LC87F2L08A

Advance Information

смоз LSI **8-bit Microcontroller** 8K-Byte Flash ROM / 256-Byte RAM / 30-pin

Overview

The LC87F2L08A is an 8-bit microcomputer that, centered around a CPU running at a minimum bus cycle time of 83.3ns, integrates on a single chip a number of hardware features such as 8K-byte flash ROM (On-board-programmable), 256-byte RAM, an On-chip-debugger, two sophisticated 16-bit timers/counters (may be divided into 8-bit timers), an asynchronous/synchronous SIO interface, a 12/8-bit 9-channel AD converter, four analog comparator, two AMP circuits, an IGBT control circuit(PPG), a watch dog timer, an internal reset a system clock frequency divider, and a 19-source 10-vector interrupt feature.

Features

- Flash ROM
 - 8192 × 8 bits
 - Capable of on-board programming with a power voltage range of 4.5 to 5.5V
 - Block-erasable in 128 byte units
- Writing in 2-byte units
- ROM
- 256 × 9 bits
- Package : DIP30SD(400mil), Lead-free type
- Minimum bus cycle time
 - 83.3ns (12MHz)

Note : The bus cycle time here refers to the ROM read speed.

- Minimum instruction cycle time
 - 250ns (12MHz)

DIP30SD(400mil)

* This product is licensed from Silicon Storage Technology, Inc. (USA).

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ORDERING INFORMATION

See detailed ordering and shipping information on page 30 of this data sheet.

Ports

- Normal withstand voltage I/O ports
 - Ports I/O direction can be designated in 1 bit units Ports I/O direction can be designated in 4 bit units
- Dedicated PPG ports
- Dedicated oscillator ports/input ports
- Reset pin
- Power pins
- Timers
 - Timer 0 : 16-bit timer/counter with a capture register.
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) $\times 2$ channels
 - Mode 1 : 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) + 8-bit counter (with an 8-bit capture register)
 - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)
 - Mode 3 : 16-bit counter (with a 16-bit capture register)
 - Timer 1 : 16-bit timer/counter
 - Mode 0: 8-bit timer with an 8-bit prescaler + 8-bit timer/counter with an 8-bit prescaler
 - Mode 2 : 16-bit timer/counter with an 8-bit prescaler
 - Mode 3 : 16-bit timer with an 8-bit prescaler
 - Timer 6 : 8-bit timer with a 6-bit prescaler (with toggle outputs)
 - Timer 7 : 8-bit timer with a 6-bit prescaler (with toggle outputs)
 - Base timer
 - 1) The clock is selectable from the subclock (32.768 kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts are programmable in 5 different time schemes
- High-speed clock counter
 - Can count clocks with a maximum clock rate of 20 MHz (at a main clock of 10 MHz).
- SIO
 - SIO1 : 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2-wire configuration, 2 to 512 Tcyc transfer clocks)
 - Mode 2 : Bus mode 1 (start bit, 8 data bits, 2 to 512 Tcyc transfer clocks)
 - Mode 3 : Bus mode 2 (start detect, 8 data bits, stop detect)
- UART
 - Full duplex
 - 7/8/9 bit data bits selectable
 - 1 stop bit (2-bit in continuous data transmission)
 - Built-in baudrate generator
- AD converter : 12 bits/8 bits × 9 channels
 - 12/8 bits AD converter resolution selectable
- Remote control receiver circuit (sharing pins with P73, INT3, and T0IN)
- Noise rejection function (noise filter time constant selectable from 1Tcyc/32Tcyc/128Tcyc)
- Clock output function
 - Can generate clock outputs with a frequency of $\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{64}$ of the source clock selected as the system clock.
 - Can generate the source clock for the subclock.

■ Analog comparator × 4 channels

- CMP1 : Both input terminals of "+" and "-".
- CMP2 : Input terminal of "+", "-" input is 2/3VDD of internal Vref.
- Interrupt flag set of output (INT0).
- CMP 3: "+" input is output of AMP1. "-" input is 2/3VDD of internal Vref. PPG output control of CMP3 output (OFF only at a present cycle) and interrupt flag set (INT1).
 CMP4 : Input terminal of "+", "-" input is 2/3VDD of internal Vref.
- PPG output control of CMP4 output (compulsion OFF) and interrupt flag set(CMP4).
- AMP circuit \times 2 channels
 - AMP1 : The magnification is set by the user option (×6/×8/×10). Input terminal (AMP1I) Output is CMP3 input and AMP2 input.
 - AMP2 : The magnification is set by the register (×1/×2/×4). Input is AMP1 output. Output rerminal (AMP2O)
- Pulse output control circuit (PPG output) × 1 channels
 - Output synchronous signal switch : Set by the register (1 pulse output) / Continuous pulse output of synchronization to CMP1 output .
 - Duty control : The pulse beginning delay time and the pulse end time form synchronous idle are set according to the register.
 - PPG output is compulsion OFF by the CMP3/CMP4 output.
 - CMP1 output : Timing detection of pulse signal.
 - The output polarity can be switched : User option setting.

- Watchdog timer
 - Can generate the internal reset signal on a timer overflow monitored by the WDT-dedicated low-speed RC oscillation clock (30kHz).
 - Allows selection of continue, stop, or hold mode operation of the counter on entry into the HALT/ HOLD mode.

