

LM185/LM285/LM385 Adjustable Micropower Voltage References

General Description

The LM185/LM285/LM385 are micropower 3-terminal adjustable band-gap voltage reference diodes. Operating from 1.24 to 5.3V and over a 10 μ A to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185 band-gap reference uses only transistors and resistors, low noise and good long-term stability result.


Careful design of the LM185 has made the device tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.

The extremely low power drain of the LM185 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part.

The LM185 is rated for operation over a -55° C to 125° C temperature range, while the LM285 is rated -40° C to 85° C and the LM385 0°C to 70°C. The LM185 is available in a hermetic TO-46 package and a leadless chip carrier package, while the LM285/LM385 are available in a low-cost TO-92 molded package, as well as S.O.

Features

- Adjustable from 1.24V to 5.30V
- Deperating current of 10 µA to 20 mA
- 1% and 2% initial tolerance
- I Ω dynamic impedance
- Low temperature coefficient

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2)

Reverse Current	30 mA
Forward Current	10 mA
Operating Temperature Range (Note 3)	
LM185 Series	-55°C to 125°C
LM285 Series	-40°C to 85°C
LM385 Series	0°C to 70°C
Storage Temperature	-55°C to 150°C
LM185 Series LM285 Series LM385 Series	-40°C to 85°C 0°C to 70°C

Soldering Information	
TO-92 Package (10 sec.)	260°C
TO-46 Package (10 sec.)	300°C
SO Package	
Vapor Phase (60 sec.)	215°C
Infrared (15 sec.)	220°C

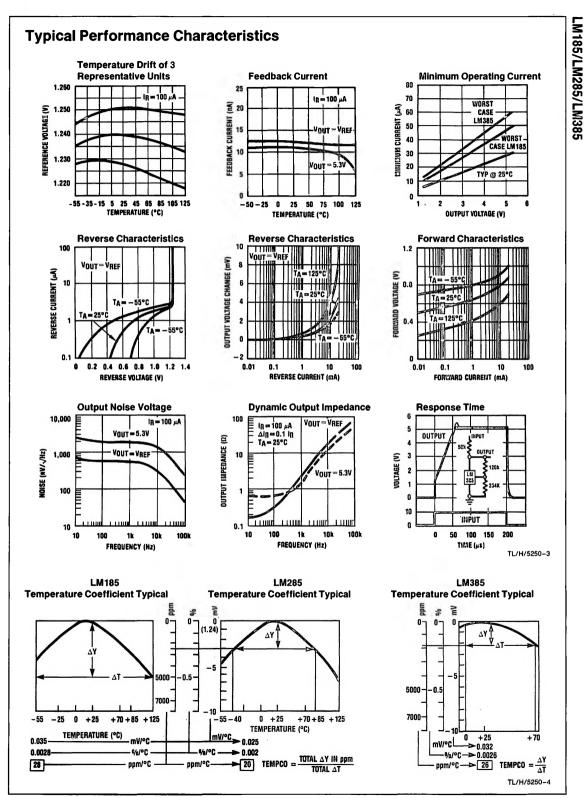
See An-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Note 4)

