CMOS IC

LC75847T

1/3, 1/4 Duty General-Purpose LCD Driver

An ON Semiconductor Company

Overview

The LC75847T is 1/3 duty and 1/4 duty general-purpose LCD driver that can be used for frequency display in electronic tuners under the control of a microcontroller. The LC75847T can drive an LCD with up to 420 segments directly. The LC75847T can also control up to 8 general-purpose output ports.

Features

- Switching between 1/3 duty and 1/4 duty drive techniques under serial data control.
- Switching between 1/2 bias and 1/3 bias drive techniques under serial data control.
- Up to 318 segments for 1/3 duty drive and 420 segments for 1/4 duty drive can be displayed.

- Serial data input supports CCB format communication with the system controller.
- Serial data control of the power-saving mode based backup function and all the segments forced off function.
- Serial data control of switching between the segment output port and the general-purpose output port functions.
- Serial data control of frame frequency for common and segment output waveforms.
- High generality, since display data is displayed directly without decoder intervention.
- Built-in display contrast adjustment circuit
- + Independent V_{LCD} for the LCD driver block
- The INH pin can force the display to the off state.
- RC oscillator circuit

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = 0 V$

Parameter	Symbol	Conditions	Ratings	Unit
	V _{DD} max	V _{DD}	-0.3 to +7.0	v
Maximum supply voltage	V _{LCD} max	V _{LCD}	-0.3 to +7.0	1 V
	V _{IN} 1	CE, CL, DI, INH	-0.3 to +7.0	
Input voltage	V _{IN} 2	OSC	-0.3 to V _{DD} + 0.3	V
	V _{IN} 3	V _{LCD} 1, V _{LCD} 2	-0.3 to V _{LCD} + 0.3	1
Output voltage	V _{OUT} 1	OSC	-0.3 to V _{DD} + 0.3	v
	V _{OUT} 2	V _{LCD} 0, S1 to S106, COM1 to COM4, P1 to P8	-0.3 to V _{LCD} + 0.3	1 V
	I _{OUT} 1	S1 to S106	300	μA
Output current	I _{OUT} 2	COM1 to COM4	3	
	I _{OUT} 3	P1 to P8	5	mA
Allowable power dissipation	Pd max	Ta = 85°C	200	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

• CCB is a trademark of SANYO ELECTRIC CO., LTD.

- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.
 - Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
 - SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network

Allowable Operating Ranges at Ta = –40 to +85°C, V_{SS} = 0 ${\bf V}$

Parameter	Symbol	Conditions	Ratings				
Parameter	Symbol	Conditions	min	typ	max	Unit	
	V _{DD}	V _{DD}	2.7		6.0		
Supply voltage		$V_{LCD}, V_{LCD}0$ = 0.70 V_{LCD} to 0.95 V_{LCD}	4.0		6.0	V	
	V _{LCD}	$V_{LCD}, V_{LCD}0 = V_{LCD}$	2.7		6.0		
Output voltage	V _{LCD} 0	V _{LCD} 0	2.7		V _{LCD}	V	
Input voltage	V _{LCD} 1	V _{LCD} 1		2/3 V _{LCD} 0	V _{LCD} 0	v	
input voltage	V _{LCD} 2	V _{LCD} 2		1/3 V _{LCD} 0	V _{LCD} 0		
Input high level voltage	VIH	CE, CL, DI, INH	0.8 V _{DD}		6.0	V	
Input low level voltage	VIL	CE, CL, DI, INH	0		0.2 V _{DD}	V	
Recommended external resistance	R _{OSC}	OSC		39		kΩ	
Recommended external capacitance	C _{OSC}	OSC		1000		pF	
Guaranteed oscillation range	f _{OSC}	OSC	19	38	76	kHz	
Data setup time	t _{ds}	CL, DI: Figure 2	160			ns	
Data hold time	t _{dh}	CL, DI: Figure 2	160			ns	
CE wait time	t _{cp}	CE, CL: Figure 2	160			ns	
CE setup time	t _{cs}	CE, CL: Figure 2	160			ns	
CE hold time	t _{ch}	CE, CL: Figure 2	160			ns	
High level clock pulse width	t _{øH}	CL: Figure 2	160			ns	
Low level clock pulse width	t _{øL}	CL: Figure 2	160			ns	
Rise time	tr	CE, CL, DI: Figure 2		160		ns	
Fall time	t _f	CE, CL, DI: Figure 2		160		ns	
INH switching time	t _c	INH, CE: Figure 3, Figure 4	10			μs	