■ Interrupts

- 19 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/INT5/base timer
5	00023H	H or L	ТОН
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	UART1 receive
8	0003BH	H or L	SIO1/UART1 transmit
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/CMP4

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- Subroutine stack levels: 128levels (the stack is allocated in RAM.)
- High-speed multiplication/division instructions
 - 16 bits × 8 bits (5 Tcyc execution time)
 - 24 bits \times 16 bits (12 Tcyc execution time)
 - 16 bits ÷ 8 bits (8 Tcyc execution time)
 - 24 bits ÷ 16 bits (12 Tcyc execution time)

Oscillation circuits

 Internal oscillation circuits 	
Low-speed RC oscillation circuit 1	: For system clock(100kHz)
Medium-speed RC oscillation circuit	: For system clock(1MHz)
Multifrequency RC oscillation circuit	: For system clock(8MHz)
Low-speed RC oscillation circuit 2	: For watch dog timer(30kHz)

- External oscillation circuits
 - Hi-speed CF oscillation circuit : For system clock, with internal Rf
 - Low speed crystal oscillation circuit : For low-speed system clock, with internal Rf
 - 1) The CF and crystal oscillation circuits share the same pins. The active circuit is selected under program control.
 - 2) Both the CF and crystal oscillator circuits stop operation on a system reset. When the reset is released, only the CF oscillation circuit resumes operation.

System clock divider function

- Can run on low current.
- The minimum instruction cycle selectable from 300 ns, 600 ns, 1.2 μ s, 2.4 μ s, 4.8 μ s, 9.6 μ s, 19.2 μ s, 38.4 μ s, and 76.8 μ s (at a main clock rate of 10 MHz).

■ Internal reset function

- Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level can be selected from 8 levels (1.67V, 1.97V, 2.07V, 2.37V, 2.57V, 2.87V, 3.86V, and 4.35V) through option configuration.
- Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use/disuse of the LVD function and the low voltage threshold level (7 levels: 1.91V, 2.01V, 2.31V, 2.51V, 2.81V, 3.79V, 4.28V).
- Standby function
 - HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Occurrence of an interrupt
 - HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, and crystal oscillators automatically stop operation.
 - 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) System resetting by watchdog timer or low-voltage detection
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4 or INT5 * INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
 - •X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer. 1) The CF and RC oscillators automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are five ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level.
 - (2) System resetting by watchdog timer or low-voltage detection.
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4 or INT5
 - * INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0.
 - (5) Having an interrupt source established in the base timer circuit.

Note: Available only when X'tal oscillation is selected.

■ On-chip debugger

- Supports software debugging with the IC mounted on the target board.
- Data security function (flash versions only)

• Protects the program data stored in flash memory from unauthorized read or copy. Note : This data security function does not necessarily provide absolute data security.

- Development tools
 - On-chip-debugger : TCB87 TypeB + LC87F2L08A

Programming board

Package	Programming board
DIP30SD	W87F2LD

■ Flash ROM programmer

Mal	ker	Model	Supported version	Device	
Flash	Single Programmer	AF9708 AF9709/AF9709B/AF9709C (Including Ando Electric Co., Ltd. models)	Rev03.12	LC87F2L08A	
Support Group, Inc. (FSG)	Gang	AF9723/AF9723B(Main body) (Including Ando Electric Co., Ltd. models)	*1		
	Programmer	AF9833(Unit) (Including Ando Electric Co., Ltd. models)	*1	LC87F2L08A	
	Single/Gang Programmer	SKK/SKK Type B (SanyoFWS)	Application Version		
ON Semiconductor	Gang Programmer	SKK-4G (SanyoFWS)	1.04 or later Chip Data Version	LC87F2L08	
	In-circuit/Gang Programmer	SKK-DBG Type B (SanyoFWS)	2.18 or later		

Note : Check for the latest version.

*1 : We have a schedule to request the registration.

For information about AF-Series:

Flash Support Group, Inc. TEL: +81-53-459-1050 E-mail: <u>sales@j-fsg.co.jp</u>

Package Dimensions

unit : mm

PDIP30 / DIP30SD (400 mil) CASE 646AZ

ISSUE A

Y = Year

M = Month

DDD = Additional Traceability Data

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present.

Pin Assignment

DIP30SD	NAME	
1	P30/INT5//T1IN/BUZ/CMP1O	
2	PPGO	
3	RES#	
4	VSS1	
5	CF1/XT1	
6	CF2/XT2	
7	VDD1	
8	AMP1I	
9	CMP1IA	
10	CMP1IB	
11	CMP2I	
12	P00/AN0	
13	P01/AN1	
14	P02/AN2	
15	P03/AN3	

DIP30SD	NAME
16	CMP4I
17	AMP2O
18	VSS2
19	P04/AN4
20	P05/AN5/CKO/DBGP00
21	P06/AN6/T6O/DBGP01
22	P07/T7O/DBGP02
23	P70/INT0/T0LCP/AN8
24	P71/INT1/T0HCP/AN9
25	P72/INT2/T0IN
26	P73/INT3//T0IN
27	P20/UTX/INT4/T1IN
28	P21/URX/INT4/T1IN
29	P14/SB1
30	P15/SCK1

