

©1995 National Semiconductor Corporation TL/H/7909

RRD-B30M115/Printed in U. S. A.

LM1868 AM/FM Radio System

please contact the National Semiconductor Sales Opera			ge Temperature Range ting Temperature Range Temperature (Soldering, 10 sec.)			- 55°C to + 150°C 0°C to + 70°C 260°C	
Supply Voltage (Pin 19)	15V	Load Temperat		ning, 10 300.	.)	200 0	
Package Dissipation	2.0W						
Above $T_A = 25^{\circ}$ C, Derate Based $T_{J(MAX)} = 150^{\circ}$ C and $\theta_{JA} = 60^{\circ}$ C							
Electrical Characterist		$ (C V_0 = 0) B_1 = $	80 (unles	e otherwise	noted)		
Parameter	Condition		Min	Тур	Max	Units	
TATIC CHARACTERISTICS $e_{AM} = 0$, e _{FM} = 0	I					
Supply Current	AM Mode, S1 in Positi	ion 1		22	30	mA	
Regulator Output Voltage (Pin 16)			3.5	3.9	4.8	v	
Operating Voltage Range			4.5		15		
YNAMIC CHARACTERISTICS-AM	IODE	I					
$M_{M} = 1 \text{ MHz}, f_{mod} = 1 \text{ kHz}, 30\% \text{ Module}$	llation, S1 in Position 1, P _O	= 50 mW unless n	oted				
Maximum Sensitivity	Measure e_{AM} for $P_O = 50$ mW, Maximum Volume		8		16	μV	
Signal-to-Noise	e _{AM} = 10 mV		40	50		dB	
Detector Output	e _{AM} = 1 mV Measure at Top of Vo	lume Control	40	60	85	mV	
Overload Distortion	e _{AM} = 50 mV, 80% N	Iodulation		2	10	%	
Total Harmonic Distortion (THD)	$e_{AM} = 10 \text{ mV}$			1.1	2	%	
YNAMIC CHARACTERISTICS—FM N	IODE f _{FM} = 10.7 MHz, f _{mc}	$d = 400$ Hz, $\Delta f =$	±75 kHz, I	⊃ _O = 50 mV	V, S1 in Pos	ition 1	
-3 dB Limiting Sensitivity				15	45	μV	
Signal-to-Noise Ratio	e _{FM} = 10 mV		50	64		dB	
Detector Output	$e_{FM} = 10$ mV, $\Delta f = \pm 22.5$ kHz Measure at Top of Volume Control		40	60	85	mV	
AM Rejection	$e_{FM} = 10 \text{ mV}, 30\% \text{ AM Modulation}$		40	50		dB	
Total Harmonic Distortion (THD)	$e_{FM} = 10 \text{ mV}$			1.1	2	%	
YNAMIC CHARACTERISTICS—AUD	IO AMPLIFIER ONLY f =	1 kHz, e _{AM} = 0, e _F	_M = 0, S1	in Position 2	2		
Power Output	THD = 10%, R _L 8 Ω V _S = 6V		250 500	325 700		mW	
Bandwidth	$V_{\rm S} = 9V$	NA/	500	11		mW kHz	
Bandwidth	AM Mode, $P_0 = 50 \text{ m}$ FM Mode, $P_0 = 50 \text{ m}$			22		kHz	
Total Harmonic Distortion (THD)	$P_O = 50 \text{ mW}, \text{FM Mo}$	de		0.2		%	
Voltage Gain				41		dB	

