Optical Image Stabilization (OIS) / Open-Auto Focus (AF) Controller & Driver integrating an on-chip 32-bit DSP

ON

ON Semiconductor®

www.onsemi.com

Over View

LC898124EP1XC is a system LSI integrating an on-chip 32-bit DSP, a EEPROM and peripherals including analog circuits for Optical Image Stabilization (OIS) / Auto Focus (AF) control and constant current drivers.

Features

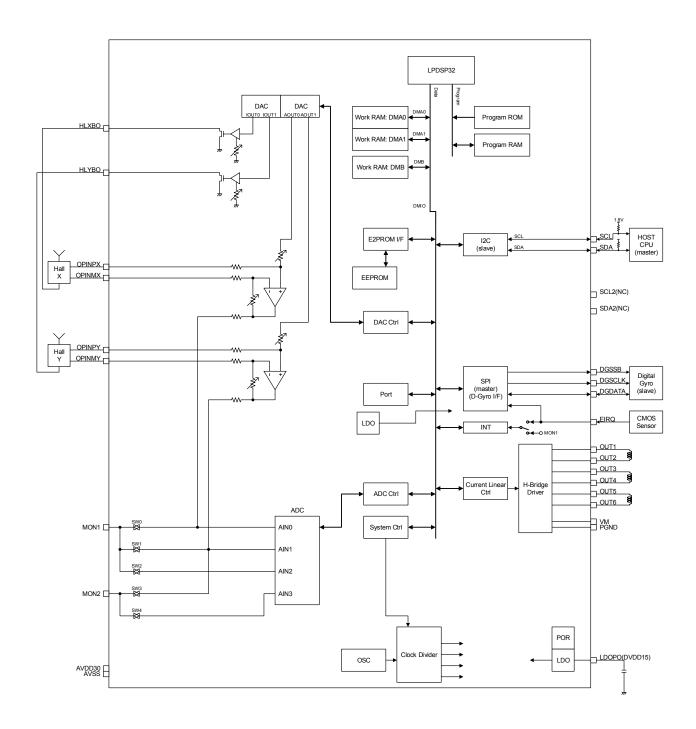
- On-chip 32-bit DSP
 - · Built-in software for digital servo filter
 - Built-in software for Gyro filter
- Memory
 - EEPROM
 - ROM
 - SRAM
- Peripherals
 - AD converter : Input 4-chDA converter : Output 2-ch
 - 2-wire Serial I/F circuit (with clock stretch function)
 - Hall Bias circuit x2-ch
 - Hall Amp x2-ch
 - OSC (Oscillator)
 - LDO (Low Drop-Out regulator)
 - Digital Gyro I/F for various types of gyro (SPI Bus)
 - Interrupt I/F
- Driver
 - OIS

Constant current linear driver (x2-ch, Ifull = 160 mA)

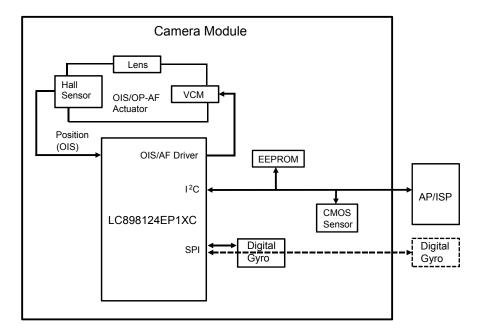
• OP-AF(bidirection)

Constant current linear driver (x1-ch, Ifull = 130 mA)

Package


- WLCSP27 (3.89 mm x 1.30 mm), thickness Max. 0.33 mm, with back coat
- Pb-Free and Halogen Free compliance
- Power supply voltage
 - AD / DA / VGA / LDO / OSC : AVDD30 = 2.6 V to 3.3 V • Driver : VM = 2.6 V to 3.3 V

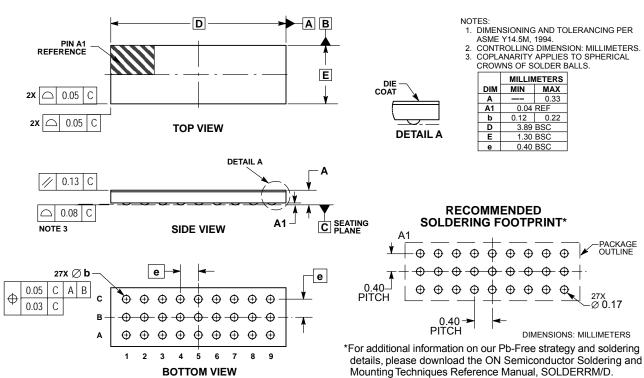
ORDERING INFORMATION


See detailed ordering and shipping information on page 10 of this data sheet.