System Block Diagram

Pin Function Chart

Pin Name	I/O		Des	cription			Option
VSS1	-	 power supply pins 					No
VSS2 VDD1							No
Port 0	 I/O	 + power supply pin 8-bit I/O port 					Yes
P00 to P07		 I/O specifiable in 4 bit Pull-up resistors can be HOLD reset input Port 0 interrupt input Pin functions P05: System clock P06: Timer 6 toggle P07: Timer 7 toggle P00(AN0) to P06(Ae) P05(DBGP00) to P 	output output e output e output N6):AD con	nverter input		t	
Port 1 P14 to P15	I/O	 2-bit I/O port I/O specifiable in 1 bit Pull-up resistors can t Pin functions P14: SIO1 data I/O P15: SIO1 clock I/C 	units be turned on	· · ·			Yes
Port 2 P20 to P21	I/O	 O • 2-bit I/O port I/O specifiable in 1 bit units Pull-up resistors can be turned on and off in 1 bit units. Pin functions P20 : UART transmit P21 : UART receive P20 to P21 : INT4 input / HOLD reset input / timer 1 event input / timer 0L capture input / timer 0H capture input 					Yes
		Interrupt acknowledge t Rising	Falling	Rising & Falling	H level	L level	
		INT4 O	0	0	Х	×	
Port 3 P30	I/O	 1-bit I/O port I/O specifiable in 1 bit Pull-up resistors can b Pin functions P30: BUZ output/CM INT5 input/H0 timer 0L capt Interrupt acknowledge t 	be turned on P1O output/ DLD reset in ure input/tim ype	/ iput / timer 1 ier 0H captu	event input re input		Yes
		Rising	Falling	Rising & Falling	H level	L level	
	1	INT5 O	0	0	×	×	

LC87F2L08A

Pin Name	I/O			Descr	iption			Option
Port 7 P70 to P73	I/O	 I/O specifi Pull-up re Pin function P70 : II P71 : II P72 : II tir P73 : II tir P70(AN) 	 4-bit I/O port I/O specifiable in 1 bit units Pull-up resistors can be turned on and off in 1 bit units. Pin functions P70 : INT0 input / HOLD reset input / timer 0L capture input P71 : INT1 input / HOLD reset input / timer 0H capture input P72 : INT2 input / HOLD reset input / timer 0 event input / timer 0L capture input P73 : INT3 input (with noise filter) / timer 0 event input / timer 0H capture input P70(AN8),P71(AN9) : AD converter input 					
			Rising	Falling	Rising & Falling	H level	L level	
		INT0 INT1 INT2 INT3	0 0 0	0 0 0 0	× × O O	0 0 × ×	0 0 × ×	
AMP1I	I	AMP1 input						No
AMP2O	0	AMP2 outp	ut					No
CMP1IA	I	CMP1 input	:(-)					No
CMP1IB	I	CMP1 input	:(+)					No
CMP2I	I	CMP2 input	(+)					No
CMP4I	I	CMP4 input	:(+)					No
PPGO	0	PPG output						Yes
RES	I/O	External res	set Input / int	ernal reset ou	utput			No
CF1/XT1	I	Pin function	eramic resonator or 32.768kHz crystal oscillator input pin in function General-purpose input port					No
CF2/XT2	I/O	Pin function			ystal oscillato	r output pir	I	No

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P14 to P15	1 bit	1	CMOS	Programmable
P20 to P21 P30		2	Nch-open drain	Programmable
P30 to P31	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	_	No	CMOS	Programmable
PPGO	_	1	CMOS	No
		2	Nch-open drain	No

Note 1 : The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low- and high-impedance pull-up connection is exercised in nibble (4-bit) units (P00 to 03 or P04 to 07).

User Option Table

Option name	Option to be applied on	Flash-ROM version	Option selected in units of	Option selection
		0		CMOS
	P00 to P07	Ū	1 bit	Nch-open drain
		0	4 1-14	CMOS
	P14 to P15	0	1 bit	Nch-open drain
Dest evitevit trine		0	4 64	CMOS
Port output type	P20 to P21	0	1 bit	Nch-open drain
	F 20	0	4 1-14	CMOS
	P30	0	1 bit	Nch-open drain
	8800			CMOS
	PPGO	0	-	Nch-open drain
PPGO output	PPCO	0		Not inverted
polarity	PPGO	0	-	Inverted
Magnification				x6
Magnification of AMP1	-	0	-	x8
				x10
Program start		0		00000h
address	-	0	-	01E00h
Low-voltage		0		Enable : Use
detection reset	Detect function	0	-	Disable : Not Used
function	Detect level	0	-	7-level
Power-on reset function	Power-On reset level	0	-	8-level

Din Nome	Recommended Unused Pin Connections					
Pin Name	Board	Software				
P00 to P07	Open	Output low				
P14 to P15	Open	Output low				
P20 to P21	Open	Output low				
P30	Open	Output low				
P70 to P73	Open	Output low				
CF1/XT1	Pulled low with a 100k Ω resistor or less	General-purpose input port				
CF2/XT2	Pulled low with a 100k Ω resistor or less	General-purpose input port				

Recommended Unused Pin Connections

On-chip Debugger pin connection requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "RD87 Onchip Debugger Installation Manual" and "LC872000 Series Onchip debugger pin connection requirements"

Note : Be sure to electrically short-circuit between the VSS1 and VSS2 pins.

