 °C

•

Parameter Sumbal		0			Unit		
Parameter	Symbol	Condition	VDD (V)	min	typ	max	Unit
		f = 32.768 kHz, C1 = C2 = 0.1 μ F, C _G = C _D = 20 pF, To ≤ 50 °C expire	3. 0	-	7	30	
		Ta \leq 50 °C, osci- llator stopped. See note 3.	5. 0	-	15	50	
Operating Current	Operating Current I_{DD} f = 455 kHz, $C1 = C2 = 0.1 \ \mu \text{ F},$ $C_{CD} = C_{CC} = 150 \text{ pF}$ $, Ta \leq 50 \ ^{\circ}C, \text{ osc-}$ illator stopped. See note 4.	$C1 = C2 = 0.1 \ \mu F_r$ $C_{CD} = C_{CG} = 150 \ pF$	3. 0	-	150	500	μA
		5. 0	_	400	500		

Notes

- 1. Configured as LCD driver outputs.
- 2. Configured as p-channel open-drain outputs.
- 3. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 6, 7 and 8, respectively.
- 4. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 9, 10 and 11, respectively.
- 5. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 5, 3 and 4, respectively.

No.3966-10/30

•

Parameter	C. 1.1					II. i.i.	
	Symbol	Condition	VDD (V)	min	typ	max	Unit
		f = 32.768 kHz, C1 = C2 = 0.1 μ F, C _G = C _D = 20 pF, Ta ≤ 50 °C, osci- llator stopped. See note 3.	3. 0	_	3	15	
HALT-mode supply Current	I Ia See I DDH1 C1 CcD , T osc		5. 0	_	8	50	
		f = 455 kHz, C1 = C2 = 0.1 μ F, C _{CD} = C _{CG} = 150 pF	3. 0		80	500	μA
		, Ta \leq 50 °C, oscillator stopped See note 4.	5. 0	_	300	400	
	I ррн2	f = 455 kHz, oscillator stopped	5.0		0. 1	_	μA

Notes

•

•

.

- 1. Configured as LCD driver outputs.
- 2. Configured as p-channel open-drain outputs.
- 3. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 6, 7 and 8, respectively.
- 4. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 9, 10 and 11, respectively.
- 5. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 5, 3 and 4, respectively.

.No.3966-11/30

•

Parameter	Sumb a 1	Condition		Unit		
rarameter	Symbol		min	typ	max	Unit
Instruction exe- cution time		V_{DD} = 2.3 to 6.0, Ceramic resonator, f = 455 kHz	-	17. 6	-	
	t _{cyc}	V_{DD} = 2.3 to 6.0, crystal oscillator f = 32.768 kHz	-	122	-	μS
Ports S, M, PO, P1 and P2 LOW-level input voltage	VILI	Ports PO, P1 and P2 configured as inputs	0	_	0. 3V _{dd}	v
Ports S, M, PO, P1 and P2 HIGH-level input voltage	VIHI	Ports P0, P1 and P2 configured as inputs	0. 7V _{dd}	-	Vdd	v
RES LOW-level input voltage	V _{IL2}		0	-	0. 25V _{dd}	V
RES HIGH-level input voltage	V _{1H2}		0. 75V _{dd}	_	VDD	V

Notes

•

- 1. Configured as LCD driver outputs.
- 2. Configured as p-channel open-drain outputs.
- 3. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 6, 7 and 8, respectively.
- 4. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 9, 10 and 11, respectively.
- 5. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 5, 3 and 4, respectively.

No.3966-12/30

LC573404A, 573406A	

Parameter	Symbol Condition		Rating			Unit	
	0910001		$\frac{V_{DD}(V)}{2.9}$	min	typ	max	
	R	$V_{IL} = 0.4 V,$ LOW-level hold R_{II} transistor ON.		150	300	1000	kΩ
Ports S and M input impedance		See figure 2.	5. 0	70	200	600	A 66
Input Impedance		$V_{1L} = 0.4 V,$ LOW-level pull-	2.9	60	100	150	1.0
	R ₁₂	down transistor ON See figure 2.	5.0	60	100	150	kΩ
RES input imped-	R ₁₃		2. 9	10	_	300	kΩ
ance			5. 0	10	-	300	
	Vом1	$I_{OL} = 0.4 \ \mu A,$ $I_{OH} = -0.4 \ \mu A,$ 1/3 bias	2. 9	2V _{DD} /3 - 0.2	-	2V _{DD} /3 + 0.2	v
CEC1 4- CEC20			5. 0	2V _{DD} /3 - 0.2	-	2V _{DD} /3 + 0.2	
SEG1 to SEG30 MID-level output voltage	V _{ом1-1}	See note 1.	2.9	V _{DD} /3 - 0.2		V _{DD} /3 + 0.2	v
			5.0	V _{DD} /3 - 0.2		V _{DD} /3 + 0.2	
	V	$I_{OL} = 0.4 \ \mu A,$	2. 9	-	~	0.2	v
	V _{ом1-2}	See note 1.	5. 0	-	-	0.2] `
	V	$I_{OH} = -0.4 \ \mu A,$	2.9	V _{DD} -0.2	-	-	v
SEG1 to SEG30	V _{oh 1}	See note 1.	5.0	V _{DD} -0.2	-	-	V
HIGH-level output voltage	V	$I_{OH} = -45 \ \mu A,$ See note 2.	2. 9	V _{DD} -0. 45	_	-	V
	V _{OH2}	$I_{OH} = -75 \ \mu \text{ A},$ See note 2.	5. 0	V _{DD} -0.75	_	_	V

