National Semiconductor

LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers

General Description

The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard +5 V_{DC} power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional \pm 15 V_{DC} power supplies.

Unique Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross frequency is temperature compensated.
- The input bias current is also temperature compensated.

Advantages

- Eliminates need for dual supplies
- Four internally compensated op amps in a single package
- Allows directly sensing near GND and V_{OUT} also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Internally frequency compensated for unity gain
- Large DC voltage gain 100 dB ■ Wide bandwidth (unity gain) 1 MHz
- (temperature compensated) ■ Wide power supply range: Single supply 3 V_{DC} to 32 V_{DC}
 - or dual supplies $\pm 1.5 V_{DC}$ to $\pm 16 V_{DC}$
- Very low supply current drain (700 µA)—essentially independent of supply voltage
- Low input biasing current 45 nA_{DC} (temperature compensated)
- Low input offset voltage 2 mV_{DC} and offset current 5 nA_{DC}
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V_{DC} to V⁺ 1.5 V_{DC}

Connection Diagram

Order Number LM124J, LM124AJ, LM224J, LM224AJ, LM324J, LM324AJ, LM324AM, LM324AM, LM2902M, LM324N, LM324AN or LM2902N See NS Package Number J14A, M14A or N14A

TL/H/9299-2

	2 150°C		for				Inite		7 mVbc		0 nA _{DC}	1.5 V _{DC}	mADC	V/m/	뗭	đb
ications.	LM2902 - 65°C to + 150°C 260°C	260°C	Vapor Phase (60 seconds) 215°C 215°C 215°C Infrared (15 seconds) 220°C 220°C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.	250V			LM2902	Min Typ Max	±2 ±7	45 250	±5 ±50	V ⁺ -1.5	1.5 3 0.7 1.2	25 100	02 0	50 100
d specif	24 324A		on Produ				-	Max Mi	±7	250	±50	V ⁺ -1.5 0	1.2 1.2	Ŭ,	50	ۍ ۲
lability an	LM124/LM224/LM324 LM124A/LM224A/LM324A -65°C to + 150°C econds) 260°C	260°C	215°C 220°C Their Effect	250V			LM324	Min Typ 1	±2	45	±5	+>	1.5 0.7	25 100	65 85	65 100
s for avai	.M124/LM 124A/LM 65°C1 inds) 26	Ň	21 22 ods and Th ount device	Ñ			M224	Max M	±5	150	±30	V ⁺ -1.5	3 1:2	5	9	9
stributors	1, 10 s		Vapor Phase (60 seconds) 215° Infrared (15 seconds) 220° See AN-450 "Surface Mounting Methods and Their other methods of soldering surface mount devices.	0			LM124/LM224	Min Typ	±2	45	±3	>	1.5 0.7	50 100	70 85	65 100
Office/D	ure Range (Solderin Ion	seconds) ckage	60 secon sconds) ace Moun oldering s	ote 10)			4A	Max	±3	100	±30	V ⁺ -1.5	3 1.2			