	Demons - 4 - 17	Oursels al	Dia /Dava auto	Constitutions			Spec	ification	
	Parameter	Symbol	Pin/Remarks	Conditions	VDD[V]	min.	typ.	max.	unit
Maximum supply voltage		VDDMAX	VDD1			-0.3	-	+6.5	V
Inp	out voltage	VI	CF1, RES#, AMP1I, CMP1IA,CMP1IB, CMP2I, CMP4I			-0.3	-	VDD+0.3	
ou	tput voltage	VO	AMP2O, PPGO			-0.3	-	VDD+0.3	
	out/output Itage	VIO	CF2, Ports 0, 1, 2, 3, Port 7			-0.3	_	VDD+0.3	
ent	Peak output current	IOPH(1)	Ports 0, 1, 2, 3, PPGO	CMOS output select Per 1 applicable pin		-10			mA
curr		IOPH(2)	P71 to P73	Per 1 applicable pin		-5			
output current	Mean output current	IOMH(1)	Ports 0, 1, 2, 3, PPGO	CMOS output select Per 1 applicable pin		-7.5			
High level o	(Note 1-1)	IOMH(2)	P71 to P73	Per 1 applicable pin		-3			
-i hệ	Total output	$\Sigma IOAH(1)$	P71 to P73	Total of all applicable pins		-10			
Hig	current	ΣIOAH(2)	Ports 0, 1, 2, 3, PPGO	Total of all applicable pins		-25			
	Peak output current	IOPL(1)	P02 to P07, Ports 1, 2, 3, PPGO	Per 1 applicable pin				20	
		IOPL(2)	P00, P01	Per 1 applicable pin				30	
rent		IOPL(3)	Port 7	Per 1 applicable pin				10	
Low level output current	Mean output current (Note 1-1)	IOML(1)	P02 to P07, Ports 1, 2, 3, PPGO	Per 1 applicable pin				15	
Ъ		IOML(2)	P00, P01	Per 1 applicable pin				20	
eve		IOML(3)	Port 7	Per 1 applicable pin				7.5	
Š	Total output	$\Sigma IOAL(1)$	P00 to P03	Total of all applicable pins				40	
Lo	current	ΣIOAL(2)	P04 to P07, Ports 1, 2, 3, 7, PPGO	Total of all applicable pins				40	
		ΣIOAL(3)	Ports 0, 1, 2, 3, 7, PPGO	Total of all applicable pins				70	
	wer sipation	Pdmax(1)	DIP30SD	Ta=-40 to +85°C Package only				350	mW
		Pdmax(2)		Ta=-40 to +85°C Package with thermal resistance board (Note 1-2)				540	
•	perating	Topr				-40	-	+85	°C
ter	nbient nperature								
	prage ambient	Tstg				-55	-	+125	

1. Absolute Maximum Ratings at Ta=25°C, V_{SS} 1= V_{SS} 2= 0V

Note 1-1 : The mean output current is a mean value measured over 100ms. Note 1-2 : SEMI standards thermal resistance board (size : 76.1×114.3×1.6tmm, glass epoxy) is used.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Parameter	Symbol	Symbol Pin/Remarks	Conditions			Specification				
Farameter	-			VDD[V]	min.	typ.	max.	unit		
Operating supply voltage (Note 2-1)	VDD	VDD1	0.245µs ≤ tCYC ≤ 200µs		4.5		5.5	V		
Memory sustaining supply voltage	VHD	VDD1	RAM and register contents sustained in HOLD mode.		2.0					
High level input voltage	VIH(1)	Ports 1, 2, 3, 7		4.5 to 5.5	0.3VDD +0.7		VDD			
	VIH(2)	Ports 0		4.5 to 5.5	0.3VDD +0.7		VDD			
	VIH(3)	CF1, RES#		4.5 to 5.5	0.75VDD		VDD			
Low level input voltage	VIL(1)	Ports 1, 2, 3, 7		4.5 to 5.5	VSS		0.1VDD +0.4			
	VIL(2)	Ports 0		4.5 to 5.5	VSS		0.15VDD +0.4			
	VIL(3)	CF1, RES#		1.8 to 5.5	VSS		0.25VDD			
Instruction cycle time (Note 2-1)	tCYC (Note 2-2)			4.5 to 5.5	0.245		200	μs		
External system clock frequency	FEXCF	CF1	 CF2 pin open System clock frequency division ratio = 1/1 External system clock duty = 50±5% 	4.5 to 5.5	0.1		12	MHz		
			 CF2 pin open System clock frequency division ratio = 1/2 External system clock duty = 50±5% 	4.5 to 5.5	0.2		24.4			
Oscillation frequency	FmCF(1)	CF1, CF2	12 MHz ceramic oscillation See Fig. 1.	4.5 to 5.5		12		MHz		
range (Note 2-3)	FmCF(2)	CF1, CF2	10 MHz ceramic oscillation See Fig. 1.	4.5 to 5.5		10				
	FmCF(3)	CF1, CF2	4 MHz ceramic oscillation. CF oscillation normal amplifier size selected. See Fig. 1. (CFLAMP=0)	4.5 to 5.5		4				
			4 MHz ceramic oscillation. CF oscillation low amplifier size selected. (CFLAMP=1) See Fig. 1.	4.5 to 5.5		4				
	FmMRC		Frequency variable RC oscillation. 1/2 frequency division ratio. (RCCTD=0) (Note 2-4)	4.5 to 5.5	7.44	8.0	8.56			
	FmRC		Internal Medium-speed RC oscillation	4.5 to 5.5	0.5	1.0	2.0	1		
	FmSRC1		Internal Low-speed RC oscillation 1	4.5 to 5.5	50	100	200	kHz		
	FmSRC2		Internal Low-speed RC oscillation 2	4.5 to 5.5	15	30	60			
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 2.	4.5 to 5.5		32.768				

Note 2-1 : V_{DD} must be held greater than or equal to 2.2 V in the flash ROM onboard programming mode.

Note 2-2 : Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Note 2-3 : See Tables 1 and 2 for the oscillation constants.