$f_{1} \approx \frac{1}{2\pi (C6 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} C21 \qquad 250 \ \mu F \qquad Output coupling capacitor \\ C10 \qquad 10 \ \mu F \qquad Regulator decoupling capacitor \\ C11 \qquad 0.1 \ \mu F \qquad Regulator decoupling capacitor \\ C12 \qquad 10 \ \mu F \qquad Acc coupling to volume control \\ C13 \qquad 0.1 \ \mu F \qquad Power supply decoupling \\ C14 \qquad 50 \ \mu F \qquad Power supply decoupling \\ C15 \qquad 0.1 \ \mu F \qquad Power supply decoupling \\ C16 \qquad 0.01 \ \mu F \qquad Power supply decoupling \\ C16 \qquad 0.01 \ \mu F \qquad Power supply decoupling \\ C16 \qquad 0.001 \ \mu F \qquad Power supply decoupling \\ C17 \qquad 100 \ \mu F \qquad Power supply decoupling \\ C16 \qquad 0.01 \ \mu F \qquad Power supply decoupling \\ C17 \qquad 100 \ \mu F \qquad Power supply decoupling \\ C16 \qquad C18 \qquad D.02 \ \mu F \qquad Power supply decoupling \\ C17 \qquad 100 \ \mu F \qquad Power supply decoupling \\ C16 \qquad C18 \qquad D.02 \ \mu F \qquad Power supply decoupling \\ C17 \qquad 100 \ \mu F \qquad Power supply decoupling \\ C16 \qquad C18 \qquad D.02 \ \mu F \qquad Power supply decoupling \\ C17 \qquad 100 \ \mu F \qquad Power supply rejection \\ C18 \qquad D.02 \ \mu F \qquad Power supply decoupling \\ C17 \qquad 100 \ \mu F \qquad Power supply rejection \\ C18 \qquad D.02 \ \mu F \qquad Power supply rejection \\ C18 \qquad D.02 \ \mu F \qquad Power supply rejection \\ C19 \qquad D1 \qquad 1N4148 \qquad Optional. Outckens the AGC \\ response during turn on \\ C19 \qquad C10 \ Add tector bias resistor \\ C10 \ Add D17 \ D00 \ D7 \ E107 \ MHz, L to \\ response during turn on \\ C10 \ Add D14 \ D_0 \ $	Component	Typical Value		Comments	Component	Typical Value	Comments
$\begin{array}{cccc} 24, C5 & 0.01 \ \mu F & FM \ F \ decoupling capacitors & C7 & 10 \ \mu F & IF \ coupling \\ 25, C9 & 0.005 \ \mu F \\ 35, F & AM \ smoothing/FM \ de-emphasis \\ 35, F & TM \ F \ output \ coupling \ capacitor \$	C1		Remov	es tuner LO from IF input	R9	3	Set AGC time constant
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	0.1 μF			C19	1 μF ∫	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C4, C5	, 0.01 μF			C7		IF coupling
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					C8	•	
$\begin{aligned} given by. \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 + C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 - C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 - C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2\pi (C8 - C9) \left(\frac{R4 - R6}{R4 + R6}\right)} \\ f1 &= \frac{1}{2} \frac{1}{2} \frac{1}{R4} \\ f2 &= \frac{1}{2} \frac{1}{R4} \\ f1 &= \frac{1}{R4} \\ $		' }		•	C20		
