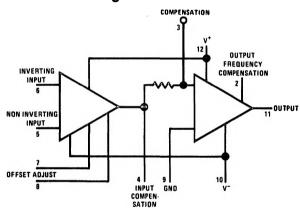
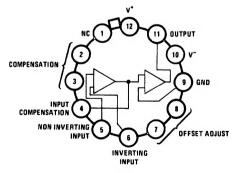


LH0020/LH0020C High Gain Operational Amplifier

General Description


The LH0020/LH0020C is a general purpose operational amplifier designed to source and sink 50 mA output currents. In addition to its high output capability, the LH0020/LH0020C exhibits excellent open loop gain, typically in excess of 100 dB. The parameters of the LH0020 are guaranteed over the temperature range of -55°C to $+125^{\circ}\text{C}$ and $\pm5\text{V} \leq \text{V}_S \leq \pm22\text{V}$, while those of the LH0020C are guaranteed over the temperature range of 0°C to $+85^{\circ}\text{C}$ and $\pm5\text{V} \leq \text{V}_S \leq \pm18\text{V}$.

Output current capability, excellent input characteristics, and large open loop gain make the LH0020/LH0020C suitable for application in a wide variety of applications from precision DC power supplies to precision medium power comparator.


Features

- Low offset voltage typically 1.0 mV at 25°C over the entire common-mode voltage range
- Low offset current typically 10 nA at 25°C for the LH0020 and 30 nA for the LH0020C
- Offset voltage is adjustable to zero with a single potentiometer
- ±14V, 50 mA output capability

Schematic and Connection Diagrams

TL/H/5554-1

Top View

Order Number LH0020G or LH0020CG See NS Package Number G12B TL/H/5554-2

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 3)

Supply Voltage ±22V
Power Dissipation 1.5W

Differential Input Voltage ±30V
Input Voltage (Note 1) ±15V

Output Short Circuit Duration

Operating Temperature Range LH0020

LH0020C

-55°C to +125°C 0°C to +85°C -65°C to +150°C

Storage Temperature —6
Lead Temperature (Soldering, 10 sec.)

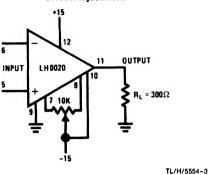
300°C

Continuous

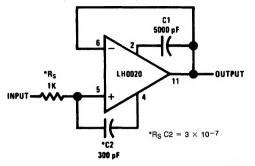
ESD rating to be determined.

Electrical Characteristics (Note 2) $T_{min} \le T_A \le T_{max}$ unless otherwise specified

Parameter	Conditions	LH0020			LH0020C			Units
		Min	Тур	Max	Min	Тур	Max	Oillis
Input Offset Voltage	$R_S \le 100\Omega$, $T_A = 25^{\circ}C$ Over Temp.		1.0 2.0	2.5 4.0		1.0 3.0	6.0 7.5	mV mV
Input Offset Current	T _A = 25°C Over Temp.		10	50 100		30	200 300	nA nA
Input Bias Current	T _A = 25°C Over Temp.	10	60	250 500		200	500 800	nA nA
Supply Current	V _S = ±15V, T _A = 25°C		3.5	5.0		3.6	6.0	mA
Input Resistance	T _A = 25°C	0.6	1.0		0.3	1.0		МΩ
Large Signal Voltage Gain	$V_S = \pm 15V$, $R_L = 300\Omega$, $V_O = \pm 10V$, $T_A = 25^{\circ}C$ $V_S = \pm 15V$, $R_L = 300\Omega$, $V_O = \pm 10V$, $T_A = 25^{\circ}C$	100 50	300		50 30	150		V/mV V/mV
Output Voltage Swing	$V_S=\pm 15 V, R_L=300 \Omega, T_A=25^{\circ} C$ Over Temp.	14.2 14.0	14.5		14.0 13.5	14.2		V V
Output Short Circuit Current	$V_S = \pm 15V, R_L = 0\Omega, T_A = 25^{\circ}C$		100	130	25	120	140	mA
Input Voltage Range	V _S = ±15V	±12			± 12			٧
Common-Mode Rejection Ratio	$R_S \le 100\Omega$	90	96		90	96		dB
Power Supply Rejection Ratio	R _S ≤ 100Ω	90	96		90	96		dB


Note 1: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 2: These specifications apply for $\pm 5V \le V_S \le \pm 22V$ for the LH0020, $\pm 5V \le V_S \le \pm 18V$ for the LH0020C, pin 9 grounded, and a 5000 pF capacitor between pins 2 and 3, unless otherwise specified.


Note 3: Refer to RETS0020G for LH0020G militiary specifications.

Typical Applications

Offset Adjustment

Unity Gain Frequency Compensation

TL/H/5554-4