Note 2-4 : When switching the system clock, allow an oscillation stabilization time of 100 µs or longer after the multifrequency RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Devenueter	Cumhal	Din (Demerike	Conditions			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	VDD[V]	min.	typ.	max.	unit
High level input current	IIH(1)	Ports 0, 1, 2, 3 Ports 7, CMP1IA, CMP1IB, CMP2I, CMP4I, AMP1I, RES#	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	4.5 to 5.5			1	μA
	IIH(2)	CF1	VIN=VDD	4.5 to 5.5			15	
Low level input current	IIL(1)	Ports 0, 1, 2, 3 Ports 7, CMP1IA, CMP1IB, CMP2I, CMP4I, AMP1I, RES#	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	4.5 to 5.5	-1			
	IIL(2)	CF1	VIN=VSS	4.5 to 5.5	-15			
AMP output current (Note 3-1)	IAMPO	AMP2O	Magnification of AMP1 is selected x8 by user option Magnification of AMP2 is selected x1 by resister AMP1I=0.445V	5.0	-2.3		0.30	mA
High level output voltage	VOH(1)	Ports 0, 1, 2 P71 to P73	IOH=-1mA	4.5 to 5.5	VDD-1			V
-	VOH(4)	Port 3,PPGO	IOH=-6mA	4.5 to 5.5	VDD-1			
Low level output	VOL(1)	Ports 0, 1, 2, 3,	IOL=10mA	4.5 to 5.5			1.5	
voltage	VOL(2)	PPGO	IOL=1.4mA	4.5 to 5.5			0.4	
	VOL(4)	Port 7	IOL=1.4mA	4.5 to 5.5			0.4	
	VOL(6)	P00, P01	IOL=25mA	4.5 to 5.5			1.5	
	VOL(7)	-	IOL=4mA	4.5 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 3 Port 7	VOH=0.9VDD When Port 0 selected Iow-impedance pull-up.	4.5 to 5.5	18	50	230	kΩ
	Rpu(3)	Port 0	VOH=0.9VDD When Port 0 selected High-impedance pull-up.	4.5 to 5.5	100	210	400	
Hysteresis voltage	VHYS(1)	Ports 1, 2, 3, 7, RES#		4.5 to 5.5		0.1 VDD		V
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	4.5 to 5.5		10		pF

3. Electrical Characteristics at Ta=-40 to +85°C, V_{SS}1= V_{SS}2=0V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Serial I/O Characteristics at Ta=-40 to +85°C, VSS1= VSS2=0V

4-1. SIO1 Serial I/O Characteristics (Note 4-1-1)

	D	romotor	Symbol	Pin/Remarks	Conditions			Speci	fication	
	Pa	arameter	Symbol	Pin/Remarks	Conditions	VDD[V]	min.	typ.	max.	unit
		Frequency	tSCK(3)	SCK1(P15)	• See Fig. 5.	4.5 to 5.5	2			tCYC
	Input clock	Low level pulse width	tSCKL(3)				1			
clock	п	High level pulse width	tSCKH(3)				1			
Serial clock	sk	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig. 5.	4.5 to 5.5	2			
	Output clock	Low level pulse width	tSCKL(4)					1/2		tSCK
	õ	High level pulse width	tSCKH(4)					1/2		
input	Da	ta setup time	tsDI(2)	SB1(P14)	Must be specified with respect to rising edge of SIOCLK.	4.5 to 5.5	0.05			μs
Serial input	Da	ta hold time	thDI(2)		• See Fig. 5.		0.05			
Serial output	Ou tim	tput delay le	tdD0(4)	SB1(P14)	 Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5. 	4.5 to 5.5			(1/3)tCYC +0.08	

Note 4-1-1 : These specifications are theoretical values. Add margin depending on its use.

5. Pulse Input Conditions at Ta=-40 to +85°C, V_{SS}1= V_{SS}2=0V

Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	
Farameter	Symbol	Fill/Relliars			min.	typ.	max.	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P71), INT2(P72), INT4(P20 to P21), INT5(P30 to P31)	 Interrupt source flag can be set. Event inputs for timer 0 or 1 are enabled. 	4.5 to 5.5	1			tCYC
	tPIH(2) tPIL(2)	INT3(P73) when noise filter time constant is 1/1	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	4.5 to 5.5	2			
	tPIH(3) tPIL(3)	INT3(P73) when noise filter time constant is 1/32	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	4.5 to 5.5	64			
	tPIH(4) tPIL(4)	INT3(P73) when noise filter time constant is 1/128	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	4.5 to 5.5	256			
	tPIL(5)	RES#	 Resetting is enabled. 	4.5 to 5.5	200			μs

6. AD Converter Characteristics at $V_{SS}1 = V_{SS}2 = 0V$

<12bits AD Converter Mode / Ta=-40 to +85°C >

Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	_
Parameter	Symbol	FIII/Relliarks	Conditions	VDD[V]	min.	typ.	max.	unit
Resolution	Ν	AN0(P00) to		4.5 to 5.5		12		bit
Absolute accuracy	ET	AN6(P06) AN8(P70)	(Note 6-1)	4.5 to 5.5			±16	LSB
Conversion time	TCAD	AN9(P71)	See Conversion time calculation formulas. (Note 6-2)	4.5 to 5.5	32		115	μs
Analog input voltage range	VAIN			4.5 to 5.5	VSS		VDD	V
Analog port	IAINH		VAIN=VDD	4.5 to 5.5			1	μA
input current	IAINL		VAIN=VSS	4.5 to 5.5	-1			