$ f_{1} \approx \frac{1}{2\pi (C6 + C9) \left(\frac{R4 + R6}{R4 + R6}\right)} $ $ f_{2} \approx \frac{1}{2\pi (C6 + C9) \left(\frac{R4 + R6}{R4 + R6}\right)} $ $ f_{1} \approx 250 \ \mu F \\ Output coupling capacitor \\ R1 \\ 6k2 \\ Sets Q of quadrature coil, determining FM THD and recovered audio \\ R2 \\ 12k \\ F \\ amplifier bias R \\ Sets gain of AM IF and Q of A \\ F \\ amplifier bias R \\ Sets gain of AM IF and Q of A \\ F \\ recovered audio \\ R1 \\ Solver supply decoupling \\ R3 \\ Sk6 \\ Sets gain of AM IF and Q of A \\ F \\ recovered audio \\ R1 \\ Solver supply decoupling \\ R4 \\ 10k \\ Detector load resistor \\ C14 \\ S0 \\ F \\ P \\ Add loar publifier input coupling \\ R6 \\ Solver supply decoupling \\ R7 \\ 3k \\ C16 \\ C10 \\ 100 \\ \mu F \\ P \\$			given b	y.		' '	amplifier, required to stabilize
C10 10 μ F Regulator decoupling capacitor determining FM THD and recovered audio C11 0.1 μ F Regulator decoupling capacitor C12 10 μ F AC coupling to volume control C13 0.1 μ F AC coupling to volume control C13 0.1 μ F Power supply decoupling R3 5k6 Sets gain of AM IF and O of A IF output tank C15 0.1 μ F Audio amplifier input coupling R4 10k Detector load resistor Volume control C16 0.001 μ F R1 HO is ginals from detector in C18 0.02 μ F Power supply decoupling R11, R12 150 Ω Terminates the ceramic filter, biases FM IF input stage decoupling, sets low frequency supply rejection C18 0.02 μ F Power supply decoupling R11, R12 150 Ω Terminates the ceramic filter, biases FM IF input stage D1 1N4148 Optional. Quickens the AGC response during turn on TOKO CY2-22124PT TOKO CY2-2316 or equivalent TOKO CY2-2316 or equiv			f1 \simeq -	1			audio amplifier
C10 10 μ F Regulator decoupling capacitor determining FM THD and recovered audio C11 0.1 μ F Regulator decoupling capacitor C12 10 μ F AC coupling to volume control C13 0.1 μ F AC coupling to volume control C13 0.1 μ F Power supply decoupling R3 5k6 Sets gain of AM IF and O of A IF output tank C15 0.1 μ F Audio amplifier input coupling R4 10k Detector load resistor Volume control C16 0.001 μ F R1 HO is ginals from detector in C18 0.02 μ F Power supply decoupling R11, R12 150 Ω Terminates the ceramic filter, biases FM IF input stage decoupling, sets low frequency supply rejection C18 0.02 μ F Power supply decoupling R11, R12 150 Ω Terminates the ceramic filter, biases FM IF input stage D1 1N4148 Optional. Quickens the AGC response during turn on TOKO CY2-22124PT TOKO CY2-2316 or equivalent TOKO CY2-2316 or equiv			··· –	$\pi (C6 + C0) \left(\frac{R4 R6}{R4} \right)$	C21	250 μF	Output coupling capacitor
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2	(00 + 03)(R4 + R6)	R1	6k2	Sets Q of quadrature coil,
C11 0.1 μ F Hegulator decoupling capacitor C12 10 μ F AC coupling to volume control C13 0.1 μ F Power supply decoupling C14 50 μ F Power supply decoupling C15 0.1 μ F Audio amplifier input coupling R7 3k C16 0.001 μ F Power amplifier feedback decoupling, sets low frequency supply rejection C17 100 μ F Power amplifier feedback decoupling, sets low frequency supply rejection C18 0.02 μ F Power supply decoupling R11, R12 150Ω Terminates the ceramic filter MM ANT 140 pF max 5.0 pF min Trimmers 5 pF C1 AM ANT 140 pF max 5.0 pF min Trimmers 5 pF C1 AM ANT 140 pF max 5.0 pF min Trimmers 5 pF C1 AM ANT 140 pF max 5.0 pF min Trimmers 5 pF C1 AM ANT 140 pF max 5.0 pF min Trimmers 5 pF C1 AM ANT 140 pF max 5.0 pF min TriMT AM OSC 82 pF max 5.0 pF min TriMT TrimT POS 0F TriMT TOKO CY2-22124PT TriMT TrimT TrimT TOKO KAC-K2318 or equival TOKO CY2-23124PT TriMT TrimT TrimT ToKO FAC-K2318 or equival TOKO CFU-0900 D requival TOKO CFU-0900 D requival TOKO CFU-0900 D requival T2 T TOKO CFU-0900 D requival T2 T TOKO CFU-0900 D requival T0KO CFU-0900 D requival T0K	C10	10 μF	Regula	tor decoupling capacitor			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.1 μF	Regula	tor decoupling capacitor	5.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	10µF	AC cou	pling to volume control			
C14 50 μ F Power supply decoupling C15 0.1 μ F Audio amplifier input coupling R7 3k C16 0.001 μ F And fright signals from detector in C17 100 μ F And to prevent radiation C18 0.02 μ F Power supply decoupling C18 0.02 μ F Power supply decoupling Terminates the ceranic filter, biases FM IF input stage D1 1N4148 Optional. Quickens the AGC response during turn on C11 AM ANT 140 pF max 50 pF min TOKO C22-22124PT Timmers 5 pF TL/H/7809-10 C12 360 μ H, Q ₁ = 200 TL/H/7809-9 L4 SWG #20, N = 3%T, inner diameter = 5 mm L5 SWG #20, N = 3%T, inner diameter = 5 mm L5 SWG #20, N = 3%T, inner diameter = 5 mm L5 SWG #20, N = 3%T, inner diameter = 5 mm L6 L = 0.44 μ H, N = 4 \for T, N ar C22 10.7 MHz ceramic filter MURATA SFE 10.7 mA rs C22 10.7 MHz ceramic filter MURATA SFE 10.7 mA rs E220 Lake Park Drive Smyrna, GA 30080 Marking A Stage Park Drive Smyrna, GA 30080 C15 SM C + 20, N = 3%T, inner C17 MURATA SFE 10.7 mA rs E220 Lake Park Drive Murata 2200 Lake Park Drive Smyrna, GA 30080 C17 Mark Lake Park Drive Smyrna, GA 30080 C18 0.02 μ F Power supply decoupling C18 0.02 μ F Power supply decoupling T1, R10, R1, R12 1500 TI N4148 Optional. Quickens the AGC response during turn on C10 NACK22318 or equivalent C10 NHz ceramic filter MURATA SFE 10.7 mA rs E220 Lake Park Drive Smyrna, GA 30080 C17 Mark Lake Park Drive Smyrna, GA 30080 C18 0.02 μ F Power supply decoupling T1 07 Constant Park Park Park Park Park Park Park Park	C13	0.1 μF	Power	supply decoupling	R3	5k6	
C15 0.1 μ F Audio amplifier input coupling R7 3k C16 0.001 μ F Power amplifier feedback C17 100 μ F Power amplifier feedback decoupling, sets low frequency supply rejection R8 16k AM detector bias resistor Coil and Tuning Capacitor Specifications C1 AM ANT 140 pF max 5.0 pF min Trimmers 5 pF L1 640 μ H, Q ₁ = 200 R _P = 385 @ F = 796 kHz $T_{L/H/7909-9}$ L4 SWG #20, N = 3½T, inner diameter = 5 mm L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L4 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L4 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 L = 0.7 MA e 2½T, inner diameter = 5 mm L5 L = 0.44 μ H, N = 4 ½T, Qu = 70 L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 SWG #20, N = 3½T, inner diameter = 5 mm L5 SWG #20, N = 3½T, inner diameter = 5	C14	•			D 4	101	•