Notes

- 1. Configured as LCD driver outputs.
- 2. Configured as p-channel open-drain outputs.
- 3. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 6, 7 and 8, respectively.
- 4. The measurement circuit for static drive, $1/2 \mbox{ or } 1/3 \mbox{ bias is shown}$ in figures 9, 10 and 11, respectively.
- 5. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 5, 3 and 4, respectively.

No.3966-13/30

.

D					Rating			
Parameter	Symbol	Condition	$V_{DD}(V)$	min	typ	max	Unit	
SEG1 to SEG30 LOW-level leakage	т	$V_1 = V_{ss},$	2. 9		-	1		
current	ILLI	See note 2.	See note 2. 5.0		_	1	μΑ	
SEG1 to SEG30 HIGH-level leakage	ILHI	$V_1 = V_{DD}$, See note 2.	2. 9	-1	-	-	μA	
current	1041	See note 2.	5. 0	-1	-	_		
COM1 to COM4 LOW-level output	V _{OL1}	$I_{OL} = 4 \mu A$	2. 9	_	_	0.2	v	
voltage			5. 0	***	~	0. 2		
	V _{ом2-1}	1/2 bias	2. 9	V _{DD} /2 - 0.2	-	V _{DD} /2 + 0.2	v	
			5. 0	V _{DD} /2 - 0.2	_	V _{DD} /2 + 0.2		
COM1 to COM4 MID-level output	V _{ом2-2}	1/3 bias, І _{он} = - 4 µА	2. 9	2V _{DD} /3 - 0.2	_	2V _{DD} /3 + 0.2	v	
voltage			5. 0	2V _{DD} /3 - 0.2	-	2V _{DD} /3 + 0.2		
	V _{ом2-3}	1/3 bias, Ι _{οι} = - 4 μΑ	2. 9	V _{DD} /3 - 0.2	-	V _{DD} /3 + 0.2	v	
			5.0	V _{DD} /3 - 0.2		$V_{DD}/3$ + 0.2		
COM1 to COM4	v	$I_{OL} = -4 \ \mu \Lambda$	2. 9	V _{DD} -0.2	-		, v	
HIGH-level output voltage	V _{oh3}	· · · · ·	5. 0	V _{DD} -0.2	-	_	V	
Ports PO and P1 HIGH-level output voltage	V _{он₄}	$I_{OH} = -450 \ \mu A,$	2. 9	V _{DD} - 0. 45	-	-	v	
vortage		$I_{OH} = -500 \ \mu A$	5. 0	V _{DD} - 0. 50	_	-		

Notes

-

1. Configured as LCD driver outputs.

2. Configured as p-channel open-drain outputs.

3. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 6, 7 and 8, respectively.

4. The measurement circuit for static drive, 1/2 or 1/3 bias is shown

in figures 9, 10 and 11, respectively.

5. The measurement circuit for static drive, 1/2 or 1/3 bias is shown

in figures 5, 3 and 4, respectively.

No.3966-14/30

Фаллан 4 ли	0-1-1				Rating		II
Parameter	Symbol	Condition	V _{DD} (V)	min	typ	тах	Unit
Ports PO and P1	т	$V_1 = V_{SS},$	2. 9	_	_	1	
LOW-level leakage current	ILL 2		5. 0	-	-	1	μA
Ports PO and P1	т	$V_1 = V_{DD},$	2. 9	-1	-	-	
HIGH-LEVEL leakage current	ILH2		5. 0	-1	_	_	μA
Port P2 HIGH-level	V _{OH5}	I _{он} = -1.0 mA,	2. 9	V _{DD} ∽0. 5	-	-	v
output voltage			5. 0	V _{DD} -0.5	_		
Port P2 LOW-level	ILL 3	$V_1 = V_{SS}$	2. 9	-	-	1	μA
leakage current			5.0	-	-	1	
Port P2 HIGH-level	I _{LH3}	$V_1 = V_{DD},$	2.9	-1	-		μΑ
leakage current			5.0	-1	_	-	
CA LOW-level	IoL 1	$V_{OL} = 0.9 V,$	3. 0	2	5	-	mA
output current			5. 0	2	5	_	
CA HIGH-level	I _{он 1}	$V_{OH} = V_{DD} - 1.5 V,$	3. 0	6	12	-	mA
output current		$V_{OH} = V_{DD} - 2.5 V,$	5.0	10	20	-	
17	V	$C1 = C2 = 0.1 \ \mu F,$	3. 0	1.3	1.5	1.7	V
V _{DD1} output voltage	V _{DD1-1}	f =32.768 kHz, 1/2 bias. See figure 3	5.0	2.4	2. 5	2.6	V
$V_{DD1} - V_{DD2}$		$C1 = C2 = 0.1 \ \mu F,$	3. 0	1.8	2.0	2.2	v
voltage differential	V _{DD1-2}	f =32.768 kHz, 1/3 bias. See figure 4	5. 0	3. 1	3. 33	3 . 5	V