Parameter	Conditions		L	M185, LM2	85		LM385					
		LM185B,		, LM185BY LM285BX, 85BY			Тур	LM385BX, LM385BY		LM385		Units (Limit)
		190	Tested Limit (Note 5)	Design Limit (Note 6)	Tested Limit (Note 5)	Limit		Tested Limit (Note 5)	Limit	Tested Limit (Note 5)	Limit	
Reference Voltage	l _R = 100 μA	1.240	1.252 1.255 1.228 1.215	. 0	1.265 1.215	1.270 1.205	1.240	1.252 1.228	1.255 1.215	1.265 1.215	1.270 1.205	V (max) V (min)
Reference Voltage Change with Current	l _{MIN} < I _R < 1 mA 1 mA < I _R < 20 mA	0.2 4	1 10	1.5 20	1 10	1.5 20	0.2 5	1 15	1.5 25	1 15	1.5 25	mV (max)
Dynamic Output Impedance	$I_{R} = 100 \ \mu A, f = 100 \ Hz$ $I_{AC} = 0.1 \ I_{R} V_{OUT} = V_{REF}$ $V_{OUT} = 5.3V$	0.3 0.7					0.4 1	1		44	4 1 -	n N
Reference Voltage Change with Output Voltage	l _R = 100 μA	1	3	6	3	6	2	5	10	5	10	mV (max)
Feedback Current		13	20	25	20	25	16	30	35	30	35	nA (max)
Minimum Operating Current (see curve)	V _{OUT} = V _{REF} V _{OUT} = 5.3V	6 30	9 45	10 50	9 45	10 50	7 35	11 55	13 60	11 55	13 60	μA (max)
Output Wideband Noise	I _R = 100 μA, 10 Hz < f < 10 kHz V _{OUT} = V _{REF} V _{OUT} = 5.3V	50 170	10				50 170		4)(- x	1.0	4	μV _{rms}
Average Temperature Coefficient (Note 7)	I _R = 100 μA X Suffix Y Suffix All Others	0	30 50	150	30 50	150	19	30 50	150	30 50	150	ppm/°c (max)
Long Term Stability	$I_{R} = 100 \ \mu A, T = 1000 \ Hr,$ $T_{A} = 25^{\circ}C \pm 0.1^{\circ}C$	20					20					ppm

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

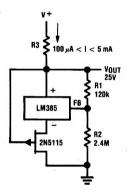
Note 2: Refer to RETS185H for

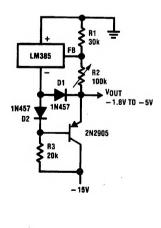

Note 2: Heter to HE IS185H for military specifications. Note 3: For elevated temperature operation, T ₁ max is:		Thermal Resistance	TO-92	TO-46	SO-8
LM185 LM285	150℃ 125℃	θ_{ja} (Junction to Ambient)	180°C/W (0.4" leads) 170°C/W (0.125" leads)		165°C/W
LM385	100°C	θ_{jc} (Junction to Case)	N/A	80°C/W	N/A

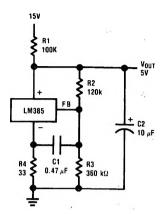
Note 4: Parameters identified with boldface type apply at temperature extremes. All other numbers apply at T_A = T_J = 25°C. Unless otherwise specified, all parameters apply for $V_{REF} < V_{OUT} < 5.3V$.

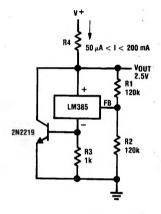
Note 5: Guaranteed and 100% production tested.

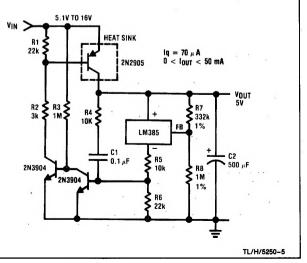
Note 6: Guaranteed, but not 100% production tested. These limits are not to be used to calculate average outgoing quality levels.


Note 7: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures from Tmin to Tmax, divided by Tmax - Tmin. The measured temperatures are - 55, -40, 0, 25, 70, 85, 125°C.

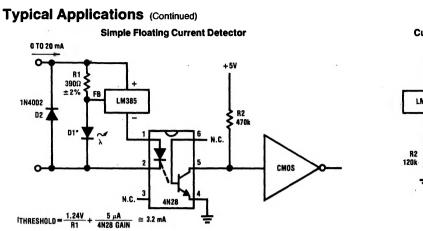


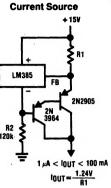

25V Low Current Shunt Regulator


Series-Shunt 20 mA Regulator

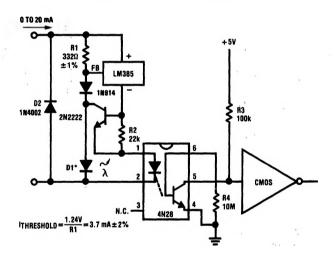

Low AC Noise Reference


200 mA Shunt Regulator





.




Precision Floating Current Detector

* D1 can be any LED, V_F =1.5V to 2.2V at 3 mA. D1 may act as an indicator. D1 will be on if I_{THRESHOLD} falls below the threshold current, except with I=O.

TL/H/5250-7

-

4-59

LM185/LM285/LM385

.