<8bits AD Converter Mode / Ta=-40 to +85°C >

Parameter	Symbol	Din/Bomarka	Pin/Remarks Conditions –			Specif	ication	ation	
Farameter	Symbol	FIII/Remains	Conditions	VDD[V]	min.	typ.	max.	unit	
Resolution	Ν	AN0(P00) to		4.5 to 5.5		8		bit	
Absolute accuracy	ET	AN6(P06) AN8(P70)	(Note 6-1)	4.5 to 5.5			±1.5	LSB	
Conversion time	TCAD	AN9(P71)	See Conversion time calculation formulas. (Note 6-2)	4.5 to 5.5	20		90	μs	
Analog input voltage range	VAIN			4.5 to 5.5	VSS		VDD	V	
Analog port	IAINH		VAIN=VDD	4.5 to 5.5			1	μA	
input current	IAINL		VAIN=VSS	4.5 to 5.5	-1				

Conversion time calculation formulas :

12bits AD Converter Mode : TCAD(Conversion time)= $((52/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode : TCAD(Conversion time)= $((32/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

External oscillation	Operating supply voltage range	voltage range division ratio		AD division ratio	AD conversion time (TCAD)		
(FmCF)	(VDD)	(SYSDIV)	(tCYC)	(ADDIV)	12bit AD	8bit AD	
CF-12MHz	4.5V to 5.5V	1/1	250ns	1/8	34.8µs	21.5µs	
CF-10MHz	4.5V to 5.5V	1/1	300ns	1/8	41.8µs	25.8µs	
CF-4MHz	4.5V to 5.5V	1/1	750ns	1/8	104.5µs	64.5µs	

Note 6-1 : The quantization error ($\pm 1/2$ LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2 : The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

• The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.

• The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

7. Power-on Reset (POR) Characteristics at Ta=-40 to +85°C, V_{SS}1= V_{SS}2=0V

						Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min.	typ.	max.	unit
POR release	PORRL		 Select from option. 	1.67V	1.55	1.67	1.79	V
voltage			(Note 7-1)	1.97V	1.85	1.97	2.09	
				2.07V	1.95	2.07	2.19	
				2.37V	2.25	2.37	2.49	
				2.57V	2.45	2.57	2.69	
				2.87V	2.75	2.87	2.99	
				3.86V	3.73	3.86	3.99	
				4.35V	4.21	4.35	4.49	
Detection voltage unknown state	POUKS		• See Fig. 7. (Note 7-2)			0.7	0.95	
Power supply rise time	PORIS		• Power supply rise time from 0V to 1.6V.				100	ms

Note7-1 : The POR release level can be selected out of 8 levels only when the LVD reset function is disabled. Note7-2 : POR is in an unknown state before transistors start operation.

8. Low Voltage Detection Reset (LVD) Characteristics at Ta=-40 to +85°C, $V_{SS}1=V_{SS}2=0V$

						Specifi	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min.	typ.	max.	unit
LVD reset	LVDET		Select from	1.91V	1.81	1.91	2.01	V
Voltage			option.	2.01V	1.91	2.01	2.11	
(Note 8-2)			(Note 8-1)	2.31V	2.21	2.31	2.41	
			(Note 8-3)	2.51V	2.41	2.51	2.61	
			See Fig. 8.	2.81V	2.71	2.81	2.91	
				3.79V	3.69	3.79	3.89	
				4.28V	4.18	4.28	4.38	
LVD hysteresis	LVHYS			1.91V		55		mV
width				2.01V		55		
				2.31V		55		
				2.51V		55		
				2.81V		60		
				3.79V		65		
				4.28V		65		_
Detection voltage unknown state	LVUKS		• See Fig. 8. (Note 8-4)			0.7	0.95	V
Low voltage detection minimum width (Reply sensitivity)	TLVDW		• LVDET-0.5V • See Fig. 9.		0.2			ms

Note8-1 : The LVD reset level can be selected out of 7 levels only when the LVD reset function is enabled. Note8-2 : LVD reset voltage specification values do not include hysteresis voltage.

Note8-3 : LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note8-4 : LVD is in an unknown state before transistors start operation.

Baramatar	Symbol	Pin/Remarks	Conditions			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	VDD[V]	min.	typ.	max.	unit
Input common-mode voltage (Note9-1)	VCMIN	CMP1IA, CMP1IB, CMP2I,CMP4I		4.5 to 5.5	VSS		VDD -1.5V	V
Internal reference voltage	VREF	"-" inputs of CMP2, CMP3, CMP4		4.5 to 5.5	2/3VDD -0.02	2/3VDD	2/3VDD +0.02	
AMP input voltage (Note9-2)	VAMIN	AMP1I		4.5 to 5.5	VSS		(VDD -1.5V) /Magnific ation of AMP	V
Offset voltage	VOFF(1)	CMP1IA, CMP1IB (CMP1)	Input common-mode voltage range	4.5 to 5.5			±20	mV
	VOFF(2)	CMP2I (CMP2), CMP4I (CMP4)	 Input common-mode voltage range Including VREF error 	4.5 to 5.5			±40	
	VOFF(3)	AMP1I (CMP3)	 AMP Input voltage range Magnification of AMP1 is selected x8 by user option 	4.5 to 5.5			±28	
AMP output error	VAER	AMP2O	Including VREF error AMP Input voltage range Magnification of AMP1 is	4.5 to 5.5		±155	±200	mV
			selected x8 by user option • Magnification of AMP2 is selected x1 by resister					
CMP1 response speed	tC1RT	CMP1O(P30)	 Input common-mode voltage range Input amplitude=100mV Over drive=50mV 	4.5 to 5.5		200		ns
CMP3 response speed (Note9-3)	tC3RT	PPGO	 Magnification of AMP1 is selected x8 by user option AMP11 rising timing 	4.5 to 5.5		600		
			AMP1I=(VREF±100mV)/8 See Fig. 10.					
CMP4 response speed	tC4RT	PPGO	CMP4I rising timing CMP4I=VREF±50mV See Fig. 10.	4.5 to 5.5		200		