÷

Notes

•

- 1. Configured as LCD driver outputs.
- 2. Configured as p-channel open-drain outputs.
- 3. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 6, 7 and 8, respectively.
- 4. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 9, 10 and 11, respectively.
- 5. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 5, 3 and 4, respectively.

No.3966-15/30

Parameter	Symbol	Symbol Condition					Unit		
rarameter	Syndor		1011	$V_{DD}(V)$	min	typ	max	onit	
Vt	V		C1 =C2 = 0.1 μ F, f =32.768 kHz, 1/3		0.8	1.0	1.2	v	
V _{DD2} output voltage	VDD2	1	figure 4	5. 0	1.4	1.67	1.8	¥	
D		ceramic	ramic Ta = 3. sona- 25 °C		_	0.2	1		
Power supply	T	tor	25 °C	- 25 °C	5. 0	_	0.2	1	
leakage current	I _{LK}		Ta =	3. 0	_	1	5	μA	
			50 ℃		_	1	5		
Oscillator	Descillator Crystal oscillator f = 32.768 kHz, $C_c = C_D = 20 \text{ pF},$ See note 5.			_	-	2. 3			
start-up voltage	V _{ST}	f = 455 k	$= C_{cc} = 150 \text{ pF},$			-	2. 3	V	
Oscillator sus-				2	-	_	v		
taining voltage	V _{sus}	Ceramic r f = 455 k $C_{CD} = C_{CG} =$ See note	Hz, 150 pF,		2	-	_		

-

Notes

-

- 1. Configured as LCD driver outputs.
- 2. Configured as p-channel open-drain outputs.
- 3. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 6, 7 and 8, respectively.
- 4. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 9, 10 and 11, respectively.
- 5. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 5, 3 and 4, respectively.

No.3966-16/30

Demonstern	ч СЦ _ 1	Condition		Rating		Unit	
Parameter	Symbol Condition		min	typ	тах	UIII	
Oscillator start-up time			_	-	5	5	
	ts⊤	$V_{DD} = 2 V$, ceramic resonator, f = 455 kHz, $C_{CC} = C_{CD} = 150 pF$. See note 5.	-	_	30	ms	
Oscillator operat-	£	32.768 kHz crystal oscillator See figure 12.	32	32. 768	33	1-11-	
ing frequency range	fopg	455 kHz ceramic resonator. See figure 13.	380	455 500		kHz	
Crystal oscillator external adjust- ment capacitor range	Съ		16	20	24	pF	

Notes

.

- 1. Configured as LCD driver outputs.
- 2. Configured as p-channel open-drain outputs.
- 3. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 6, 7 and 8, respectively.
- 4. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 9, 10 and 11, respectively.
- 5. The measurement circuit for static drive, 1/2 or 1/3 bias is shown in figures 5, 3 and 4, respectively.

Measurement Circuits

The following conditions apply to figures 3 to 5.

- Ports S and M have their hold transistors enabled.
- Bidirectional ports are in output mode and are all HIGH.
- LCD drivers are open-circuit.
- RESis open-circuit and is connected to an internal resistor.
- 32 kHz crystal oscillator frequency
- 455 kHz ceramic oscillator frequency

No.3966-17/30

-

-

Figure 2. Input hold transistor

Figure 5. Oscillator characteristics 3

CR oscillator in stop mode. Figure 6. Supply current measurement 1

Figure 7. Supply current measurement 2

No.3966-18/30

-

·

Figure 8. Supply current measurement 3

Figure 10. Supply current measurement 5

-

Figure 9. Supply current measurement 4

Figure 11. Supply current measurement 6

Figure 12. Crystal oscillator connections

Figure 13. Ceramic oscillator connections

No.3966-19/30

-

Recommended Oscillators

Oscillator	Manufacturer	Part number	CG/CCG (pF)	CD/CCD (pF)	
20.700 1-11-	¥	KF-38G	18	18	
32.768 kHz crystal oscillator	Kyocera	KF-38Y	16	16	
	Daishinku	DT-38	15	15	
455 kHz ceramic	Kyocera	KBR-455BK	150	150	
resonator	Murata	CSB455E	150	150	

DEVELOPMENT TOOLS Manuals

- LC573400 Series User's Manual
- LC573400 Series Development Tools

Hardware/Software

- Software development tools
- Personal computer (MS-DOS based)
- Cross assembler LC573406.EXE (LC573406A) LC573404.EXE (LC573404A)
- Mask option generator (SU573400.EXE)

Hardware development tools

- LC5797 evaluation chip
- LC5797 evaluation board (TB5730)
- EVA420 evaluation board containing the SCR-5730 monitor ROM
- DCB-1 display and mask option control board (Rev. 3.5)
- User's application development board

Notes

- 1. The RAM capacity of the LC5797 is different to that of the LC573400 series. The LC5797 has a 256 \times 4-bit RAM whereas the LC573400 series has a 128 \times 4-bit RAM.
- 2. When developing software for the LC573400 series on the LC5797 evaluation chip, use only OH to 7H as values for DPH.

