LH4106/LH4106C \pm 5V High Speed Operational Amplifier

General Description

The LH4106 is a wideband op amp designed to operate with \pm 5V power supplies. It features a 30 MHz bandwidth and can drive 50 or 75 Ω loads directly at slew rates in excess of 170 V/ μ s.

It is intended to fulfill a wide range of applications; such as, precision cable drivers, buffers in high speed data acquisition systems, and high speed peak detectors.

Features

- Operates from V_s of ±5V
- Unity gain stable
- Very high slew rate—170 V/µs
- Wide small signal bandwidth—32 MHz
- Low supply current—16 mA
- Drives 50 or 75Ω directly

Applications

- Flash A/D input buffers
- Video amplifier
- High speed summing amplifiers
- Pulse amplifiers
- Precision cable drivers

Block Diagram

TL/K/9317-10

Connection Diagrams

LH4106CN

Order Number LH4106CN See NS Package Number N16A +V_{S2} 1 9 -V_{S2}
+V_{S1} 2 8 NC
V_{OS} 3 7 -V_S
V_{OS} 4 5 6 + INPUT

TL/K/9317~1

Top View

TO-5 Metal Can Package (H)
Order Number LH4106CH or LH4106H
See NS Package Number H10F

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Supply Voltage, V}_{\mbox{S}} & \pm 7.5 \mbox{V} \\ \mbox{Steady State Output Current, I}_{\mbox{O}} & 40 \mbox{ mA} \end{array}$

 $\begin{array}{ll} \text{Power Dissipation, P}_{D} \\ \text{(See Curve)} & \text{600 mW} \\ \text{Differential Input Voltage, V}_{IN} & \pm \text{V}_{S} \end{array}$

Input Voltage Range, V_{CM} (V+ - 0.7V) to (V- - 7V)

Operating Temperature Range, T_A LH4106

LH4106 −55°C to + 125°C LH4106C −25°C to +85°C Storage Temperature Range, T_{STG} −65°C to +150°C

 Maximum Junction Temperature, T_j
 150°C

 Lead Temperature (Soldering <10 sec.)</td>
 300°C

 ESD Rating
 ±700V

(100 pF in series with 1500 ohms)

DC Electrical Characteristics

 $V_S = \pm 5V$, $T_A = 25$ °C, $R_S = 50\Omega$, $R_L = 100\Omega$ unless otherwise noted (Note 1)

		LH4106C		Units			
Symbol	Parameter	Conditions		Тур	Tested Limit (Note 2)	Design Limit (Note 3)	(Max Unless Otherwise Stated)
Vos	Input Offset Voltage	$V_{IN} = 0V$		5	15		m∨
V _{OS/AT}	Offset Voltage Drift			10_			μV/°C
l _B	Input Bias Current	(Note 4)		2	6		μΑ
los	Input Offset Current	(Note 4)		150	1200		nA
C _{IN}	Input Capacitance	A _V = +1 @ 10 M	lHz	1.5			pF
R _{IN}	Input Resistance			325			kΩ
Avol	Large Signal Voltage Gain	$R_L = 1 k\Omega, V_{OUT}$	≃ ±2V	65	60		dB (Min)
Vo	Output Voltage Swing	$R_L = 100\Omega$	+V _o	+3	+2		V (Min)
			~V _o	-2.6	-2		V (WIIII)
V _{CM}	Input Common Mode Range	See CMRR			+V _S - 1.5 -V _S + 2.0		V (Min)
CMRR	Common Mode Rejection Ratio	$V_{\text{IN}} = -3V \le V_{\text{C}}$ $R_{\text{L}} = 1 \text{ k}\Omega$	_{CM} ≤ + 3.5V	90	70		db (Min)
PSRR	Power Supply Rejection Ratio	$V_{OC} = \pm 3V \text{ to } \pm R_L = 1 \text{ k}\Omega$	6V,	80	70		dB (Min)
I _S	Supply Current	No Load		16	20 .		mA

DC Electrical Characteristics

 $V_S = \pm 5V$, $T_A = 25$ °C, $R_S = 50\Omega$, $R_L = 100\Omega$ unless otherwise noted (Note 1)

Symbol	Parameter			LH4106			
		Conditions	Тур	Tested Limit (Note 2)	Design Limit (Note 3)	(Max Unless Otherwise Stated)	
Vos	Input Offset Voltage	V _{IN} = 0V	5	20		mV	
V _{OS/AT}	Offset Voltage Drift		10			μV/°C	
I _B	Input Bias Current	(Note 4)	2	6		μΑ	
los	Input Offset Current	(Note 4)	150	1500		nA	
C _{IN}	Input Capacitance	A _V = +1 @ 10 MHz	1.5			pF	
R _{IN}	Input Resistance		325			kΩ	
A _{VOL}	Large Signal Voltage Gain	$R_L = 1 k\Omega, V_{OUT} \cong \pm 2V$	65	60		dB (Min)	