Denemeter	Ourseland	Oraclitican		Ratings		Linit
Parameter	Symbol	Conditions	min	typ	max	Unit
Hysteresis	V _H	CE, CL, DI, INH		0.1 V _{DD}		V
Input high level current	IIH	CE, CL, DI, $\overline{\text{INH}}$: V _I = 6.0 V			5.0	μΑ
Input low level current	Ι _{ΙL}	CE, CL, DI, $\overline{\text{INH}}$: V _I = 0 V	-5.0			μA
	V _{OH} 1	S1 to S106: I _O = -20 μA	V _{LCD} 0 - 0.9			
Output high level voltage	V _{OH} 2	COM1 to COM4: $I_0 = -100 \mu A$	$V_{LCD}0 - 0.9$			V
	V _{OH} 3	P1 to P8: $I_0 = -1 \text{ mA}$	$V_{LCD} - 0.9$			
	V _{OL} 1	S1 to S106: I _O = 20 μA			0.9	
Output low level voltage	V _{OL} 2	COM1 to COM4: I _O = 100 µA			0.9	V
	V _{OL} 3	P1 to P8: I _O = 1 mA			0.9	
	V _{MID} 1	COM1 to COM4: 1/2 bias, $I_0 = \pm 100 \ \mu A$	1/2 V _{LCD} 0 - 0.9		1/2 V _{LCD} 0 + 0.9	
	V _{MID} 2	S1 to S106: 1/3 bias, I _O = ±20 μA	2/3 V _{LCD} 0 - 0.9		2/3 V _{LCD} 0 + 0.9	
Output middle level voltage*1	V _{MID} 3	S1 to S106: 1/3 bias, I _O = ±20 μA	1/3 V _{LCD} 0 - 0.9		1/3 V _{LCD} 0 + 0.9	V
	V _{MID} 4	COM1 to COM4: 1/3 bias, $I_0 = \pm 100 \ \mu A$	2/3 V _{LCD} 0 - 0.9		2/3 V _{LCD} 0 + 0.9	
	V _{MID} 5	COM1 to COM4: 1/3 bias, $I_0 = \pm 100 \ \mu A$	1/3 V _{LCD} 0 - 0.9		1/3 V _{LCD} 0 + 0.9	
Oscillator frequency	fosc	OSC: R _{OSC} = 39 kΩ, C _{OSC} = 1000 pF	30.4	38	45.6	kHz
	I _{DD} 1	V _{DD} : Power-saving mode			5	
	I _{DD} 2	V _{DD} : V _{DD} = 6.0 V, output open, f _{OSC} = 38 kHz		250	500	
	I _{LCD} 1	V _{LCD} : Power-saving mode			5	
Current drain	I _{LCD} 2	V_{LCD} : V_{LCD} = 6.0 V, output open, 1/2 bias, f _{OSC} = 38 kHz, V_{LCD} 0 = 0.70 V_{LCD} to 0.95 V_{LCD}		400	800	
	I _{LCD} 3	V_{LCD} : V_{LCD} = 6.0 V, output open, 1/2 bias, f _{OSC} = 38 kHz, V_{LCD} 0 = V_{LCD}		350	700	μΑ
	I _{LCD} 4	V_{LCD} : V_{LCD} = 6.0 V, output open, 1/3 bias, f _{OSC} = 38 kHz, V_{LCD} 0 = 0.70 V_{LCD} to 0.95 V_{LCD}		300	600	
	I _{LCD} 5	$V_{LCD}: V_{LCD}$ = 6.0 V, output open, 1/3 bias, f_{OSC} = 38 kHz, $V_{LCD}0$ = V_{LCD}		250	500	

Electrical Characteristics for the allowable operating ranges

Note: *1 Excluding the bias voltage generation divider resistors built in the $V_{LCD}0$, $V_{LCD}1$, $V_{LCD}2$, and V_{SS} . (See Figure 1.)