No.3966-20/30

•

LC573400 Series Development System

·

`

User's application board. LPT [000 Key Matrix 34PIN - 01 64PIN RS-232C ial Interface Personal Computer (MS-DOS) For LED Set 34P (N <u>/</u>L ᢙ 34PIN / LOA Ø 58P1N 40PLN LOSTS ***** TB5730 EVA-420 DCB-1A Don't cross or twist these cables.

No.3966-21/30

MASK OPTIONS

Combined ceramic resonator and crystal oscillator operation

The ceramic resonator and crystal oscillators can be combined in several ways as shown in figure 14.

Figure 14. Oscillator configuration 1

In this configuration, the microprocessor cycle time is eight times the ceramic resonator frequency. When the ceramic resonator oscillator is stopped with the CF command, the cycle time is four times the crystal oscillator frequency.

The divider outputs ϕ 1 to ϕ 15 are used to generate the LCD drive waveforms and timing pulses.

Ceramic resonator-only operation

In this configuration, the clock circuitry becomes as shown in figure 15.

Figure 15. Oscillator configuration 2

This configuration offers the same features as the combined oscillator option with the exception that stopping the ceramic resonator oscillator also stops program execution.

No.3966-22/30

.

Input port LOW-level latching

Ports S and M have a LOW-level input latching transistor mask option as shown in figure 16.

Figure 16. Input latching transistors

Remote control carrier generator

The remote control carrier generator circuitry is shown in figure 17.

Figure 17. Carrier generator circuit

The carrier waveform can be either software selectable from one of the three fixed waveforms 38 kHz with 1/3 duty, 38 kHz with 1/2 duty and 57 kHz with 1/2 duty-or programmable using the overflow from the 8-bit timer.

LCD drive method

Any drive method can be selected from the following list. 1. Static drive 2. 1/2 bias, 1/2 duty 3. 1/2 bias, 1/3 duty 4. 1/2 bias, 1/4 duty 5. 1/3 bias, 1/4 duty 6. 1/3 bias, 1/4 duty

No.3966-23/30

OPERATING INFORMATION

Reset

The LC573404A/LC573406A can be reset by taking $\overline{\text{RES}}$ LOW or S1 to S4 HIGH. When the LC573404A/LC573406A is reset, the following take place.

- The pull-down resistors of ports S and M are enabled.
- CA outputs a 38 kHz, ⅓-duty signal.
- All LCD segments and commons turn ON, and static drive is selected.

• Segment outputs configured as normal p-channel open-drain outputs go HIGH

TYPICAL APPLICATION

No.3966-24/30

INSTRUCTION SET

The instruction set uses the following abbreviations and symbols.

AC:	Accumulator
CF :	Carry flag

TREG: Temporary register CTLn: Control register n

PC: Program counter

[P()]:Contents of port n

CSTF: Chrono start flag.

Contents

Logical OR

Logical AND

PAGE: Page latch

DPL:

EDP:

Xn:

SFR:

CCF:

[]:

+: • : Carry flag

EDP: Data pointer save register EDPH: Data pointer save register high nibble

Data pointer low nibble

HEFn: HALT cancel inhibit flag n

Immediate data bit n

Special function register

Carrier output control flag

Complement of contents

- Accumulator bit n ACn: DP : Data pointer
- DPH : Data pointer high nibble
 - Data pointer save register low nibble EDPL:
 - SP:
 - SCFn:
 - Strobe pointer Start condition flag n LCD latch specified by SP L (SP) :
 - ROM data
- ROM:
- CFCN: Ceramic resonator oscillator control flag M(DP): Memory addressed by DP
- M: Memory [M(DP)]:Contents of memory addressed by DP
 - PCn : Program counter bit n
 - STSn: Status register n
 - X: Immediate data
 - Input port pull-down flag PDF:
 - Contents of special function register (SFR):
 - SPC: Strobe pointer control bit
 - Contents
 - (): (): Complement of contents
 - Output from stage n of the 15-stage divider Logical exclusive-OR Transfer direction or result φη: + :
 - ~~:

The special function registers are abbreviated as follows.