or Sales	Storage Temperature Range Lead Temperature (Soldering Soldering Information Durat Lo Lico Bookard	Soldering (10 seconds) Small Outline Package	Vapor Phase (60 seconds) Infrared (15 seconds) AN-450 "Surface Mounting r methods of soldering surf	ESD Tolerance (Note 10)			LM324A	Min Typ	±2	45	÷5	0	1.5 0.7	25 100	65 85	65 100
conduct	Storage 7 Lead Ten Soldering	Sold Sold	Vapo Infra See AN-4	ESD Tole			4A	Max N	±3	80	±15	V ⁺ -1.5	3 1.2			
nal Semi						ise statec	LM224A	Min Typ	+ +	40	±2	0	1.5 0.7	50 100	70 85	65 100
the Natic	LM2902 26 Vpc or ±13 Vpc 26 Vpc −0.3 Vpc to + 26 Vpc	50 mA	1130 mW 1260 mW 800 mW	Continuous - 40°C to + 85°C		ess otherw	24A	Max	±2	50	± 10	V ⁺ -1.5	3 1.2			
e contact	26 VDC 22 22 2 -0.3 VD	4.7	12.0	- 40°C		ote 4), unl	LM124A	Min Typ	+	20	±2	0	1.5 0.7	50 100	70 85	65 100
Absolute Maximum Ratings If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.	LM124/LM224/LM324 LM124A/LM224A/LM324A 32 VDc or ± 16 VDc 32 VDc −0.3 VDc −0.3 VDc to + 32 VDc	50 mA	1130 mW 1260 mW 800 mW	Continuous	0°C to + 70°C -25°C to + 85°C -55°C to + 125°C	Electrical Characteristics $v^+ = +5.0 v_{DC}$ (Note 4), unless otherwise stated	Conditions		A = 25°C	u(-), VCM = 0V,	v(-), VCM = 0V,	$V^{+} = 30 V_{DC}$, (LM2902, $V^{+} = 26 V_{DC}$), $T_{A} = 25^{\circ}C$	Over Full Temperature Range $R_L = \infty$ On All Op Amps $v^+ = 30v$ (LM2902 $v^+ = 26v$) $v^+ = 5v$	I_{DC} , $R_L \ge 2 k\Omega$, DC to 11 V_DC), $T_A = 25^{\circ}C$	DC, $V_{CM} = 0V$ to $V^+ - 1.5 V_{DC}$, $T_A = 25^{\circ}C$	DC, $V^{+} = 5 V_{DC}$ to 30 V_{DC} (LM2902, $V^{+} = 5 V_{DC}$ to 26 V_{DC}),
specified	ge	Note 3)	age	te 2) $T_A = 25^{\circ}C$ re Range		aracteri			(Note 5) T _A	$I_{rA} = 25^{\circ}C$	$I_{IN}(+) - I_{IN}(-)$, VCM T _A = 25°C	$V^+ = 30 V$ $T_A = 25^{\circ}C$	Over Full T $R_{L} = \infty O$ $V^{+} = 30V$ $V^{+} = 5V$	$V^{+} = 15 V_{DC}, R_{L}$ ($V_{O} = 1 V_{DC}$ to 11	DC, V _{CM} = T _A = 25°C	DC, $V^+ = 5 V_{DC}$ to (LM2902, $V^+ = 5$
Absolute Maximum Ratings If Military/Aerospace specified devices are	(Note 9) Supply Voltage, V ⁺ Differential Input Voltage Input Voltage	Input Current $(V_{IN} < -0.3 V_{DC})$ (Note 3)	Molded Dip Cavity Dip Small Outline Package	Upput Short-Lircuit to GNU One Amplifier) (Note 2) $V^+ \le 15 V_{DC}$ and $T_A = 25^{\circ}C$ Operating Temperature Range	LM324/LM324A LM224/LM224A LM124/LM124A	Electrical Cha	Daramatar		Input Offset Voltage	Input Bias Current (Note 6)	Input Offset Current	Input Common-Mode Voltage Range (Note 7)	Supply Current	Large Signal Voltage Gain	Common-Mode Rejection Ratio	Power Supply Rejection Ratio