9. Amplifier and Comparator Characteristics at Ta=-40 to +85°C, V_{SS}1= V_{SS}2=0V

Note9-1 : When $V_{DD}=5V$, the comparison input voltage is effective from 0 to 3.5V.

Note9-2 : Magnification of AMP= Magnification of AMP1× Magnification of AMP2

When $V_{DD}=5V$, magnification of AMP1 to $\times 8$ magnification of AMP2 to $\times 1$, the AMP input voltage is effective from 0 to 0.4375V.

Note9-3 : PPGO have a delay of 1/6tCYC to 1/2tCYC from CMP1O falling timing for synchronization with system clock, when the pulse start delay setup register (ADDRESS: FE92H, FE93H) is set to 000H.

10. Consumption Current Characteristics at Ta=–40 to +85°C, V_{SS} 1= V_{SS} 2=0V

Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	
Farameter	Symbol	Fill/Reillarks	Conditions	VDD[V]	min.	typ.	Max.	unit
Normal mode consumption current (Note 10-1) (Note 10-2)	IDDOP(1)	VDD1	 FmCF=12 MHz ceramic oscillation mode System clock set to 12 MHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	4.5 to 5.5		8.7	16	mA
	IDDOP(2)		 FmCF=4 MHz ceramic oscillation mode System clock set to 4 MHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	4.5 to 5.5		4.4	8.7	
	IDDOP(3)		 CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4 MHz ceramic oscillation mode System clock set to 4 MHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio 	4.5 to 5.5		2.6	4.8	
	IDDOP(4)		 FsX'tal=32.768 kHz Crystal oscillation mode Internal Low speed RC oscillation stopped. System clock set to internal Medium speed RC oscillation. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	4.5 to 5.5		2.1	3.8	
	IDDOP(5)		 FsX'tal=32.768 kHz crystal oscillation mode Internal Low speed and Medium speed RC oscillation stopped. System clock set to 8MHz with Frequency variable RC oscillation 1/1 frequency division ratio 	4.5 to 5.5		6.7	11.3	
	IDDOP(6)		 External FsX'tal and FmCF oscillation stopped. System clock set to internal Low speed RC oscillation. Internal Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	4.5 to 5.5		1.6	2.6	
	IDDOP(7)		 FsX'tal=32.768 kHz crystal oscillation mode System clock set to 32.768kHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	4.5 to 5.5		1.6	2.6	

LC87F2L08A

Parameter	Symbol	Pin/remarks	Conditions			Specif	ication		
T drameter		T III/Ternarks		VDD[V]	min.	typ.	max.	unit	
HALT mode consumption current (Note 10-1) (Note 10-2)	IDDHALT(1)	VDD1	 HALT mode FmCF=12 MHz ceramic oscillation mode System clock set to 12 MHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	4.5 to 5.5		4.4	8.7	mA	
	IDDHALT(2)		 HALT mode FmCF=4 MHz ceramic oscillation mode System clock set to 4 MHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	4.5 to 5.5		2.9	5.5		
	IDDHALT(3)		 HALT mode CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4 MHz ceramic oscillation mode System clock set to 4 MHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio 	4.5 to 5.5		2.2	3.9		
	IDDHALT(4)		 HALT mode FsX'tal=32.768 kHz crystal oscillation mode Internal Low speed RC oscillation stopped. System clock set to internal Medium speed RC oscillation Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	4.5 to 5.5		1.9	3.1		
	IDDHALT(5)		 HALT mode FsX'tal=32.768 kHz crystal oscillation mode Internal Low speed and Medium speed RC oscillation stopped. System clock set to 8MHz with Frequency variable RC oscillation 1/1 frequency division ratio 	4.5 to 5.5		3.3	5.9		
	IDDHALT(6)		 If Trequency division ratio HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal Low speed RC oscillation. Internal Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	4.5 to 5.5		1.5	2.5		
	IDDHALT(7)		 HALT mode FsX'tal=32.768 kHz crystal oscillation mode System clock set to 32.768kHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	4.5 to 5.5		1.6	2.6		

Parameter	Symbol	Pin/remarks	Conditions	Specification					
Parameter	Symbol	FIII/Telliarks	Conditions	VDD[V]	min.	typ.	max.	unit	
HOLD mode consumption current (Note 10-1) (Note 10-2) (Note 10-3)	IDDHOLD	VDD1	HOLD mode • FsX'tal=32.768 kHz crystal oscillation mode • LVD option selected	4.5 to 5.5		1.5	2.6	mA	

Note10-1 : Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors. Note10-2 : The consumption current values do not include operational current of LVD function if not specified.

Note10-3 : AMP/CMP circuit is operating in HOLD mode.