DC Electrical Characteristics

 $V_S \approx \pm 5 V$, $T_A = 25 °C$, $R_S = 50 \Omega$, $R_L = 100 \Omega$ unless otherwise noted (Note 1) (Continued)

					LH4106		Units
Symbol	Parameter	Conditions		Тур	Tested Limit (Note 2)	Design Limit (Note 3)	(Max Unless Otherwise Stated)
V _O	Output Voltage Swing	$R_L = 100\Omega$	+Vo	+3	+2		
			-v _o	-2.6	-2		V (Min)
V _{CM}	Input Common Mode Range	See CMRR			+V _S - 1.5 -V _S + 2.0		• (14111)
CMRR	Common Mode Rejection Ratio	$V_{IN} = -3V \le V_{CM} \le + 3.5V$ $R_L = 1 \text{ k}\Omega$		90	70		db (Min)
PSRR	Power Supply Rejection Ratio	$V_{OC} = \pm 3V \text{ to } \pm R_L = 1 \text{ k}\Omega$	6V,	80	70] GD (WIII)
Is	Supply Current	No Load		16	20		mA

AC Electrical Characteristics $V_S = \pm 5V$, $T_A = 25^{\circ}C$, $R_S = R_L = 50\Omega$ unless otherwise noted (Note 1)

Symbol	Parameter	Conditions		Units		
			Тур	Tested Limit (Note 2)	Design Limit (Note 3)	(Max Unless Otherwise Stated)
ts	Settling Time to 0.1%		120			ns
SR	Slew Rate	$V_0 = \pm 2V$	170	120		V/μs (Min)
t _r	Small Signal Rise Time	$A_V = 1, V_O = \pm 0.1V$	11			ns
	Power Bandwidth	(Note 6)	7			MHz
	Differential Gain	NTSC, A _V = +4	<0.1			%
	Differential Phase	NTSC, A _V = +4	0.1			degrees
	GBWP		34			MHz
	Phase Margin		60			degrees
	Input Noise Voltage	f = 10 kHz	15			nV/√Hz
	Input Noise Current	f = 10 kHz	1.5			pa/√Hz
SSBW	Small Signal Bandwidth	(Note 7)	32			MHz

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH4106C is -25°C to +85°C, and LH4106 is -55°C to +125°C.

Note 2: Tested limits are guaranteed and 100% production tested.

Note 3: Design limits are guaranteed (but not production tested) over the indicated temperature or temperature range. These limits are not used to calculate outgoing quality level,

Note 4: Specification is at 25°C junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature may exceed value at $T_j = 25^{\circ}$ C.

Note 5: When the LH4106 is operated at elevated temperature (such as 125°), some form of heatsinking or forced air cooling is required. The quiescent power with $V_S = \pm 5V$ is 160 mW, whereas, the package is only rated to 170 mW without a heatsink at 125°C.

Note 6: Power bandwidth is calculated from slew rate measurement using BW = Slew Rate/ 2π V Peak.

Note 7: Calculated from t_r using SSBW = 0.35/ t_r .

Typical Performance Characteristics

Small Signal Pulse Response

TOP = INPUT

 $\begin{array}{l} \text{BOTTOM} = \text{OUTPUT} \\ \text{R}_{\text{S}} = \text{R}_{\text{L}} = 50\Omega \end{array}$

TL/K/9317-3

Large Signal Pulse Response

TOP = INPUT

 $\begin{array}{l} \text{BOTTOM} = \text{OUTPUT} \\ \text{R}_{\text{S}} = \text{R}_{\text{L}} = \text{50}\,\Omega \end{array}$

TL/K/9317-4

Typical Applications

TL/K/9317~5

TL/K/9317-6

Typical Applications (Continued)

100.0 900.0 OUTPUT

TL/K/9317-8
FIGURE 2. 10X Buffer Amplifier

TL/K/9317-7
FIGURE 1. Unity Gain Follower with Offset Adjust

FIGURE 3. Unity Gain Inverter

FIGURE 4. Switched Video Amplifier

TL/K/9317-15

AC Test Circuit

Circuit Schematic

Pin numbers in circle denote pin connections for the dual-in-line package.