Electrical Characteristics	aracteristics $v^+ = +5.0 V_{DC}$ (Note 4) unless otherwise stated (Continued)	4) unless otherwi	ise stated (Continu	ed)				
Darameter	Conditions	LM124A	LM224A	LM324A	LM124/LM224	LM324	LM2902	Inite
		Min Typ Max	Min Typ Max	Min Typ Max	Min Typ Max	Min Typ Max	Min Typ Max	5110
Amplifier-to-Amplifier Coupling (Note 8)	f = 1 kHz to 20 kHz, T _A = 25°C (Input Referred)	-120	- 120	- 120	-120	- 120	-120	đB
Output Current Source	Output Current Source $V_{IN}^{+} = 1 V_{DC}$, $V_{IN}^{-} = 0 V_{DC}$, $V_{+}^{+} = 15 V_{DC}$, $V_{0} = 2 V_{DC}$, $T_{A} = 25^{\circ}C$	20 40	20 40	20 40	20 40	20 40	20 40	mÅne
Sink	$V_{IN}^{-} = 1 V_{DC}, V_{IN}^{+} = 0 V_{DC}, V_{I}^{+} = 15 V_{DC}, V_{O} = 2 V_{DC}, T_{A} = 25^{\circ}C$	10 20	10 20	10 20	10 20	10 20	10 20	
	$V_{IN}^{-} = 1 V_{DC}, V_{IN}^{+} = 0 V_{DC}, V_{I}^{-} = 15 V_{DC}, V_{O} = 200 \text{ mV}_{DC}, T_{A} = 25^{\circ}\text{C}$	12 50	12 50	12 50	12 50	12 50	12 50	μApc
Short Circuit to Ground	Short Circuit to Ground (Note 2) $V^+ = 15 V_{DC}$, $T_A = 25^{\circ}C$	40 60	40 60	40 60	40 60	40 60	40 60	mA _{DC}
Input Offset Voltage	(Note 5)	±4	±4	+2	17	1 9	±10	mV _{DC}
Input Offset Voltage Drift	R _S = 0Ω	±7 ±20	±7 ±20	±7 ±30	1	17	7±	D°/Vμ
Input Offset Current	$ I_{\rm IN}(+) - I_{\rm IN}(-), V_{\rm CM} = 0V$	±30	±30	±75	±100	±150	±45 ±200	nApc
Input Offset Current Drift	R _S = 0.0	±10 ±200	±10 ±200	±10 ±200	±10	±10	±10	pA _{DC} /°C
Input Bias Current	lin(+) or lin(-)	40 100	40 100	40 200	40 300	40 500	40 500	nApc
Input Common-Mode Voltage Range (Note 7)	$V^{+} = +30 V_{DC}$ (LM2902, V^{+} = 26 V_{DC})	0 V ⁺ -2	2 0 V ⁺ -2	V _{DC}				
Large Signal Voltage Gain	$\begin{array}{l} V^{+} = +15V_{DC} \\ (V_{O}Swing = 1V_{DC}to11V_{DC}) \\ R_{L} \geq 2k\Omega \end{array}$	25	25	15	25	15	15	V/mV
Output Voltage VOH	$V^{+} = +30 V_{DC}, R_{L} = 2 k\Omega$	26	26	26	26	26	22	
Swing	$R_{L} \ge 10 k\Omega$ (LM2902, V ⁺ = 26 V _{DC})	27 28	27 28	27 28	27 28	27 28	23 24	V _{DC}
NOL	$V^+ = 5 V_{DC}, R_L \ge 10 k\Omega$	5 20	5 20	5 20	5 20	5 20	5 100	mV _{DC}