$\begin{array}{cccc} H6 & 50k & Volume control \\ H6 & 50k & Volume control \\ C18 & 0.02 \ \mu\text{F} & Power supply decoupling \\ Power amplifier feedback \\ decoupling, sets low frequency \\ supply rejection \\ R8 & 16k & AM detector bias resistor \\ \hline \hline Coll and Tuning Capacitor Specifications \\ Coll and Tuning Capacitor Specifications \\ AM OSC 82 \ pF max 5.0 \ pF min \\ Tmmers 5 \ pF \\ 1 & 640 \ \mu\text{H}, Q_{U} = 200 \\ R_{P} = 38.5 \ \oplus \ F = 796 \ \text{kHz} \\ 0, 1 & 200 \ \text{Lef or max 6.5 } \text{pF min } \\ TW/meter induces \\ quivalent \\ \hline \hline \ ToKO \ CFU - 0900 \ F = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70 \\ .7 & SWG \ # 20, N = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70 \\ .7 & SWG \ \# 20, N = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70 \\ .7 & SWG \ \# 20, N = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70 \\ .7 & SWG \ \# 20, N = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70 \\ .7 & SWG \ \# 20, N = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70 \\ .7 & SWG \ \# 20, N = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70 \\ .7 & SWG \ \# 20, N = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70 \\ .7 & SWG \ \# 20, N = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70 \\ .7 & SWG \ \# 20, N = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70 \\ .7 & SWG \ \# 20, N = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70 \\ .7 & SWG \ \# 20, N = 3 \ \text{y}_{21}, \text{ inner } \\ diameter = 5 \ \text{mm} \\ .6 & L = 0.44 \ \mu\text{H}, N = 4 \ \text{y}_{21}, Q_{U} = 70$		•					
C16 0.001 μ F the AM band to prevent radiation C17 100 μ F Power amplifier feedback decoupling, sets low frequency supply rejection R8 16k AM detector bias resistor Coil and Tuning Capacitor Specifications C1 AM ANT 140 pF max 5.0 pF min Thimmers 5.0 F min Thimmers 5.0 pF min Thimmers 5.0 p		' `					
C17 100 μ F Power amplifier feedback decoupling, sets low frequency supply rejection D1 1N4148 Direction D1 1N4148 Park Drive gequivalent T2		}		0			
Bit Columns supply rejectionD11N4148Optional. Quickens the AGC response during turn onR816kAM detector bias resistor1N4148Optional. Quickens the AGC response during turn onCoil and Tuning Capacitor Specifications M and the secondaryT1AM ANT 140 pF max 5.0 pF min Trimmers 5 pFFM 20 pF max 4.5 pF min TOKO CY2-22124PTT11AM antenna thy = 3k5 @ F = 796 kHz (At secondary)FM 20 pF max 4.5 pF min TOKO CY2-22124PTT1 M antenna thy = 3k5 @ F = 796 kHz (At secondary)AM antenna 1250 Feehanville Drive Mount Prospect, IL 60056 (312) 297-0070T2 $\int_{U/H/7909-10}^{U/2} U_{U/H/7909-10}^{U/2} U_{U/H/7909-10}^{U/2} U_{U/H/7909-11}^{U/2} U_{U/H/7909-11}^{U/2} U_{U/H/7909-11}^{U/2} U_{U/H/7909-11}^{U/2} U_{U/H/7909-11}^{U/2} U_{U/H/7909-11}^{U/2} U_{U/H/7909-11}^{U/2} U_{U/H/7909-12}^{U/2} U_{U/H/7$		'	Power	amplifier feedback	R11, R12	150Ω	
$R_{B} = 16k AM \text{ detector bias resistor} \qquad response during turn on$ $R_{B} = 16k AM \text{ detector bias resistor} \qquad response during turn on$ $COIL and Tuning Capacitor Specifications$ $C1 AM \text{ AMT 140 pF max 5.0 pF min Trimmers 5 pF} \qquad T1 T0KO CY2-22124PT \qquad T1 T0KO KAC-K2318 or equivalent \qquad T2 T0KO RWC-6A5105 or equivalent \qquad T2 T0KO RWC-6A5105 or equivalent \qquad T2 T0KO RWC-6A5105 or equivalent \qquad T2 T0KO America \qquad T2 T0KO 159GC-A3785 or equivalent \qquad T2 T0KO 159GC-A3785 or equivalent \qquad T2 T0KO CFU-090D or e$					D1	1114140	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			supply	rejection	D1	1N4148	•