WLCSP27, 3.89x1.30, 0.4P

Block Diagram

Application Diagram



Package Dimensions

unit: mm

WLCSP27, 3.89x1.30, 0.4P

CASE 567NJ ISSUE O

Pin Assign

bottom view

С	OUT4	OUT3	OUT2	OUT1	OPINPX	HLXBO	MON2	EIRQ	DGDATA
В	VM	PGND	OPINPY	OPINMY	OPINMX	HLYBO	SDA2	SDA	DGSCLK
А	OUT5	OUT6	AVSS	AVDD30	LDPO	MON1	SCL2	SCL	DGSSB
	1	2	3	4	5	6	7	8	9

	Driver
	VDD/VSS
	Internal VDD Output
	1.8 V I/O

Pin Description

No.	Pin	I/O	I/O Spec	Primary Function	Sub Functions	Init
1	MON1	В		Servo Monitor Analog In/Out	2-wire serial Data	7
		Ь		-	Interrupt Input	
2	MON2	В		Servo Monitor Analog In/Out	2-wire serial Clock	Z
3	SCL	В	OD	2-wire serial HOST I/F Clock Slave		Z
4	SDA	В	OD	2-wire serial HOST I/F Data Slave		Z
5	SDA2	В		NC		Z
6	SCL2	В		NC		Z
7	DGSSB	В		Digital Gyro Data I/F Chip Select Out (3/4-wire Master)	3/4-wie I/F Chip Select In (Read only)	Z
8	DGSCLK	В		Digital Gyro Data I/F Clock Out (3/4-wire Master)	3/4-wire I/F Clock In (Read only)	Z
9	EIRQ	В	OD	Interrupt Input	Digital Gyro Data I/F Data In (4-wire Master)	Z
10	DGDATA	В		Digital Gyro Data I/F Data (3-wire Master)	Digital Gyro Data I/F Data Out (4-wire Master)	Z
				(3-wire Master)	3/4-wire I/F Data In (Read only)	
11	HLXBO	0		OIS Hall X Bias Output		Z
12	HLYBO	0		OIS Hall Y Bias Output		Z
13	OPINMX	- 1		OIS Hall X Opamp Input Minus		Z
14	OPINPX	ı		OIS Hall X Opamp Input Plus		-
15	OPINMY	ı		OIS Hall Y Opamp Input Minus		-
16	OPINPY	I		OIS Hall Y Opamp Input Plus		-
17	OUT1	0		OIS Driver Output		Z
18	OUT2	0		OIS Driver Output		Z
19	OUT3	0		OIS Driver Output		Z
20	OUT4	0		OIS Driver Output		Z
21	OUT5	0		Open-AF Driver Output		Z
22	OUT6	0		Open-AF Driver Output		Z
23	AVDD30	Р		Analog Power (2.6 V to 3.3 V)		_
24	AVSS	P		Analog GND		-
25	VM	P		Driver Power (2.6 V to 3.3 V)		_
26	PGND	Р		Driver GND		
27	LDPO	Р		Internal LDO Power Output		

Electrical Characteristics

Absolute Maximum Rating at AVSS = 0 V, PGND = 0 V (Note 1)

Parameter	Symbol	Conditions	Ratings	Unit
Dower supply voltage	V _{AD} 30 max	Ta ≤ 25°C	-0.3 to +4.6	V
Power supply voltage	VM max	Ta ≤ 25°C	-0.3 to +4.6	V
Input / Output voltage	$V_{AI}30, V_{AO}30$	Ta ≤ 25°C	−0.3 to V _{AD} 30+0.3	V
input / Output voitage	$V_{MI}30, V_{MO}30$	Ta ≤ 25°C	-0.3 to $V_M30+0.3$	V
Input voltage	V18 *1	Ta ≤ 25°C	−0.3 to +1.98	V
Storage temperature	Tstg		−55 to +125	Ô
	Topr1	Read for EEPROM	−30 to +85	°C
Operating temperature	Topr2	Program &Erase for EEPROM	−30 to +70	°C

^{*1 :} DGSSB, DGSCLK, DGDATA, EIRQ

Note 1: Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Allowable Operating Ratings at Ta = -30 to 85°C, AVSS = 0 V, PGND = 0 V (Note 2)

3.0 V Power Supply (AVDD30)

Parameter	Symbol	Min	Тур	Max	Unit
Power supply voltage	V _{AD} 30	2.6	2.8	3.3	V
Input voltage range	V _{INA}	0	_	V _{AD} 30	V

3.0 V Power Supply (VM)

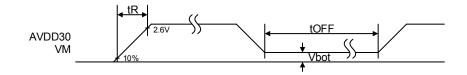
Parameter	Symbol	Min	Тур	Max	Unit
Power supply voltage	V _M 30	2.6	2.8	3.3	V
Input voltage range	V _{INM}	0	_	V _M 30	V

Note 2: Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

D.C. Characteristics [Input/Output] at Ta = -30 to 85°C, AVSS = 0 V, PGND = 0 V, AVDD30 = 2.6 to 3.3 V (Note 3)