Figure 1

1. When CL is stopped at the low level

2. When CL is stopped at the high level

Figure 2

Block Diagram

Pin Functions

Symbol	Pin No.	Function	Active	I/O	Handling when unused
S1/P1 to S8/P8 S9 to S105	1 to 8 9 to 105	Segment outputs for displaying the display data transferred by serial data input. The pins S1/P1 to S8/P8 can be used as general-purpose output ports when so set up by the control data.		0	Open
COM1 to COM3 COM4/S106	109 to 107 106	Common driver outputs. The frame frequency is f _O Hz. The COM4/S106 pin can be used as a segment output in 1/3 duty.		0	Open
OSC	116	Oscillator connection. An oscillator circuit is formed by connecting an external resistor and capacitor to this pin.	_	I/O	V _{DD}
CE	118	Serial data transfer inputs. These pins are connected to the control microprocessor.	Н	Ι	
CL	119	CE: Chip enable CL: Synchronization clock		Ι	GND
DI	120	DI: Transfer data	—	Т	
ĪNH	117	Display off control input • $\overline{INH} = Iow (V_{SS}) \dots Off$ S1/P1 to S8/P8 = Iow (V _{SS}) (These pins are forcibly set to the segment output port function and fixed at the V _{SS} level.) S9 to S105 = Iow (V _{SS}) COM1 to COM3 = Iow (V _{SS}) COM4/S106 = Iow (V _{SS}) • $\overline{INH} = high (V_{DD}) \dots On$ Note that serial data transfers can be performed when the display is forced off by this pin.	L	I	GND
$V_{LCD}0$	112	LCD drive 3/3 bias voltage (high level) supply. This level can be modified using the display contrast adjustment circuit. However, note that V_{LCD} 0 must be greater than or equal to 2.7 V. Also, since this IC provides the built-in display contrast adjustment circuit, applications must not attempt to provide this level from external circuits.	_	0	Open
V _{LCD} 1	113	LCD drive 2/3 bias voltage (middle level) supply. It is possible to supply the 2/3 $V_{LCD}0$ voltage to this pin externally. This pin must be shorted to $V_{LCD}2$ if 1/2 bias is used.	_	Ι	Open
V _{LCD} 2	114	LCD drive 1/3 bias voltage (middle level) supply. It is possible to supply the 1/3 $V_{LCD}0$ voltage to this pin externally. This pin must be shorted to $V_{LCD}1$ if 1/2 bias is used.	_	I	Open
V _{DD}	110	Logic block power supply. Provide a voltage in the range 2.7 to 6.0 V.	_	_	_
V _{LCD}	111	LCD driver block power supply. When V _{LCD} 0 is between 0.70 V _{LCD} and 0.95 V _{LCD} , supply a voltage in the range 4.0 to 6.0 V. When V _{LCD} 0 and V _{LCD} will be equal, supply a voltage in the range 2.7 to 6.0 V.		_	_
V _{SS}	115	Ground pin. Connect to ground.			

Pin Assignment

Serial Data Transfer Format

1. 1/3 duty

1 When CL is stopped at the low level

Note: DD---Direction data.

⁽²⁾ When CL is stopped at the high level

Note: DD---Direction data.

- CCB address......85H
- D1 to D318.....Display data
- P0 to P3Segment output port/general-purpose output port switching control data
- CT0 to CT2Control data that sets the display contrast
- DR1/2 bias drive or 1/3 bias drive switching control data
- DT1/3 duty drive or 1/4 duty drive switching control data
- FC.....Common and segment output waveforms frame frequency setting control data
- SC.....Segments on/off control data
- BUNormal mode/power-saving mode control data

2. 1/4 duty

① When CL is stopped at the low level

Note: DD---Direction data.

LC75847T

⁽²⁾ When CL is stopped at the high level

Serial Data Transfer Example

1. 1/3 duty

1 When 214 or more segments are used

All 384 bits of serial data must be sent.

^② When fewer than 214 segments are used

Either 128 or 256 bits of serial data may be sent, depending on the number of segments used. However, the serial data shown below (the D1 to D108 display data and the control data) must be sent.

2. 1/4 duty

① When 317 or more segments are used

All 512 bits of serial data must be sent.

8 bits	128 bits
← 1 0 1 0 0 0 0 1 D1 B0 B1 B2 B3 A0 A1 A2 A3	
1 0 1 0 0 0 1 D109 B0 B1 B2 B3 A0 A1 A2 A3	D212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 D213 B0 B1 B2 B3 A0 A1 A2 A3	D316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 D317 B0 B1 B2 B3 A0 A1 A2 A3	D420 1 1

^② When fewer than 317 segments are used

Either 128, 256 or 384 bits of serial data may be sent, depending on the number of segments used. However, the serial data shown below (the D1 to D108 display data and the control data) must be sent.

