

Advantages

LM193/LM293/LM393, LM193A/LM293A/LM393A, LM2903 Low Power Low Offset Voltage Dual Comparators General Description

The LM193 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM193 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM193 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

- Eliminates need for dual supplies
- Allows sensing near ground
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Wide single supply Voltage range
 2.0 V_{DC} to 36 V_{DC} or dual supplies
 ± 1.0 V_{DC} to ± 18 V_{DC}
 Verv low supply current drain (0.8 mA) — independent
- of supply voltage (1.0 mW/comparator at 5.0 V_{DC})
- Low input biasing current 25 nA
- Low input offset current ±5 nA and maximum offset voltage ±3 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage, 250 mV at 4 mA
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Absolute Maximum Ratir	Ratings			Oneratir	eT n	mnerat	Operating Temperature Bande	0									
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications.	ontac	ct the ability		Cperating 1 emperatives LM393/LM393A LM293/LM293A LM193/LM193A	3/LN 3/LN 3/LN	193A 293A 293A	סקיומרו סוט	D			- 25	0°C to + 70°C -25°C to + 85°C -55°C to + 125°C	+ 70°C + 85°C 125°C				
36 V _{DC} or ±	~	8 V _{DC}		LM2903 Storade Te	03 Tem	neratur	LM2903 Storade Temperature Bande				- 40	-40°C to +85°C	F 85°C				
Differential Input Voltage (Note 8) Input Voltage	0 00	36 V _{DC} 36 V _{DC}		Lead Temperature (Sc Soldering Information Dual-In-Line Packar	mper g Info	ad Temperature (Sold Idering Information Dual-In-Line Packade	Lead Temperature (Soldering, 10 seconds) Lead Temperature (Soldering, 10 seconds) Soldering Information Dual-In-Line Package	10 se	conds)		3	· +	+ 260°C				
Molded DIP 780 mW Metal Can 660 mW 582 mil Onitine Doctored 540 mW	EEE	223		Solo	Outli	Soldering (10 second Small Outline Package	Soldering (10 seconds) nall Outline Package						260°C				
ound (Note 2) V _{DC}) (Note 3)		S S S		Vap Infra See AN Reliabilit ESD rati	or Ph ared -450 iy" fo	Vapor Phase (60 secc Infrared (15 seconds) AN-450 "Surface Mc ability" for other meth rating to be determir	Vapor Phase (60 seconds) 215°C Infrared (15 seconds) 220°C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD rating to be determined.	of so	ethods Idering	and Their surface m	Effec	t on P Jevices	215°C 220°C roduct s.				
Electrical Characteristics $(v^+ = 5 v_{DC}, T_A = 25^{\circ}C)$	Ő.	n	less of	25°C, unless otherwise stated)	tated	(
Conditions			LM193A	3A	L	293A,	LM293A, LM393A		LM193	33	5	LM293, LM393	M393		LM2903	03	Inite
	Σ	Min	Typ	Мах	Min	Typ	Мах	Min	Typ	Max	Min	Typ	Мах	Min	Typ	Мах	>
(Note 9)	1	-	± 1.0	±2.0		±1.0	±2.0		±1.0	±5.0		±1.0	±5.0		±2.0	± 7.0	mV _{DC}
$I_{IN}(+)$ or $I_{IN}(-)$ with Output In Linear Range, $V_{CM} = 0V$ (Note 5)			25	100		25	250		25	100		25	250		25	250	nApc
$I_{IN}(+) - I_{IN}(-) V_{CM} = 0V$			±3.0	±25		±5.0	±50		±3.0	±25		±5.0	±50		±5.0	±50	nADC
$V^{+} = 30 V_{DC}$ (Note 6) 0	0			V + -1.5	0		V ⁺ -1.5	0		V ⁺ -1.5	0		V ⁺ -1.5	0		V ⁺ -1.5	V _{DC}
$R_L = \infty$ on All Comparators,			0.4	- ;		0.4	- :		0.4			0.4			0.4	1.0	mApc
ps, V ⁺ = 36 V _{DC}			- 00	6 .2	5	- 000	6 .2	0		G .2	4	- 2	G ² Z	30		972	W m
$R_{L} \ge 15 k\Omega_{V} V^{+} = 15 V_{DC} $ 50 V_O = 1 V_{DC} to 11 V_{DC}	20		200		20	200		20	200		20	200		ç 2	100		Vm/V
Large Signal Response $V_{IN} = TTL$ Logic Swing, $V_{REF} = 1.4 V_{DC}$ Time $V_{RL} = 5 V_{DC}$, $R_L = 5.1 k\Omega$			300			300			300			300			300		SL
$V_{RL} = 5 V_{DC}$, $R_L = 5.1 k\Omega$ (Note 7)			1.3			1.3			1.3			1.3			1.5		SH
$V_{IN}(-) = 1 V_{DC}, V_{IN}(+) = 0, V_{O} \ge 1.5 V_{DC}$ (9	6.0	16		6.0	16		6.0	16		6.0	16		6.0	16		mApc
$V_{IN}(-) = 1 V_{DC}, V_{IN}(+) = 0, I_{SINK} \le 4 \text{ mA}$	1		250	400		250	400		250	400		250	400		250	400	mV _{DC}
		T	T								Γ						