C1 AM ANT 140 pF max 5.0 pF min AM OSC 82 pF max 5.0 pF min Trimmers 5 pF L1 640 μ H, Qu = 200 Rp = 3k5 @ F = 796 kHz (At secondary) L0, L2 360 μ H, Qu > 80 @ F = 796 kHz TC/KO RWO-6A5105 or equivalent Toko America 1250 Feehanville Drive Mount Prospect, IL 60056 (312) 297-0070 L4 SWG #20, N = 31/2T, inner diameter = 5 mm L6 L = 0.44 μ H, N = 4 1/2T, Qu = 70 L7 SWG #20, N = 31/2T, inner diameter = 5 mm L6 L = 0.44 μ H, N = 4 1/2T, Qu = 70 L7 SWG #20, N = 31/2T, inner diameter = 5 mm L6 L = 0.44 μ H, N = 4 1/2T, Qu = 70 L7 SWG #20, N = 31/2T, inner diameter = 5 mm L6 L = 0.44 μ H, N = 4 1/2T, Qu = 70 L7 SWG #20, N = 31/2T, inner diameter = 5 mm L6 L = 0.44 μ H, N = 4 1/2T, Qu = 70 L7 SWG #20, N = 31/2T, inner diameter = 5 mm CF2 10.7 MHz caramic filter MURATA SFE 10.7 mA or equivalent MURATA SFE 10.7 mA or equivalent Smyrna, GA 30080 T3 MURATA SFE 10.7 mA or equivalent	78	16k	AM det	ector bias resistor			
Toko America 12 12 12 12 12 12 12 12 12 12	Trimmers -1 640 μ H, C $R_P = 3k5$ (At secon	5 pF Q _u = 200 5 @ F = 796 kH: dary)	z	AM antenna 1 mV/meter induces approximately 100 μ V open circuit at the secondary	ţ	نہ ل	TOKO KAC-K2318 or equivalent
diameter = 5 mm L5 SWG # 20, N = 31/ ₂ T, inner diameter = 5 mm L6 L = 0.44 μH, N = 4 1/ ₂ T, Qu = 70 L7 SWG # 20, N = 2 1/ ₂ T, inner diameter = 5 mm CF2 10.7 MHz coramic filter Murata MURATA SFE 10.7 mA or 2200 Lake Park Drive equivalent Smyrna, GA 30080 CF1 TC/H/7909-12 TL/H/7909-12 Apollo Electronics NS-107C or equivalent	c	987 	5 5 -9	Toko America 1250 Feehanville Drive Mount Prospect, IL 60056	T2		resonate w/180 pF @ 455 kHz TOKO 159GC-A3785 or
L5 SWG # 20, N = $3\frac{1}{2}T$, inner diameter = 5 mm L7 SWG # 20, N = $3\frac{1}{2}T$, Qu = 70 L7 SWG # 20, N = $2\frac{1}{2}T$, inner diameter = 5 mm CF2 10.7 MHz coramic filter Murata MURATA SFE 10.7 mA or 2200 Lake Park Drive equivalent Smyrna, GA 30080 TA SWG # 20, N = $3\frac{1}{2}T$, 30% Apollo Electronics NS-107C or equivalent			her		054	TL/H/7909-11	
diameter = 5 mm L6 $L = 0.44 \ \mu\text{H}, \text{N} = 41/2\text{T}, \text{Qu} = 70$ L7 $SWG \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$.5 SWG #20	$0, N = 3\frac{1}{2}T, inr$	ner		UF I	┎┥╝┝╌┑	
L7 SWG #20, N = 2 ¼T, inner diameter = 5 mm CF2 10.7 MHz ceramic filter Murata MURATA SFE 10.7 mA or 2200 Lake Park Drive T3 equivalent Smyrna, GA 30080 T3 Or equivalent T1/H/7909-12 Apollo Electronics NS-107C or equivalent			0		80T		—0 45T
diameter = 5 mm CF2 10.7 MHz coramic filter Murata MURATA SFE 10.7 mA or 2200 Lake Park Drive T3 equivalent Smyrna, GA 30080 ↓ 1 m or equivalent or equivalent		,			- <mark>76T</mark>	אנייייזוצ	
MURATA SFE 10.7 mA or 2200 Lake Park Drive T3 Apollo Electronics NS-107C equivalent Smyrna, GA 30080 Int or equivalent			101			는 는 1 -	31
equivalent Smyrna, GA 30080						TL/H/7909-12	
TL/H/7909-13			r		T3 51	о рF ТL/H/7909-13	

Layout Considerations

AM SECTION

Most problems in an AM radio design are associated with radiation of undesired signals to the loopstick. Depending on the source, this radiation can cause a variety of problems including tweet, poor signal-to-noise, and low frequency oscillation (motor boating). Although the level of radiation from the LM1868 is low, the overall radio performance can be degraded by improper PCB layout. Listed below are layout considerations association with common problems.

1. **Tweet:** Locate the loopstick as far as possible from detector components C6, C9, R4, and R5. Orient C6, C9, R4, and R5 parallel to the axis of the loopstick. Return R8, C6, C9, and C19 to a separate ground run (see Typical Application PCB).

2. **Poor Signal-to-Noise/Low Frequency Oscillation:** Twist speaker leads. Orient R10 and C20 parallel to the axis of the loopstick. Locate C11 away from the loopstick.

TL/H/7909-14

In general, radiation results from current flowing in a loop. In case 1 this current loop results from decoupling detector harmonics at pin 17; while in case 2, the current loop results from decoupling noise at the output of the audio amplifier and the output of the regulator. The level of radiation picked up by the loopstick is approximately proportional to: 1) $1/r^3$; where r is the distance from the center of the loopstick to the center of the current loop; 2) SIN θ , where θ is the angle between the plane of the current loop and the axis of the loopstick; 3) I, the current flowing in the loop; and 4) A, the cross-sectional area of the current loop.

Pickup is kept low by short leads (low A), proper orientation ($\theta \simeq 0$ so SIN $\theta \simeq 0$), maximizing distance from sources to loopstick, and keeping current levels low.

FM SECTION

The pinout of the LM1868 has been chosen to minimize layout problems, however some care in layout is required to insure stability. The input source ground should return to C4 ground. Capacitors C13 and C18 form the return path for signal currents flowing in the quadrature coil. They should connect directly to the proper pins with short PC traces (see Typical Application PCB). The quadrature coil and input circuitry should be separated from each other as far as possible.

AUDIO AMPLIFIER

The standard layout considerations for audio amplifiers apply to the LM1868, that is: positive and negative inputs should be returned to the same ground point, and leads to the high frequency load should be kept short. In the case of the LM1868 this means returning the volume control ground (R6) to the same ground point as C17, and keeping the leads to C20 and R10 short.

Circuit Description (See Equivalent Schematic)

The AM section consists of a mixer stage, a separate local oscillator, an IF gain block, an envelope detector, AGC circuits for controlling the IF and mixer gains, and a switching circuit which disables the AM section in the FM mode.

Signals from the antenna are AC-coupled into pin 7, the mixer input. This stage consists of a common-emitter amplifier driving a differential amp which is switched by the local oscillator. With no mixer AGC, the current in the mixer is 330 μ A; as the AGC is applied, the mixer current drops, decreasing the gain, and also the input impedance drops, reducing the signal at the input. The differential amp connected to pin 8 forms the local oscillator. Bias resistors are arranged to present a negative impedance at pin 8. The frequency of oscillation is determined by the tank circuit, the peak-to-peak amplitude is approximately 300 μ A times the impedance at pin 8 in parallel with 8k2.

After passing through the ceramic filter, the IF signals are applied to the IF input. Signals at pin 11 are amplified by two AGC controlled common-emitter stages and then applied to the PNP output stage connected to pin 13. Biasing is arranged so that the current in the first two stages is set by the difference between a 250 μ A current source and the Darlington device connected to pin 12.

When the AGC threshold is exceeded, the Darlington device turns ON, steering current away from the IF into ground, reducing the IF gain. Current in the IF is monitored by the mixer AGC circuit. When the current in the IF has dropped to 30 μA , corresponding to 30 dB gain reduction in the IF, the mixer AGC line begins to draw current. This causes the mixer current and input impedance to drop, as previously described.

The IF output is level shifted and then peak detected at detector cap C1. By loading C1 with only the base current of the following device, detector currents are kept low. Drive from the AGC is taken at pin 14, while the AM detector output is summed with the FM detector output at pin 17.

FM SECTION

The FM section is composed of a 6-stage limiting IF driving a quadrature detector. The IF stages are identical with the exceptions of the input stage, which is run at higher current to reduce noise, and the last stage, which is switched OFF in the AM mode. The quadrature detector collectors drive a level shift arrangement which allows the detector output load to be connected to the regulated supply.

AUDIO AMPLIFIER

The audio amplifier has an internally set voltage gain of 120. The bandwidth of the audio amplifier is reduced in the AM mode so as to reduce the output noise falling in the AM band. The bandwidth reduction is accomplished by reducing the current in the input stage.

REGULATOR

A series pass regulator provides biasing for the AM and FM sections. Use of a PNP pass device allows the supply to drop to within a few hundred millivolts of the regulator output and still be in regulation.

20 19

1

OPTION 2

BAD

N20A (REV G)

Corpo 1111 V Arlingt Tel: 1(ration West Bardin Road on, TX 76017 800) 272-9959 (800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tei: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 58 Italiano Tei: (+49) 0-180-534 16 80	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsu, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408
---------------------------------------	---	--	---	---

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.