Control Data Functions

1. P0 to P3: Segment output port/general-purpose output port switching control data.

These control data bits switch the S1/P1 to S8/P8 output pins between their segment output port and generalpurpose output port functions.

	Contro	ol data					Output p	oin state			
P0	P1	P2	P3	S1/P1	S2/P2	S3/P3	S4/P4	S5/P5	S6/P6	S7/P7	S8/P8
0	0	0	0	S1	S2	S3	S4	S5	S6	S7	S8
0	0	0	1	P1	S2	S3	S4	S5	S6	S7	S8
0	0	1	0	P1	P2	S3	S4	S5	S6	S7	S8
0	0	1	1	P1	P2	P3	S4	S5	S6	S7	S8
0	1	0	0	P1	P2	P3	P4	S5	S6	S7	S8
0	1	0	1	P1	P2	P3	P4	P5	S6	S7	S8
0	1	1	0	P1	P2	P3	P4	P5	P6	S7	S8
0	1	1	1	P1	P2	P3	P4	P5	P6	P7	S8
1	0	0	0	P1	P2	P3	P4	P5	P6	P7	P8

Note: Sn (n = 1 to 8): Segment output ports

Pn (n = 1 to 8): General-purpose output ports

Also note that when the general-purpose output port function is selected, the output pins and the display data will have the correspondences listed in the tables below.

Output pin	Corresponding display data				
	1/3 duty	1/4 duty			
S1/P1	D1	D1			
S2/P2	D4	D5			
S3/P3	D7	D9			
S4/P4	D10	D13			
S5/P5	D13	D17			
S6/P6	D16	D21			
S7/P7	D19	D25			
S8/P8	D22	D29			

For example, when 1/4 duty drive scheme is used, if the general-purpose output port function is selected for the S4/P4 output pin, that output pin will output a high level (V_{LCD}) when the display data D13 is 1, and a low level (V_{SS}) when the D13 is 0.

2. CT0 to CT2: Control data that sets the display contrast This control data is used to set the display contrast. CT0 to CT2: Display contrast setting (7 steps)

CT0	CT1	CT2	LCD drive 3/3 bias voltage power supply (V _{LCD} 0) level
0	0	0	$1.00 V_{LCD} = V_{LCD} - (0.05 V_{LCD} \times 0)$
1	0	0	$0.95 V_{LCD} = V_{LCD} - (0.05 V_{LCD} \times 1)$
0	1	0	$0.90 V_{LCD} = V_{LCD} - (0.05 V_{LCD} \times 2)$
1	1	0	$0.85 V_{LCD} = V_{LCD} - (0.05 V_{LCD} \times 3)$
0	0	1	$0.80 V_{LCD} = V_{LCD} - (0.05 V_{LCD} \times 4)$
1	0	1	$0.75 V_{LCD} = V_{LCD} - (0.05 V_{LCD} \times 5)$
0	1	1	$0.70 V_{LCD} = V_{LCD} - (0.05 V_{LCD} \times 6)$

Note that although the display contrast can be adjusted by operating the built-in display contrast adjustment circuit, it is also possible to adjust the contrast by varying the voltage level on the LCD drive block power supply V_{LCD} pin. However, V_{LCD} 0 must always be greater than or equal to 2.7 V. 3. DR: 1/2 bias drive or 1/3 bias drive switching control data This control data bit selects either 1/2 bias drive or 1/3 bias drive.

DR	Bias drive scheme
0	1/3 bias drive
1	1/2 bias drive

4. DT: 1/3 duty drive or 1/4 duty drive switching control data This control data bit selects either 1/3 duty drive or 1/4 duty drive.

DT	Duty drive scheme	Output pin state (COM4/S106)
0	1/4 duty drive	COM4
1	1/3 duty drive	S106

Note: COM4: Common output

S106: Segment output

5. FC: Common and segment output waveforms frame frequency setting control data This control data bit sets the frame frequency for common and segment output waveforms.

FC	Frame frequency fo [Hz]
0	
1	<u>fosc</u> 192

6. SC: Segments on/off control data

This control data bit controls the on/off state of the segments.

SC	Display state
0	On
1	Off

However, note that when the segments are turned off by setting SC to 1, the segments are turned off by outputting segment off waveforms from the segment output pins.