LM193/LM293/LM393, LM193A/LM293A/LM393A

nApc

0.1

0.1

0.1

0.1

0.1

Output Leakage Current $V_{IN}(-) = 0$, $V_{IN}(+) = 1 V_{DC}$, $V_{O} = 5 V_{DC}$

-
~
_
\sim
~
Ð
CD
~
•
_
m
5
2
÷
_
- 1
-
~
- 2
-
-
\mathbf{m}
~
D
•••
-
÷
~
Ы
93, L
393, L
A393, L
393, L
A393, L
LM393, L
A393, L
LM393, L
LM393, L
LM393, L
LM393, L
LM393, L
LM393, L
293/LM393, L
A293/LM393, L
293/LM393, L
-M293/LM393, L
-M293/LM393, L
A293/LM393, L
-M293/LM393, L
-M293/LM393, L
-M293/LM393, L
-M293/LM393, L
-M293/LM393, L
193/LM293/LM393, L
1193/LM293/LM393, L
1193/LM293/LM393, L
M193/LM293/LM393, L
1193/LM293/LM393, L

Input Offset Voltage (Note Input Offset Voltage (Note Input Offset Current In(+) Input Bias Current VCM ⁼ Input Common Mode Voltage Range V ⁺ = Saturation Voltage VIN(- Output Leakage Current VIN(- Differential Input Voltage Keep	(6) (10-1)		LM193A	LM293A	LM293A, LM393A		LM193	_	LM29	LM293, LM393		LM2	LM2903	Inite
tage Range	e 9)	Min Typ	Max	Min Typ	Мах	Min Typ		Max M	Min Typ	p Max	Min	Min Typ	Мах	
tage Range			±4.0		±4.0		+1	6+	_	±9		±9	±15	mV _{DC}
Itage Range	+) $-$ IIN($-$), VCM = UV		±100		±150		+	±100		±150		±50	±200	nApc
Itage Range	$l_{\rm IN}(+)$ or $l_{\rm IN}(-)$ with Output in Linear Range, V _{CM} = 0V (Note 5)		300		400		ñ	300		400		200	500	nApc
	30 V _{DC} (Note 6)	0	V+-2.0	0	V+-2.0	0	+>	V+-2.0 0	0	V+-2.0	0		V+-2.0	VDC
	$V_{IN}(-) = 1 V_{DC}, V_{IN}(+) = 0, I_{SINK} \le 4 \text{ mA},$		700		700		7	700		700		400	700	mV _{DC}
Keep	$V_{IN}(-) = 0$, $V_{IN(+)} = 1 V_{DC}$, $V_O = 30 V_{DC}$		1.0		1.0		-	1.0		1.0			1.0	MADC
(Note 8)	p All V _{IN} 's≥0 V _{DC} (or V [_] , if Used), e 8)		36		36			36		36			36	V _{DC}
Note 1: For operating at high transmeratures, the LM393/LM393A and LM393/LM393/LM293/LM293/LM293A must be derated based circuit board, operating in a still at ambient. The LM193/LM193A/LM293/LM293/LM293A must be derated based cirple dissipation very small $[P_{2} \le 100 \text{ mW})$, provided the output transistors are allowed to saturate. Note 2: Short circuits from the output to V + can cause excessive heating and eventual destruction. V note 3: This input current will only exist when the voltage at any of the input labels is driven megative frame input is address to action, there is also lateral NPN parasitic transistor action on the IC overdrive) for the lime duation that an input is driven negative. This is not destructive and normal o evendrive) for the immeduation that an input is driven negative. This is not destructive and normal o noverdrive) for the immeduation that an input is driven negative. This is not destructive and normal o nover 3: The direction of the imput label or $0^{\circ}C \le T_A \le + 70^{\circ}C$. The LM2930 is limited to $-0^{\circ}C \le T_A \le + 85^{\circ}C$. Note 3: This current is not a function of the imput signal voltage should not be allowed to go in the 10. So V _{DC} without damage, independent of the magnitude of V ⁺ . Note the transmoment of the magnitude of V ⁺ . Note the target were the other note to be shown to the less than -0.3 V _{DC} below the magnitude of V ⁺ . Note the last the other note to be still or that so the top of the less than -0.3 V _{DC} below the magnitude of the negative power supply, if used). Note 9: R to uput switch point, V _O = 1.4 V _{DC} . R= 0.01 with V + from 5 V _{DC} to 30 V _{DC} ; and over the Note 9: A to uput switch point, V _O = 1.4 V _{DC} . R= 0.01 with V + from 5 V _{DC} to 30 V _{DC} ; and over the Note 9: R to uput switch point, V _O = 1.4 V _{DC} . R= 0.01 with V + from 5 V _{DC} to 20 V _{DC} ; and over the Note 9: R to uput switch point, V _O = 1.4 V _{DC} . R= 0.01 with V + from 5 V _{DC} to 20 V _{DC} ; and over the Note 10: Relet to RETS193AX for LM193H/Miltary specifications	Note 1: Fr operating a fall interpretation in the Marga Anatomic Marga Anatomi	a 125°Cr i don a 151 is due tr is due tr t states v entially c entially c e signals ge remai input con ary speci	maximum junt of C maximum ring short circ ring short circ restor action mil re-establis 334 all tempe constant, inde re than 0.3V. 300 ns can b ns within the (nmon-mode r fications.	ijunction te ijunction te can cause innc cause in when this in when this in the upper- obtained common-m ange (0 Vp ange (0 Vp	rature and a rature and a more rature. The maximum of the irr fibro unput voltation that the hourput voltation are finderations are finderations are typical of the cc see typical ode range, the rate of the transfer to $V + -1$.	thermair he low bi put PNP sittages of e, which he outp immon-m performa is compa 5 V _D C), a	esistance as dissipt transisto. the com the co	s of 12.7% titis appro- rs becom parators : arta c + cloading cl ge range ge range ge range provide a	Y.Y.W. with the 'ON with ing forwards) and a point is V + - proper (proper ()	ch applies to -OFF* chara and biased a the V+ volta the V+ volta and biased a the V- volta and biased and biasedd and biaseddd and biaseddd and biaseddd and biaseddd and biasedddd and biasedddd and biasedddddddddddddddddddddddddddddddddddd	the de cteristific deflexent getee greater , but ei , but ei , but ei	wice sc of the every according the contract and the every according to the contract that the contract that we imput the contract the co	lidered in a f, magnitude i ground for g of a Vbc. out inputs c oth inputs c othage state	inited is the large an go must

4-61

Application Hints

The LM193 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator change states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to < 10 k Ω reduces the feedback signal levels and finally, adding even a small amount (1.0 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.

The bias network of the LM193 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2.0 V_{DC} to 30 V_{DC} .

It is usually unnecessary to use a bypass capacitor across the power supply line.

Typical Applications (Continued) (V+ = 15 V_{DC})

The differential input voltage may be larger than V⁺ without damaging the device (see Note 8). Protection should be provided to prevent the input voltages from going negative more than $-0.3 V_{DC}$ (at 25°C). An input clamp diode can be used as shown in the applications section.

The output of the LM193 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V+ terminal of the LM193 package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V⁺) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60\Omega r_{SAT}$ of the output transistor. The low offset voltage of the output transistor (1.0 mV) allows the output to clamp essentially to ground level for small load currents.

LM193/LM293/LM393, LM193A/LM293A/LM393A