LM124/LM224/LM324/LM124A/LM224A/LM324A/LM2902

Parameter Conditions LM132.4A LM132.4A LM122.4A		Electric	al Cha	Electrical Characteristic	StiCS $V^+ = +5.0 \text{ V}_{DC}$ (Note 4) unless otherwise stated (Continued)) unless otherwise	stated (Continue	(p)				l
Output Current Source Vo 2 Vpc V/V Note 1: For operating at high temperatures, the Lucicul board, operating in a still at ambient. The Lucicul board, operating in a still at ambient. The Lucie was supply varied to supply varies at a superstructure is allowed as the network. At values of supply varies to a low the module of the input current will only exist when the clamps. In addition to this diode action, there is allowed as the network. Note 3: This input current will only exist when the clamps. In addition to this diode action, there is allowed as the input satistic to the input satistone input satistic to the input satistinput satistic t		Paramet	er		Conditions	LM124A	LM224A	LM324A	LM124/LM224	LM324	LM2902	Ilnits
Output Current Source Vo = 2 Vbc V V V V V V V V V V V V V V V V V V				2		Typ	Min Typ	Min Typ	Min Typ	Min	Min Typ Max	
Sink Note 1: For operating at high hemperatures, the LN circuit board, operating in a still air ambient. The L where possible, to allow the amplifier to saturate 0 where possible, to allow the amplifier to saturate 0 wore 3: This input current will only exist when the clamps. In addition to this diode action, there is al overdrive) for the time duration that an input is driv Note 3: These specifications are limited to -5° specifications are limited to -5° A \leq + 70°C, Note 5: Vo \approx 14 Vpc. R _S = 0.0 with V ⁺ from 5 Note 5: The direction of the input is driv Note 5: The input common-mode voltage of either inputs can go to + 22 Vpc without damage (+ 26 Note 3: Due to proximity of external components, Note 3: Human body model, 1.5 kΩ in series with		Output Current	Source	V0 =	$\frac{V_{IN}^{+}}{V_{IN}^{-}} = \frac{1}{0} \frac{V_{DC}}{V_{DC}} + $	10					10 20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Refer to resting the information and the value of the values in the interpret of the value of t			Sink		$= +1 V_{DC}$ = 0 V_{DC}, V ⁺	10					5 8	
Note: 2: Short circuits from the output to V ⁺ can or V ⁺ . At values of supply voltage in excess of +15 Note: 3: This input current will only exist when the clamps. In addition to this diode action, there is al overdrive) for the time duration matt an input is dur- but 4: These specifications are limited to -55° specifications are limited to -55° specifications are limited to -55° specifications are limited to -55° specifications are limited to -75° specifications are limited to -75° specifications are limited to 0° to $4 \times 1^{\circ}$ to 1° Note 5: Vo ≈ 1.4 Vpc. R ₅ = 0.0 with V ⁺ from 5 Note 5: The input common-mode voltage of either inputs can go to $+32$ Vpc without damage ($+26$ Note 9: Refer to RETS124X for LM124A military Note 10: Human body model, 1.5 kΩ in series with Note 10: Human body model, 1.5 kΩ in series with		Note 1: For oper circuit board, op where possible	rating at high erating in a s to allow the	n temperatures, t still air ambient. 7 amplifier to satu	the LM324/LM324A, LM2902 must be der The LM224/LM224A and LM124/LM124A irate of to reduce the power which is dissi	ated based on a +125 \ can be derated base pated in the integrated	°C maximum junction t d on a +150°C maxim 1 circuit	temperature and a thern num junction temperatur	al resistance of 88°C/\ e. The dissipation is th	N which applies for the e total of all four ampl	e device soldered in a lifiers-use external re	orinted sistors,
Note 3: This input current will only exist when the clamps. In addition to this diode action, there is all overdrive) for the lime duration that an input is driv Note 4: These specifications are limited to -65 specifications are limited to -65 specifications are limited to $0^{\circ} \leq 7_A \leq +70^{\circ} C_1$. Note 5: Vo $\simeq 1.4$ Vpc. $R_S = 0.0$ with V ⁺ from 5 Note 5: The direction of the input current is out of Note 5: The input common-mode voltage of either inputs can go to $+22$ Vpc without damage (+26 Note 3: Due to proximity of external components, Note 3: Refer to RETS124AX for LM124A military Note 10: Human body model, 1.5 kΩ in series with		Note 2: Short cli V ⁺ . At values of	rcuits from th supply voltav	The output to V ⁺	can cause excessive heating and eventua + 15 Vnc, continuous short-circuits can ex	I destruction. When cc ceed the power dissipa	nisidering short circuits ition ratings and cause	s to ground, the maximu > eventual destruction. D	m output current is app estructive dissipation c	proximately 40 mA inde an result from simultar	spendent of the magni reous shorts on all am	ude of olifiers.