7. BU: Normal mode/power-saving mode control data

This control data bit selects either normal mode or power-saving mode.

BU	Mode
0	Normal mode
1	Power saving mode (The OSC pin oscillator is stopped, and the common and segment output pins go to the V _{SS} level. However, the S1/P1 to S8/P8 output pins that are set to be general-purpose output ports by the control data P0 to P3 can be used as general-purpose output ports.)

Display Data to Segment Output Pin Correspondence

1. 1/3 duty

Segment Output pin	COM1	COM2	СОМЗ	Segment Output pin	COM1	COM2	COM3	Segment Output pin	COM1	COM2	СОМЗ
S1/P1	D1	D2	D3	S37	D109	D110	D111	S73	D217	D218	D219
S2/P2	D4	D5	D6	S38	D112	D113	D114	S74	D220	D221	D222
S3/P3	D7	D8	D9	S39	D115	D116	D117	S75	D223	D224	D225
S4/P4	D10	D11	D12	S40	D118	D119	D120	S76	D226	D227	D228
S5/P5	D13	D14	D15	S41	D121	D122	D123	S77	D229	D230	D231
S6/P6	D16	D17	D18	S42	D124	D125	D126	S78	D232	D233	D234
S7/P7	D19	D20	D21	S43	D127	D128	D129	S79	D235	D236	D237
S8/P8	D22	D23	D24	S44	D130	D131	D132	S80	D238	D239	D240
S9	D25	D26	D27	S45	D133	D134	D135	S81	D241	D242	D243
S10	D28	D29	D30	S46	D136	D137	D138	S82	D244	D245	D246
S11	D31	D32	D33	S47	D139	D140	D141	S83	D247	D248	D249
S12	D34	D35	D36	S48	D142	D143	D144	S84	D250	D251	D252
S13	D37	D38	D39	S49	D145	D146	D147	S85	D253	D254	D255
S14	D40	D41	D42	S50	D148	D149	D150	S86	D256	D257	D258
S15	D43	D44	D45	S51	D151	D152	D153	S87	D259	D260	D261
S16	D46	D47	D48	S52	D154	D155	D156	S88	D262	D263	D264
S17	D49	D50	D51	S53	D157	D158	D159	S89	D265	D266	D267
S18	D52	D53	D54	S54	D160	D161	D162	S90	D268	D269	D270
S19	D55	D56	D57	S55	D163	D164	D165	S91	D271	D272	D273
S20	D58	D59	D60	S56	D166	D167	D168	S92	D274	D275	D276
S21	D61	D62	D63	S57	D169	D170	D171	S93	D277	D278	D279
S22	D64	D65	D66	S58	D172	D173	D174	S94	D280	D281	D282
S23	D67	D68	D69	S59	D175	D176	D177	S95	D283	D284	D285
S24	D70	D71	D72	S60	D178	D179	D180	S96	D286	D287	D288
S25	D73	D74	D75	S61	D181	D182	D183	S97	D289	D290	D291
S26	D76	D77	D78	S62	D184	D185	D186	S98	D292	D293	D294
S27	D79	D80	D81	S63	D187	D188	D189	S99	D295	D296	D297
S28	D82	D83	D84	S64	D190	D191	D192	S100	D298	D299	D300
S29	D85	D86	D87	S65	D193	D194	D195	S101	D301	D302	D303
S30	D88	D89	D90	S66	D196	D197	D198	S102	D304	D305	D306
S31	D91	D92	D93	S67	D199	D200	D201	S103	D307	D308	D309
S32	D94	D95	D96	S68	D202	D203	D204	S104	D310	D311	D312
S33	D97	D98	D99	S69	D205	D206	D207	S105	D313	D314	D315
S34	D100	D101	D102	S70	D208	D209	D210	COM4/S106	D316	D317	D318
S35	D103	D104	D105	S71	D211	D212	D213				
S36	D106	D107	D108	S72	D214	D215	D216				

Note: This applies to the case where the S1/P1 to S8/P8, and COM4/S106 output pins are set to be segment output ports.

For example, the table below lists the segment output states for the S11 output pin.