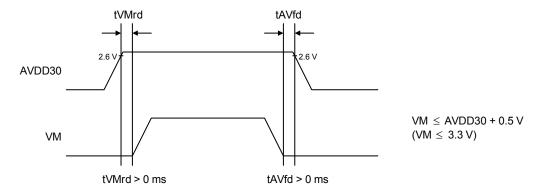
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Applicable pins
High-level input voltage	VIH	CMOS	1.26			V	DGSSB, DGSCLK,
Low-level input voltage	VIL	schmitt			0.4	V	DGDATA, EIRQ
High-level input voltage	VIH	CMOS	1.4			V	SCL, SDA
Low-level input voltage	VIL	schmitt			0.4	V	SCL, SDA
High-level input voltage	VIH	CMOS	0.75 AVDD30			V	MONIA MONIA
Low-level input voltage	VIL	schmitt			0.25 AVDD30	٧	MON1, MON2,
High-level output voltage	VOH	IOH = -1 mA	1.51		1.89	V	DGSSB, DGSCLK DGDATA
Low-level output voltage	VOL	IOL = 1 mA			0.2	V	DGSSB, DGSCLK DGDATA, EIRQ
High-level output voltage	VOH	IOH = -2 mA	AVDD30 -0.3			٧	MON1, MON2
Low-level output voltage	VOL	IOL = 2 mA			0.3	V	·
Low-level output voltage	VOL	IOL = 2 mA			0.2	V	SCL, SDA
Analog input voltage	VAI		AVSS		AVDD30	V	MON1, MON2
Pull Up resistor	Rup		50		250	kΩ	DGSSB, DGSCLK DGDATA, MON1, MON2
Pull Down resistor	Rdn		50		220	kΩ	DGSSB, DGSCLK, DGDATA, EIRQ, MON1, MON2

Note 3 : Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Driver output at Ta = 25° C, V_{SS} = 0 V, PGND = 0 V, AVDD = VM = 2.8 V

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output Current OUT1 to OUT4	IfII	Full code		160		mA
Output Current OUT5, OUT6	Ifull	Full Code OP-AF (bidirection)		130		mA

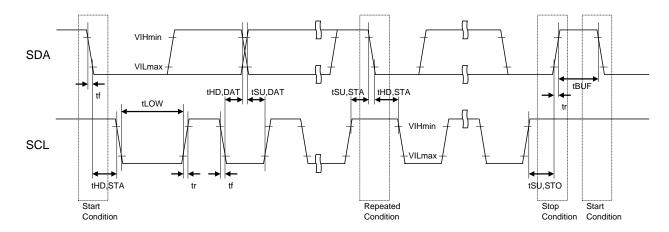
Non-volatile Memory Characteristics


Item	Symbol	Condition	Min	Тур	Max	Unit	Applicable circuit
Endurance	EN				1000	Cycles	
Data retention	RT		10			Years	EEPROM
Write time	tWT				20	ms	

AC Characteristics Power Sequence

Item	Symbol	Min	Тур	Max	Units
Rise time	tR			3	ms
Wait time	tW	100			ms
Bottom Voltage	Vbot			0.2	V

Injection order between AVDD30 and VM is below.



SDA, SCL tolerate 3 V input at the time of power off.

The data in the EEPROM may be rewritten unintentionally if you do not keep specifications. And it is forbidden to power off during EEPROM access. The data in the EEPROM may be rewritten unintentionally.

2-wire serial Interface Timing

The communication protocol is compatible with I^2C (Fast mode Plus). This circuit has clock stretch function.

Item	Symbol	Pin name	Min	Тур	Max	Units
SCL clock frequency	Fscl	SCL			1000	kHz
START condition hold time	tHD,STA	SCL SDA	0.26			μS
SCL clock Low period	tLOW	SCL	0.5			μS
SCL clock High period	tHIGH	SCL	0.26			μS
Setup time for repetition START condition	tSU,STA	SCL SDA	0.26			μS
Data hold time	tHD,DAT	SCL SDA	0 (*1)		0.9	μS
Data setup time	tSU,DAT	SCL SDA	50			ns
SDA, SCL rising time	tr	SCL SDA			120	ns
SDA, SCL falling time	tf	SCL SDA			120	ns
STOP condition setup time	tSU,STO	SCL SDA	0.26			μS
Bus free time between STOP and START	tBUF	SCL SDA	0.5			μS

^(*1) Although the I²C specification defines a condition that 300 ns of hold time is required internally, This LSI is designed for a condition with typ. 40 ns of hold time. If SDA signal is unstable around falling point of SCL signal, please implement an appropriate treatment on board, such as inserting a resistor.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC898124EP1XC-MH	WLCSP27, 3.89x1.30, 0.4P (Pb-Free / Halogen Free)	4000 / Tape & Reel

[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

Development product sample is a product that intend to verify whether it is matched the customer's application spec. We kindly ask you to evaluate surely and enough prior mass-production. Please contact our sales, if there are any problems.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer