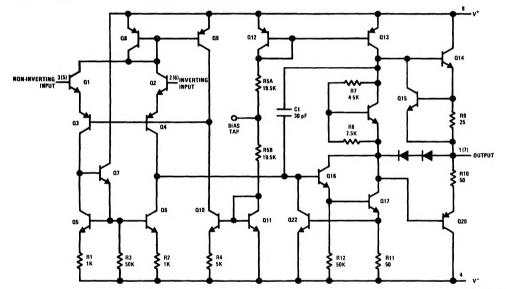


LM1558/LM1458 Dual Operational Amplifier

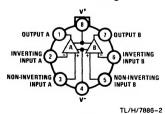
General Description


The LM1558 and the LM1458 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.

The LM1458 is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the temperature range from 0°C to +70°C instead of -55°C to +125°C.

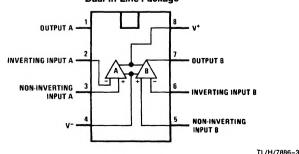
Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low-power consumption
- 8-lead TO-5 and 8-lead mini DIP
- No latch up when input common mode range is exceeded


Schematic and Connection Diagrams

Note: Numbers in parentheses are pin numbers for amplifier B.

TL/H/7886-1


Metal Can Package

Top View

Order Number LM1558H or LM1458H See NS Package Number H08C

Dual-In-Line Package

Top View

Order Number LM1558J, LM1458J, LM1458M or LM1458N See NS Package Number J08A, M08A or N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 4)

Supply Voltage LM1558 ± 22V LM1458 ± 18V Power Dissipation (Note 1) LM1558H/LM1458H 500 mW LM1458N 400 mW Differential Input Voltage ±30V input Voltage (Note 2) ±15V **Output Short-Circuit Duration** Indefinite **Operating Temperature Range** LM1558 -55°C to +125°C LM1458 0°C to +70°C Storage Temperature Range -65°C to +150°C 260°C Lead Temperature (Soldering, 10 sec.) Soldering Information Dual-In-Line Package Soldering (10 seconds) 260°C Small Outline Package Vapor Phase (60 seconds) 215°C

Infrared (15 seconds) 220°C
See AN-450 "Surface Mounting Methods and Their Effect
on Product Reliability" for other methods of soldering surface mount devices.

ESD rating to be determined.

Electrical Characteristics (Note 3)

Parameter	Conditions	LM1558			LM1458			Units
		Min	Тур	Max	Min	Тур	Max	Oints
Input Offset Voltage	$T_A = 25^{\circ}C, R_S \le 10 \text{ k}\Omega$		1.0	5.0		1.0	6.0	mV
Input Offset Current	T _A = 25°C		80	200		80	200	nA
Input Bias Current	T _A = 25°C		200	500		200	500	nA
Input Resistance	T _A = 25°C	0.3	1.0		0.3	1.0		МΩ
Supply Current Both Amplifiers	$T_A = 25^{\circ}C, V_S = \pm 15V$		3.0	5.0		3.0	5.6	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$ $V_{OUT} = \pm 10V, R_L \ge 2 k\Omega$	50	160		20	160		V/mV
Input Offset Voltage	$R_S \le 10 k\Omega$			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current		!		1.5			8.0	μА
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V$ $R_L \ge k\Omega$	25			15			V/mV
Output Voltage Swing	$V_S = \pm 15V, R_L = 10 \text{ k}\Omega$ $R_L = 2 \text{ k}\Omega$	± 12	± 14		± 12	±14		V
		±10	±13		±10	±13		V
Input Voltage Range	V _S = ±15V	±12			±12			V
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	R _S ≤ 10 kΩ	77	96		77	96		dB

Note 1: The maximum junction temperature of the LM1558 is 150°C, while that of the LM1458 is 100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient or 45°C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 187°C/W, junction to ambient.

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: These specifications apply for $V_S = \pm 15V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise specified. With the LM1458, however, all specifications are limited to $0^{\circ}C \le T_A \le 70^{\circ}C$ and $V_S = \pm 15V$.

Note 4: Refer to RETS 1558V for LM1558J and LM1558H military specifications.