	Display data		Comment output air (C44) state		
D31	D32	D33	Segment output pin (S11) state		
0	0	0	The LCD segments corresponding to COM1, COM2, and COM3 are off.		
0	0	1	The LCD segment corresponding to COM3 is on.		
0	1	0	The LCD segment corresponding to COM2 is on.		
0	1	1	The LCD segments corresponding to COM2 and COM3 are on.		
1	0	0	The LCD segment corresponding to COM1 is on.		
1	0	1	The LCD segments corresponding to COM1 and COM3 are on.		
1	1	0	The LCD segments corresponding to COM1 and COM2 are on.		
1	1	1	The LCD segments corresponding to COM1, COM2, and COM3 are on.		

2. 1/4 duty

Segment Output pin	COM1	COM2	COM3	COM4	Segment Output pin	COM1	COM2	COM3	COM4
S1/P1	D1	D2	D3	D4	S54	D213	D214	D215	D216
S2/P2	D5	D6	D7	D8	S55	D217	D218	D219	D220
S3/P3	D9	D10	D11	D12	S56	D221	D222	D223	D224
S4/P4	D13	D14	D15	D16	S57	D225	D226	D227	D228
S5/P5	D17	D18	D19	D20	S58	D229	D230	D231	D232
S6/P6	D21	D22	D23	D24	S59	D233	D234	D235	D236
S7/P7	D25	D26	D27	D28	S60	D237	D238	D239	D240
S8/P8	D29	D30	D31	D32	S61	D241	D242	D243	D244
S9	D33	D34	D35	D36	S62	D245	D246	D247	D248
S10	D37	D38	D39	D40	S63	D249	D250	D251	D252
S11	D41	D42	D43	D44	S64	D253	D254	D255	D256
S12	D45	D46	D47	D48	S65	D257	D258	D259	D260
S13	D49	D50	D51	D52	S66	D261	D262	D263	D264
S14	D53	D54	D55	D56	S67	D265	D266	S267	D268
S15	D57	D58	D59	D60	S68	D269	D270	D271	D272
S16	D61	D62	D63	D64	S69	D273	D274	D275	D276
S17	D65	D66	D67	D68	S70	D277	D278	D279	D280
S18	D69	D70	D71	D72	S71	D281	D282	D283	D284
S19	D73	D74	D75	D76	S72	D285	D286	D287	D288
S20	D77	D78	D79	D80	S73	D289	D290	D291	D292
S21	D81	D82	D83	D84	S74	D293	D294	D295	D296
S22	D85	D86	D87	D88	S75	D297	D298	D299	D300
S23	D89	D90	D91	D92	S76	D301	D302	D303	D304
524	D93	D94	D95	D96	S77	D305	D306	D307	D308
S25	D97	D98	D99	D100	S78	D309	D310	D311	D312
S26	D101	D102	D103	D104	S79	D313	D314	D315	D316
S27	D105	D106	D107	D108	S80	D317	D318	D319	D320
S28	D109	D110	D111	D112	S81	D321	D322	D323	D324
S29	D113	D114	D115	D116	S82	D325	D326	D327	D328
S30	D117	D118	D119	D120	S83	D329	D330	D331	D332
S31	D121	D122	D123	D124	S84	D333	D334	D335	D336
S32	D125	D126	D120	D121	S85	D337	D338	D339	D340
S33	D129	D120	D131	D120	S86	D341	D342	D343	D344
S34	D123	D134	D135	D136	S87	D345	D346	D347	D348
S35	D137	D138	D139	D130	S88	D349	D350	D351	D352
S36	D137	D142	D133	D140	S89	D353	D354	D355	D356
S30	D145	D142	D143	D144	S90	D357	D354	D359	D360
S38	D145	D140	D147 D151	D148 D152	S90 S91	D357	D358 D362	D359 D363	D364
S39	D149 D153	D150	D151	D152	S91 S92	D361	D362	D363	D368
539 S40	D153	D154	D155 D159	D156	S92 S93	D365 D369	D366 D370	D367 D371	D368
S40 S41			D159 D163	D160	S93 S94	D369 D373	D370 D374		
S41 S42	D161	D162			S94 S95			D375	D376
	D165	D166	D167	D168	S95 S96	D377	D378	D379	D380
S43 S44	D169	D170	D171	D172		D381	D382	D383	D384
	D173	D174	D175	D176	S97	D385	D386	D387	D388
S45	D177	D178	D179	D180	S98	D389	D390	D391	D392
546	D181	D182	D183	D184	S99	D393	D394	D395	D396
547	D185	D186	D187	D188	S100	D397	D398	D399	D400
548	D189	D190	D191	D192	S101	D401	D402	D403	D404
549	D193	D194	D195	D196	S102	D405	D406	D407	D408
S50	D197	D198	D199	D200	S103	D409	D410	D411	D412
S51	D201	D202	D203	D204	S104	D413	D414	D415	D416
S52	D205	D206	D207	D208	S105	D417	D418	D419	D420

Note: This applies to the case where the S1/P1 to S8/P8 output pins are set to be segment output ports.

