

Operational Amplifiers

LH201 operational amplifier general description

The LH201 is a general-purpose operational amplifier which is internally compensated for unity-gain feedback. The device combines a LM201 operational amplifier and the 30 pF compensation capacitor in a single package. As such, it is a direct, plug-in replacement for both the LM201 and the LM709C in the majority of applications. It is identical to the LH101 except that operation is specified over a 0 to 70°C temperature range. Features of the amplifier include:

 Operation guaranteed for supply voltages from ±5V to ±20V

- Low current drain even with the output saturated
- No latch-up when common-mode range is exceeded
- Continuous short-circuit protection
- Input transistors protected from excessive input voltage.

The LH201 is available in either an 8-lead, low-profile TO-5 header or a $1/4^{\prime\prime}$ x $1/4^{\prime\prime}$ metal flat package.

schematic and connection diagrams

typical applications**

FET Operational Amplifier

Temperature Probe

Metal Can

Flat Pack

Low Drift Thermocouple Amplifier

Integrator with Bias Current Compensation

absolute maximum ratings

Supply Voltage ±22V Power Dissipation (Note 1) 250 mW Differential Input Voltage ±30V Input Voltage (Note 2) ±15V Output Short-Circuit Duration (Note 3) Indefinite Operating Temperature Range 0°C to +70°C -65°C to +150°C Storage Temperature Range Lead Temperature (Soldering, 60 sec) 300°C

electrical characteristics (note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$T_A = 25^{\circ}C$, $R_S \leq 10$ k Ω		2.0	7.5	mV
Input Offset Current	$T_A = 25^{\circ}C$		100	500	nA
Input Bias Current	$T_A = 25^{\circ}C$		0.25	1.5	μΑ
Input Resistance	$T_A = 25^{\circ}C$	150	400		kΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 20V$		1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2k\Omega$	20	150		V/mV
Input Offset Voltage	$R_S \leq 10k\Omega$			10	mV
Average Temperature	$R_S \leq 50\Omega$	1	6		μV/°C
Coefficient of Input Offset Voltage	$R_S \leq 10k\Omega$		10		μV/°C
Input Offset Current	$T_A = +70^{\circ}C$ $T_A = 0^{\circ}C$		50 150	400 750	nA nA
Input Bias Current	$T_A = 0^{\circ}C$		0.32	2.0	μΑ
Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$ $R_L \ge 2k\Omega$	15			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10k\Omega$ $R_L = 2k\Omega$	±12 ±10	±14 ±13		V V
Input Voltage Range	$V_S = \pm 15V$	±12			V
Common Mode Rejection Ratio	$R_{S} \leq 10k\Omega$	65	90		dB
Supply Voltage Rejection Ratio	$R_s \leq 10k\Omega$	70	90		dB

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of $150^{\circ}\text{C}/\text{W}$ junction to ambient or $45^{\circ}\text{C}/\text{W}$ junction to case for the metal-can package. For the flat package, the derating is based on a thermal resistance of $185^{\circ}\text{C}/\text{W}$ when mounted on a 1/16-inch-thick, epoxy-glass board with ten, 0.03-inch-wide, 2-ounce copper conductors (see curve). Note 2: For supply voltages less than $\pm 15\text{V}$, the absolute maximum input voltage is equal

to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to +125°C and ambient

temperatures to +70°C. Note 4: These specifications apply for -55°C \leq T_A \leq 125°C, \pm 5V, \leq V_S \leq \pm 20V and C1 = 30 pF unless otherwise specified.

guaranteed performance

typical performance