TCON :	Timer control register	
THI CH :	Timer/counter register high byte	
P0:	Port P0	
P2:	Port P2	

Timer/counter register low byte

- Control register 4 Port Pi
- P1 :

TLOW:

CTL4:

Mnemo- nic	Instruction code	Operation	B y t s	C y c l e s	Description	Flags
	Accumulator		l		I	•
ТААТ	0000 0001	AC, TREG←ROM	1	2	Transfers the data from the memory location in the current page, pointed to by the lower 8 bits of PC, to the accumulator and to TREG.	
MTR	0001 0010	M (DP) ←TREG	1	1	Stores the contents of TREG in the memory location pointed to by DP.	
ASRO	0001 1000	AC _n ←AC _{n+1} , AC ₃ ←0	1	1	Shifts the contents of the accumulator right and enters 0 into the msb.	
ASR1	0001 1001	$AC_{\bullet} \leftarrow AC_{\bullet+1}, AC_{\bullet} \leftarrow 1$	1	1	Shifts the contents of the accumulator right and enters 1 into the msb.	
ASLO	0001 1010	$AC_{n} \leftarrow AC_{n-1}, AC_{0} \leftarrow 0$	1	1	Shifts the contents of the accumulator left and enters 0 into the lsb.	
ASLI	0001 1011	$AC_n \leftarrow AC_{n-1}, AC_0 \leftarrow 1$	1	1	Shifts the contents of the accumulator left and enters 1 into the lsb.	
INC	1001 1000	AC, M (DP) ← M (DP) + 1	1	1	Increments the contents of M(DP) and stores it in the accumulator and in M(DP).	
DEC	1001 1001	AC, M (DP) ← M (DP) - 1	1	1	Decrements the contents of $M(DP)$ and stores it in the accumulator and in $M(DP)$.	•
	Arithmetic					
ADC	1000 0000	AC← (AC) +[M (DP)]+CF	1	1	Adds the contents of the accumulator to $M(DP)$ with carry and stores the result in the accumulator.	CF

					and scores the result in the accumulator.	
ADC*	1000 1000	AC, M (DP) ↔ (AC) +[M (DP)]+CF	1	1	Adds the contents of the accumulator to $M(DP)$ with carry and stores the result in the accumulator and $M(DP)$.	CF
ADCI X	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AC← (AC) +X+CF	2	2	Adds the contents of the accumulator to the immediate data with carry and stores the result in the accumulator.	CF

No.3966-25/30

Mnemo- nic	Instruction code	Operation	B y t s	C y c l e s	Description	Flags
SBC	1000 0001	AC+ (AC) +[M (DP)]+CF	1	1	Subtracts the contents of $M(DP)$ from the accumulator with carry and stores the result in the accumulator.	CF
SBC*	1000 1001	AC, M (DP) \leftarrow (AC) + $\left[M (DP) \right]$ + CF	1	1	Subtracts the contents of $M(DP)$ from the accumulator with carry and stores the result in the accumulator and $M(DP)$.	CF
SBCI X	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AC← (AC)+X+CF	2	2	Subtracts the immediate data from the accumulator with carry and stores the result in the accumulator.	CF
ADD	1000 0010	AC← (AC)+[M (DP)]	1	1	Adds the contents of the accumulator to the contents of M(DP) and stores the result in the accumulator.	CF
ADD*	1000 1010	AC. $M(DP) \leftarrow (AC) + [M(DP)]$	1	1	Adds the contents of the accumulator to the contents of M(DP) and stores the result in the accumulator and M(DP).	CF
ADDI X	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AC← (AC) +X	2	2	Adds the contents of the accumulator to the immediate data and stores the result in the accumulator.	CF
SUB	1000 0011	AC← (AC) +[[*] M (DP)]+]	1	1	Subtracts the contents of $M(DP)$ from the accumulator and stores the result in the accumulator.	CF
SBC*	1000 1011	AC, $M(DP) \leftarrow (AC) + [M(DP)] + 1$	1	1	Subtracts the contents of $M(DP)$ from the accumulator and stores the result in the accumulator and $M(DP)$.	CF
SBCI X	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AC← (AC)+X+1	2	2	Subtracts the immediate data from the accumulator and stores the result in the accumulator.	CF
ADN	1000 0100	AC← (AC) +[M (DP)]	1	1	Adds the contents of the accumulator to the contents of $M(DP)$ and stores the result in the accumulator.	
ADN*	1000 1100	AC, M (DP) ← (AC) +[M (DP)]	1	1	Adds the contents of the accumulator to the contents of M(DP) and stores the result in the accumulator and M(DP).	
ADNI X	1001 0100 X ₃ X ₂ X ₁ X ₀	AC← (AC) +X	2	2	Adds the contents of the accumulator to the immediate data and stores the result in the accumulator.	
1	Logical					
AND	1000 0101	AC← (AC) //[M (DP)]	1	1	Takes the logical AND of the contents of the accumulator and the contents of $M(DP)$ and stores the result in the accumulator.	
AND*	1000 1101	AC, M (DP) ← (AC) ^[M (DP)]	1	1	Takes the logical AND of the contents of the accumulator and the contents of $M(DP)$ and stores the result in the accumulator and in $M(DP)$.	
andi x	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AC← (AC) ^X	2	2	Takes the logical AND of the contents of the accumulator and the immediate data and stores the result in the accumulator.	
EOR	1000 0110	AC≁ (AC) ∽[M (DP)]	1	1	Takes the logical exclusive-OR of the contents of the accumulator and the contents of $M(DP)$ and stores the result in the accumulator.	
EOR*	1000 1110	AC, $M(DP) \leftarrow (AC) \backsim [M(DP)]$	1	1	Takes the logical exclusive-OR of the contents of the accumulator and the contents of $M(DP)$ and stores the result in the accumulator and in $M(DP)$.	
EORI X	1001 0110 X ₃ X ₂ X ₁ X ₃	AC← (AC) →X	2	2	Takes the logical exclusive-OR of the contents of the accumulator and the immediate data and stores the result in the accumulator.	
OR	1000 0111	AC(AC) ~-[M(DP)]	1	1	Takes the logical OR of the contents of M(DP) and the accumulator and stores the result in the accumulator.	
OR*	1000 1111	AC, M (DP) ↔ (AC) √[N (DP)]	1	1	Takes the logical OR of the contents of M(DP) and the accumulator and stores the result in the accumulator	