LC75847T

Segment output pin (S11) state		Display data				
		D43	D42	D41		
segments corresponding to COM1, COM2, COM3, and COM4 are off.	0	0	0	0		
segment corresponding to COM4 is on.	1	0	0	0		
segment corresponding to COM3 is on.	0	1	0	0		
segments corresponding to COM3 and COM4 are on.	1	1	0	0		
segment corresponding to COM2 is on.	0	0	1	0		
segments corresponding to COM2 and COM4 are on.	1	0	1	0		
segments corresponding to COM2 and COM3 are on.	0	1	1	0		
segments corresponding to COM2, COM3, and COM4 are on.	1	1	1	0		
segment corresponding to COM1 is on.	0	0	0	1		
segments corresponding to COM1 and COM4 are on.	1	0	0	1		
segments corresponding to COM1 and COM3 are on.	0	1	0	1		
segments corresponding to COM1, COM3, and COM4 are on.	1	1	0	1		
segments corresponding to COM1 and COM2 are on.	0	0	1	1		
segments corresponding to COM1, COM2, and COM4 are on.	1	0	1	1		
segments corresponding to COM1, COM2, and COM3 are on.	0	1	1	1		
segments corresponding to COM1, COM2, COM3, and COM4 are on.	1	1	1	1		

For example, the table below lists the segment output states for the S11 output pin.

1/3 Duty, 1/2 Bias Drive Technique

1/3 Duty, 1/3 Bias Drive Technique

1/4 Duty, 1/2 Bias Drive Technique

1/4 Duty, 1/3 Bias Drive Technique

The INH pin and Display Control

Since the IC internal data (1/3 duty: the display data D1 to D318 and the control data, 1/4 duty: the display data D1 to D420 and the control data) is undefined when power is first applied, applications should set the \overline{INH} pin low at the same time as power is applied to turn off the display (This sets the S1/P1 to S8/P8, S9 to S105, COM1 to COM3, and COM4/S106 to the V_{SS} level.) and during this period send serial data from the controller. The controller should then set the \overline{INH} pin high after the data transfer has completed. This procedure prevents meaningless displays at power on. (See Figures 3 and 4.)

Notes on the Power On/Off Sequences

Applications should observe the following sequences when turning the LC75847T power on and off.

- At power on: Logic block power supply (V_{DD}) on \rightarrow LCD driver block power supply (V_{LCD}) on
- At power off: LCD driver block power supply (V_{LCD}) off \rightarrow Logic block power supply (V_{DD}) off

However, if the logic and LCD driver block use a shared power supply, then the power supplies can be turned on and off at the same time.

• 1/3 duty

Figure 3

• 1/4 duty

Notes on Controller Transfer of Display Data

Since the LC75847T accepts the display data (D1 to D318) divided into three separate transfer operations when using 1/3 duty drive scheme and the data (D1 to D420) divided into four separate transfer operations when 1/4 duty drive, we recommend that applications transfer all of the display data within a period of less than 30 ms to prevent observable degradation of display quality.

1/3 Duty, 1/2 Bias (for use with normal panels)

Note: *2 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

Sample Application Circuit 2

1/3 Duty, 1/2 Bias (for use with large panels)

1/3 Duty, 1/3 Bias (for use with nornal panels)

Note: *2 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

Sample Application Circuit 4

1/3 Duty, 1/3 Bias (for use with large panels)

Note: *2 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

1/4 Duty, 1/2 Bias (for use with normal panels)

Note: *2 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

Sample Application Circuit 6

1/4 Duty, 1/2 Bias (for use with large panels)

Note: *2 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

1/4 Duty, 1/3 Bias (for use with nornal panels)

Note: *2 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

Sample Application Circuit 8

1/4 Duty, 1/3 Bias (for use with large panels)

Note: *2 When a capacitor except the recommended external capacitance (Cosc = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200 pF.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 2004. Specifications and information herein are subject to change without notice.