Note 4: These specifications are limited to -55° specifications are limited to $CC \leq T_A \leq +70^{\circ}C$, Note 5: $V_O \simeq 14 V_{DC}$, $R_S = 0.0$ with V^+ from 5 Note 5: The direction of the input current is out of Note 7: The input common-mode voltage of either inputs can go to $-422 V_{DC}$ without damage ($+26$ Note 8: Due to proximity of external components, Note 9: Herran body model, 1.5 kΩ in series with Note 10: Human body model, 1.5 kΩ in series with		Note 3: This inp clamps. In additi overdrive) for the	out current wi on to this dic a time duratio	ill only exist when ode action, there	on the voltage at any of the input leads is d is also lateral NPN parasitic transistor acl is driven negative. This is not destructive a	driven negative. It is du tion on the IC chip. Th. nd normal output state	e to the collector-base is transistor action can s will re-establish whe	e junction of the input P n cause the output volta in the input voltage, which	NP transistors becomin ges of the op amps to th was negative, again	g forward biased and go to the V ⁺ voltage I returns to a value ores	thereby acting as inpu level (or to ground for ater than -0.3 Vnc (at	a large
Note 5: V ₀ ≥ 1.4 V _D C. R ₅ = 0.1 with V ⁺ from E Note 6: The direction of the input current is out of Note 7: The input common-mode voltage of either inputs can go th + 22 V _{DC} without damage (+ 26 Note 8: Due to provinity of external components, Note 9: Refer to RETS124AX for LM124A military Note 10: Human body model, 1.5 kΩ in series with		Note 4: These specifications an	specifications e limited to C	s are limited to ℃ ≤ T _A ≤ +7	$-55^{\circ}C \le T_A \le +125^{\circ}C$ for the LM124/ '0°C, and the LM2902 specifications are li	'LM124A. With the LN mited to $-40^{\circ}C \le T_A$	1224/LM224A, all tem, ≤ +85°C.	perature specifications	are limited to -25°C	≤ T _A ≤ +85°C, the I	LM324/LM324A tempe	srature
Note 7: The input common-mode voltage of either inputs can go to +22 V _{DC} without damage (+26 Note 8: Due to proximity of external components, Note 9: Refer to RETS124AX for LM124A military Note 10: Human body model, 1.5 kΩ in series wit		Note 5: $V_0 \simeq 1$ Note 6: The dire	L4 V _{DC} , Rs	= 0.0 with V ⁺ fi input current is c	from 5 Vpc to 30 Vpc; and over the full in out of the IC due to the PNP input stage.	put common-mode rar This current is essenti	rge (0 V_{DC} to V ⁺ - 1 ally constant, independent	1.5 V _{DC}) at 25°C; for LN ident of the state of the	2902, V ⁺ from 5 V _{DC} output so no loading c	to 26 V _{DC} . hange exists on the in	put lines.	
		Note 7: The inpu inputs can go to	ut common-n +32 V _{DC} w	node voltage of e ithout damage (either input signal voltage should not be all (+ 26 V _{DC} for LM2902), independent of th	owed to go negative b e magnitude of V ⁺ .	y more than 0.3V (at 2	5°C). The upper end of t	he common-mode volts	ige range is V ⁺ - 1.5	V (at 25°C), but either o	or both
	3-408	Note 8: Due to F Note 9: Refer to Note 10: Human	proximity of e RETS124A. 1 body model	sxternal compon X for LM124A m Ι, 1.5 kΩ in serie	ents, insure that coupling is not originating ilitary specifications and refer to RETS12- 3s with 100 pF.	via stray capacitance 4X for LM124 military :	between these externs specifications.	al parts. This typically c	n be detected as this t	/pe of capacitance inc	reases at higher freque	ancies.
				-								
						10						

Typical Performance Characteristics (LM2902 only)

TL/H/9299-4

Application Hints

The LM124 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 V_{DC}. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 V_{DC}.

The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14).

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V⁺ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 V_{DC}$ (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The bias network of the LM124 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 3 V_{DC} to 30 V_{DC}.

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V⁺/2) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

3-413

1