				accumulator and stores the result in the accumulator and in $M(DP)$.	
ORI X	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AC⊷ (AC) \->X	2	Takes the logical OR of the contents of the accumulator and the immediate data and stores the result in the accumulator.	

No.3966-26/30

					· ·	
Mnemo- nic	Instructuion code	Operation	B y i e s	C y c l e	Description	Flags
	Data pointer			S		
SDPL	0001 1100	DPL← (AC)	1	1	Stores the contents of the accumulator in DPL	
SDPH	0001 1101	DPH← (AC)	-	1	Stores the contents of the accumulator in DPH.	
LDPL	1111 1101	AC+- (DPL)		1	Loads the contents of DPL into the accumulator.	
LDPH	1111 1110	AC (DPH)	-		Loads the contents of DPH into the accumulator.	
MDPL X		DPL←X				
MDPL X	1011 X ₃ X ₂ X ₁ X ₀	DPH←X			Stores the immediate data in DPL.	
	1 1 0 0 X ₃ X ₂ X ₁ X ₀		1	1	Stores the immediate data in DPH.	
EDPL	0001 1110	$(DPL) \iff (EDPL)$	1	1	Swaps the contents of DPL and EDPL.	
EDPH	0001 1111	(DPH) ←> (EDPH)	1	1	Swaps the contents of DPH and EDPH.	
I DPL	1001 1010	DPL← (DPL) + 1	1	1	Increments the contents of DPL and stores the result in DPL.	
I DPH	1001 1100	DPH← (DPH) + 1	1	1	Increments the contents of DPH and stores the result in DPH.	
DDPL	1001 1011	DPL← (DPL)-1	1	1	Decrements the contents of DPL and stores the result in DPL.	
DDPH	1001 1101	DPH← (DPH) - 1	1	1	Decrements the contents of DPH and stores the result in DPH.	
SSP	1010 1110	SP← (AC)	1	1	Stores the contents of the accumulator in SP.	
LSP	1010 1010	AC← (SP)	1	1	Loads the contents of SP into the accumulator.	
MSP X	1 1 1 0 X ₃ X ₂ X ₁ X ₀	SP←X	1	1	Stores the immediate data in SP.	
I SP	1001 1110	SP← (SP) +1	1	1	Increments the contents of SP and stores the result in SP.	
DSP	1001 1111	SP← (SP) -1	1	1	Decrements the contents of SP and stores the result in SP.	
	Flag	1			,	
LHLT	1010 1011	AC← (STS2), STS2←0	1	1	Loads the contents of STS2 into the accumulator and clears STS2.	SCF1~4
L500	1010 1100	AC← (STS1), SCF0←0	1	1	Loads the contents of STS1 into the accumulator and clears SCF0.	SCF0
CSP	0000 0100	CSTF←0	1	1	Clears CSTF.	CSTF
CST	0000 0101	CSTF←1	1	1	Sets CSTF.	CSTF
RC5	0000 0110	HEF0←0	1	1	Clears HEFO to prevent HALT-mode cancellation when the divider overflows.	HEFO
SC5	0000 0111	HEFO←1	1	1	Sets HEFO to enable HALT-mode cancellation when the divider overflows.	HEFO
RCF	1111 0000	CF←0	1	1	Clears CF.	CF
SCF	1111 0001	CF←1	1	1	Sets CF.	CF
	Data transfer	•				
LDA	1010 1001	AC[M (DP)]	1	1	Loads the contents of M(DP) into the accumulator.	
STA	1010 1100	M (DP) ← (AC)	1	1	Stores the contents of the accumulator in M(DP).	CF
LDI X	0011 X ₃ X ₂ X ₁ X ₀	AC←X	1	1	Loads the immediate data into the accumulator.	

.

.

			1	1	Loads the immediate data into the accumulator.	
MVI X	0010 X3X2X1X3	M (DP) ← X	1	1	Loads the immediate data into M(DP).	

No.3966-27/30

8 | C Flag Instruction code Minemo-Operation y t У Description nic с e s 1 e s CPU control 0000 0000 CPU halted HALT 1 1 Stops the CPU. HALT mode is cancelled by the interaction of the SIC X and SC5 commands. . Stores the immediate data in CTL2. The lower 4 bits of the instruction code control the HALT mode cancellation. The functions of these bits, X0 to X3, are described below. Χu This bit sets HEF1, cancelling HALT mode with the divider overflow signal. This bit sets HEF2, cancelling X, HALT mode with a rising edge on port S. This bit sets HEF3, cancelling X 2 HALT mode with a rising edge on port M. This bit sets HEF4, cancelling X, HALT mode with the 10 Hz timing pulse. NOP 1111 1111 NO OPERATION. 1 1 No Operation. Input/output IPS 1010 1111 AC←-[P(S)] 1 1 Loads the input data on port S into the accumulator. 1 PM 1010 1000 AC←[P(M)] 1 1 Loads the input data on port M into the accumulator. SPDR X 1 1 1 1 0 1X₁X₀ PDF+---X 1 1 Stores the immediate data in PDF. PDF controls the PDF internal pull-down resistors on ports S and M. The functions of bits X0 and X1 are described below. X0 The pull-down resistors on port S are enabled when X0 is set and disabled when X0 is cleared. XI The pull-down resistors on port M are enabled when XI is set and disabled when XO is cleared. OUT 1111 1100 When SPC = 0 and SP = 0H1 1 Transfers the contents of M(DP) and the accumulator to CH, EH or FH, L(SP) to the LCD driver specified by SP. \leftarrow (AC) and [M(DP)] When SPC = 0 and SP = DH, Stores the contents of the accumulator in CTL3. CFCF CTL3 ↔ (AC) CCF When SPC = 1, Stores the contents of the accumulator in SFR. SFR ← (AC) TWRT When SPC = 0 and SP = 0H Transfers the lower eight bits of PC in the current page 1 2 to CH, EH or FH, to the accumulator, and the ROM data, pointed to by the accumulator and M(DP), to the LCD driver specified by SP. L(SP) ← ROM Transfers the lower eight bits of PC in the current page When SPC = 0 and SP = DH, CFCF to the accumulator, and the upper eight bits of the ROM CTL3 ← (AC) CCF data, pointed to by the accumulator and M(DP), to CTL3. When SPC = 1, Transfers the lower eight bits of PC in the current page SFR ← (AC) to the accumulator, and the upper four or eight bits of the ROM data, pointed to by the accumulator and M(DP), to SFR. When SPC = 0 and SP = 0HIN 0 0 0 1 0 1 1 1 The execution of the IN comand when SPC = 1 and SP = OH to 1 1 to CH, EH or FH, this CH, EH or FH will result in the device malfunctioning and instruction is invalid. so should not be used.

LC573404A, 573406A

-

.

When SPC = 0, an $AC \leftarrow (STS3)$	SP = DH. Loads the contents of STS3 into the accumulator.
When SPC = 1. AC \leftarrow (SFR)	Loads the contents of SFR into the accumulator.
Branching/subroutine	

No.3966-28/30

Mnemo- nic	Instruction code Operation		Operation	B y t s	C y l e s	Description				
JMP X	0000 X7X8X8X4	1X10X9X8 X3X2X1X0	$(PC_{10} \sim PC_{0}) \leftarrow X_{10} \sim X_{0}$	г	2	Transfers the data specified by X0 to X10 to the program counter and makes an unconditional jump.				
BABO X	0 1 0 0 X7X8X8X4	1X10X9X8 X3X2X1X0	if AC₀=1 THEN (PC₁₀∼PC₀)↔X₁₀∼X₀	2	2	If bit 0 of the accumulator is set, transfers the data specified by X0 to X10 to the program counter and jumps to that address. If the bit is not set, the program counter is incremented.				
BABI X	0101 X7X6X5X4		if $AC_1 \approx 1$ THEN (PC_1 $\circ \sim$ PC $_0$) $\leftarrow X_1 \circ \sim X_0$	2	2	If bit 1 of the accumulator is set, transfers the data specified by X0 to X10 to the program counter and jumps to that address. If the bit is not set, the program counter is incremented.				
BAB2 X	0 1 1 0 X7X6X6X4		if $AC_2=1$ THEN (PC ₁₀ ~PC ₀) $\leftarrow X_{10} \sim X_0$	2	2	If bit 2 of the accumulator is set, transfers the data specified by X0 to X10 to the program counter and jumps to that address. If the bit is not set, the program counter is incremented.				
BAB3 X	0 1 1 1 X7X8X5X4	1X10X9X3 X3X2X1X0	if AC ₃ =1 THEN (PC ₁₀ ~PC ₀) \leftarrow X ₁₀ ~X ₀	2	2	If bit 3 of the accumulator is set, transfers the data specified by X0 to X10 to the program counter and jumps to that address. If the bit is not set, the program counter is incremented.				
BAZ X	0100 X,X,X,X	0X10X9X9 X3X2X1X0	if AC≈D THEN (PC,₀~PC₀)←X,₀~X₀	2	2	If the accumulator is zero, transfers the data specified by X0 to X10 to the program counter and jumps to that adress. If the accumulator is not zero, the program counter is incremented.				
BANZ X	0101 X7X6X5X4		if AC≠O THEN (PC,₀~PC₀)←X₁₀~X₀	2	2	If the accumulator is not zero, transfers the data specified by X0 to X10 to the program counter and jumps to that address. If the accumulator is zero, the program counter is incremented.				
BCNH X	0 1 1 0 X7X4X3X4	0X10X9X8 X3X2X1X0	if $CF \neq 1$ THEN (PC ₁₀ ~PC ₀) $\leftarrow X_{10} \sim X_0$	2	2	If CF is cleared, transfers the data specified by X0 to X10 to the program counter and jumps made to that address. If CF is set, the program counter is incremented.				
BCH X	0 1 1 1 X7X8X8X4	0X10X9X8 X3X2X1X0	if CF=1 THEN (PC, $\circ \sim PC_0$) $\leftarrow X_{1,0} \sim X_0$	2	2	If CF is set, transfers the data specified by XO to X1O to the program counter and jumps to that address. If CF is cleared, the program counter is incremented.				
PACE	0001	0001	PAGE←[M(DP)]	1	1	Transfers the contents of M(DP) to the data page latch.				
JMP*	0001	0000	PC ₃ \circ ~ PC ₄ ← (PAGE) PC ₃ ~ PC ₄ ← (AC) PC ₃ ~ PC ₆ ← [M (DP)]	1	1	Transfers the data from the accumulator, page latch and the contents of M(DP) to the program counter and jumps to that address.				
ROMO	1100 0010	$1 0 0 0 \\ 0 0 0 0$	PC, 2~PC, 1 ←0	2.	2	Selects ROM bank 0.				
ROMI	1100 0010	1000	PC ₁₂ ~PC ₁₁ ←1	2	2	Selects ROM bank 1.				
ROM2	1100 0010	1000 0010	PC, 2~PC, 1 ←2	2	2	Selects ROM bank 2.				
JSR X	0 0 0 0 X7X4X5X4	1X10X5X X3X2X1X0	$STACK \leftarrow (PC) + 2$ (PC, $\circ \sim PC_{\circ}$) $\leftarrow X_{1 \circ} \sim X_{\circ}$	2	2	Pushes PC + 2 onto the stack, transfers the data specified by X0 to X10 to the program counter and calls the subroutine at that address.				
RTS	0001	0011	PC← (STACK)	1	1	Recovers the program counter from the stack and returns from the subroutine.				
	Miscellaned	ous	· · · · ·			· · · · · · · · · · · · · · · · · · ·				
SPC0		1001	SPC←0	2	2	Clears the SPC flag.	SPC			

•

-

	0010 0000					
SPC1	1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1	SPC←1	2	2	Sets the SPC flag.	SPC
CSEC	1111 1011	¢ 11~ ¢ 15←0	1	1	Clears the upper four bits of the programmable divider and flags SCF0 and SCF4.	SCF0 SCF4

No.3966-29/30

Instruction Set Summary

• .

Lower	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
Jpper																
0	HALT	TAAT	TVRT	-	CSP	CST	RC5	SC5			JMP	X				
1	J₩₽*	PAGE	MTR	RTS	-	-	-	IN	ASRO	ASRI	ASLO	ASLI	SDPL	SDPH	EDPL	EDPH
2				ЖA1 X								<u> </u>				
3				LDI X												
4				BAZ X								BAB0	X			
5				BANZ	X							BAB1	X			
6	BCNH X						BAB2 X									
7	всн х						BAB3 X									
В	ADC	SBC	ADD	SUB	ADN	AND	EOR	OR	ADC*	SBC*	ADD*	SUB*	ADN*	AND*	EOR*	OR*
9	ADCI	SBCI	ADD1	SUBI	ADNI	ANDI	EORI	ORI	INC	DEC	I DPL	DDPL	IDPH	DDPH	ISP .	DSP
A				JSR X	(1,			IPM	LDA	LSP	LHLT	L500	STA	SSP	IPS
В				MDPL	Х					·			.		L	.
С				MDPH	X				ROMX	SPCX						
D				SIC X					1		L					
E				MSP >	(
F	RCF	SCF	NOP	NOP		SPDR >	 {		_	_	-	CSEC	our	LDPL	LDPH	NOP

XXX :1 Byte,1 Cycle command

Cycle command RC

ROMX is the first byte of the ROMO(C620H),ROM1(C621H) and ROM2(C622H) commands.

.

 $\ensuremath{\mathsf{SPCX}}$ is the first byte of the $\ensuremath{\mathsf{SPC0}}(\ensuremath{\mathsf{C920H}})$ and $\ensuremath{\mathsf{SPC1}}(\ensuremath{\mathsf{C921H}})$ commands.

XXX :1 Byte,2 Cycle command

No.3966-30/30