1. F-ROM Programming Characteristics at Ta=+10 to +55°C, V _{SS} 1= V _{SS} 2=0V

Parameter	Symbol	Pin/Remarks	Conditions		Specification					
Farameter	Symbol	FIII/Rellidiks	Collations	VDD[V]	min.	typ.	max.	unit		
Onboard programming current	IDDFW(1)	VDD1	Only current of the Flash block.	4.5 to 5.5		5	10	mA		
Programming	tFW(1)		 Erasing time 	4.5 to 5.5		20	30	ms		
time	tFW(2)		 Programming time 			40	60	μs		

12. UART (Full Duplex) Operating Conditions at Ta=-40 to +85°C, V_{SS}1= V_{SS}2=0V

Parameter	Symbol	Pin/Remarks	Pin/Remarks Conditions V	_		Specifi	cation	
Falameter	Symbol	FIII/Relliarks		VDD[V]	min.	typ.	max.	unit
Transfer rate	UBR	UTX(P20) URX(P21)		4.5 to 5.5	16/3		8192/3	tCYC

Data length : 7/8/9 bits (LSB first)

Stop bits : 1 bit(2-bit in continuous data transmission)

Parity bits : None

Example of Continuous 8-bit Data Transmission Mode Processing (First Transmit Data=55H)

Example of Continuous 8-bit Data Reception Mode Processing (First Receive Data=55H)

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a ON Semiconductor-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1. Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

• CF oscillation normal amplifier size selected (CFLAMP=0)

■ MURATA

Nominal	Turne	Type Oscillator Name -	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		Remarks	
Frequency	Туре	Oscillator Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Range [V]	Typ [ms]	Max [ms]	Remarks	
12MHz	SMD	CSTCE12M0G52-R0	(10)	(10)	Open	680	4.5 to 5.5	0.1	0.5		
10MHz	SMD	CSTCE10M0G52-R0	(10)	(10)	Open	680	4.5 to 5.5	0.1	0.5		
TUMITZ	LEAD	CSTLS10M0G53-B0	(15)	(15)	Open	680	4.5 to 5.5	0.1	0.5		
8MHz	SMD	CSTCE8M00G52-R0	(10)	(10)	Open	1k	4.5 to 5.5	0.1	0.5		
OWITZ	LEAD	CSTLS8M00G53-B0	(15)	(15)	Open	1k	4.5 to 5.5	0.1	0.5	Internal C1,C2	
6MHz	SMD	CSTCR6M00G53-R0	(15)	(15)	Open	1.5k	4.5 to 5.5	0.1	0.5		
OWITZ	LEAD	CSTLS6M00G53-B0	(15)	(15)	Open	1.5k	4.5 to 5.5	0.1	0.5		
4MHz	SMD	CSTCR4M00G53-R0	(15)	(15)	Open	1.5k	4.5 to 5.5	0.2	0.6		
41 ν1 ΠΖ	LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	1.5k	4.5 to 5.5	0.2	0.6		

• CF oscillation low amplifier size selected (CFLAMP=1)

■ MURATA

Nominal		Circuit Constant		Circuit Constant Voltage	be Oscillator Name		Operating Voltage		llation tion Time	Domorko	
Frequency	Туре	Oscillator Name	C1	C2	Rf	Rd	Range	Тур	Max	Remarks	
, ,			[pF]	[pF]	[Ω]	[Ω]	[٧]	[ms]	[ms]		
	CMD.	SMD	CSTCR4M00G53-R0	(15)	(15)	Open	1k	4.5 to 5.5	0.2	0.6	
4MHz	SMD	CSTCR4M00G53095-R0	(15)	(15)	Open	1k	4.5 to 5.5	0.2	0.6	Internal C1,C2	
4MHZ LEAD	CSTLS4M00G53-B0	(15)	(15)	Open	1k	4.5 to 5.5	0.2	0.6	Internal C1,C2		
	CSTLS4M00G53095-B0	(15)	(15)	Open	1k	4.5 to 5.5	0.2	0.6			

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 3).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a ON Semiconductor-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2. Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

EPSON TOYOCOM

Nominal	Turne	Oscillator		Circuit C	Constant		Operating Voltage		illation ation Time	Domorko
Frequency	Туре	Name	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Range [V]	Typ [s]	Max [s]	Remarks
32.768kHz	SMD	MC-306	8pF	8pF	Open	0Ω	4.5 to 5.5	1.00s	1.50s	Applicable CL value = 7.0pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 3).

Note : The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

Figure 1. CF and XT Oscillator Circuit

Figure 2. AC Timing Measurement Point

Figure 3. Oscillation Stabilization Times

Figure 4. Reset Circuit

Figure 5. Serial I/O Output Waveforms

Figure 6. Pulse Input Timing Signal Waveform

Figure 7. Waveform observed when only POR is used (LVD not used) (RESET pin: Pull-up resistor R_{RES} only)

- The POR function generates a reset only when power is turned on starting at the VSS level.
- <u>No stable reset will be generated if power is turned on again when the power level does not go down to</u> the VSS level as shown in (a). If such a case is anticipated, use the LVD function together with the POR function or implement an external reset circuit.
- <u>A reset is generated only when the power level goes down to the VSS level as shown in (b) and power is turned on again after this condition continues for 100µs or longer.</u>

Figure 8. Waveform observed when both POR and LVD functions are used (RESET pin: Pull-up resistor R_{RES} only)

- Resets are generated both when power is turned on and when the power level lowers.
- <u>A hysteresis width (LVHYS) is provided to prevent the repetitions of reset release and entry cycles near the detection level.</u>

Figure 10. CMP response time

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC87F2L08AU-DIP-E	DIP30SD(400mil) (Pb-Free)	20 / Fan-Fold

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws a