

#### LM195/LM295/LM395 Ultra Reliable Power Transistors

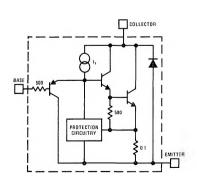
#### **General Description**

The LM195/LM295/LM395 are fast, monolithic power transistors with complete overload protection. These devices, which act as high gain power transistors, have included on the chip, current limiting, power limiting, and thermal overload protection making them virtually impossible to destroy from any type of overload. In the standard TO-3 transistor power package, the LM195 will deliver load currents in excess of 1.0 A and can switch 40 V in 500 ns.

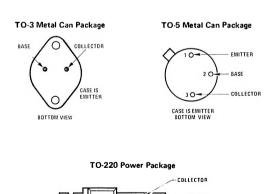
The inclusion of thermal limiting, a feature not easily available in discrete designs, provides virtually absolute protection against overload. Excessive power dissipation or inadequate heat sinking cause the thermal limiting circuitry to turn off the device preventing excessive heating.

The LM195 offers a significant increase in reliability as well as simplifying power circuitry. In some applications where protection is unusually difficult, such as switching regulators, lamp or solenoid drivers where normal power dissipation is low, the LM195 is especially advantageous.

The LM195 is easy to use and only a few precautions need be observed. Excessive collector to emitter voltage can destroy the LM195 as with any power transistor. When the device is used as an emitter follower with low


source impedance, it is necessary to insert a 5.0k resistor in series with the base lead to prevent possible emitter follower oscillations. Atthough the device is usually stable as an emitter follower, the resistor eliminates the possibility of trouble without degrading performance. Finally, since it has good high frequency response, supply bypassing is recommended.

The LM195/LM295/LM395 are available in standard TO-3 power packages and solid Kovar TO-5. The LM195 is rated for operation from -55°C to +150°C, the LM295 from -25°C to +150°C, and the LM395 from 0°C to +125°C.


#### **Features**

- Internal thermal limiting
- Greater than 1.0 A output current
- 3.0µA typical base current
- □ 500 ns switching time
- 2.0 V saturation
- Base can be driven up to 40 V without damage
- Directly interfaces with CMOS or TTL

#### **Simplified Circuit and Connection Diagrams**



Simplified Circuit of the LM195

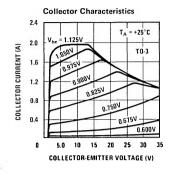


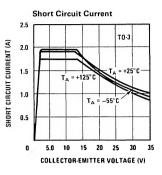
TOP VIEW

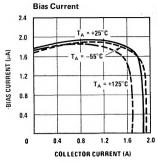
EMITTER

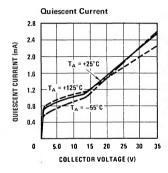
# **Absolute Maximum Ratings**

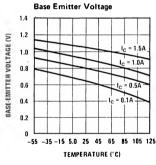
| Collector to Emitter Voltage             |                    |
|------------------------------------------|--------------------|
| LM195, LM295                             | 42V                |
| LM395                                    | 36V                |
| Collector to Base Voltage                |                    |
| LM195, LM295                             | 42V                |
| LM395                                    | 36V                |
| Base to Emitter Voltage (Forward)        |                    |
| LM195, LM295                             | 42V                |
| LM395                                    | 36V                |
| Base to Emitter Voltage (Reverse)        | 20V                |
| Collector Current                        | Internally Limited |
| Power Dissipation                        | Internally Limited |
| Operating Temperature Range              |                    |
| LM195                                    | −55°C to +150°C    |
| LM295                                    | −25°C to +150°C    |
| LM395                                    | 0°C to +125°C      |
| Storage Temperature Range                | -65°C to +150°C    |
| Lead Temperature (Soldering, 10 seconds) | 300°C              |
| •                                        |                    |

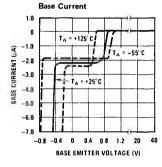

#### **Electrical Characteristics** (Note 1)

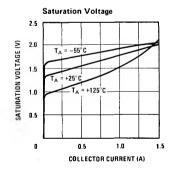

| PARAMETER                           | CONDITIONS                                                                        | LM195, LM295 |     |     | LM395 |     |     |       |
|-------------------------------------|-----------------------------------------------------------------------------------|--------------|-----|-----|-------|-----|-----|-------|
|                                     |                                                                                   | MIN          | TYP | MAX | MIN   | TYP | MAX | UNITS |
| Collector-Emitter Operating Voltage | $I_Q \le I_C \le I_{MAX}$                                                         |              |     | 42  |       |     | 36  | ٧     |
| Base to Emitter Breakdown Voltage   | 0 < V <sub>CE</sub> ≤ V <sub>CEMAX</sub>                                          | 42           |     |     | 36    | 60  |     | v     |
| Collector Current                   |                                                                                   | ļ            | ľ   |     |       |     |     |       |
| TO:3                                | V <sub>CE</sub> < 15∨                                                             | 1.2          | 20  |     | 1.0   | 2.0 |     | Α     |
| TO:5                                | V <sub>CE</sub> < 7.0V                                                            | 1.2          | 2.0 |     | 1.0   | 2.0 |     | A     |
| TO-220                              | V <sub>CE</sub> ≤ 15V                                                             |              |     |     | 1.0   | 2.0 |     | Α     |
| Saturation Voltage                  | I <sub>C</sub> ≤ 1.0A                                                             | ļ            | 1.8 | 2.0 |       | 1.8 | 2.2 | , v   |
| Base Current                        | 0 < I <sub>C</sub> < I <sub>MAX</sub><br>0 < V <sub>CE</sub> < V <sub>CEMAX</sub> |              | 3.0 | 5.0 |       | 3.0 | 10  | μА    |
| Quiescent Current                   | $V_{be} = 0$ $0 \le V_{CE} \le V_{CEMAX}$                                         |              | 2.0 | 5.0 |       | 2,0 | 10  | mA    |
| Base to Emitter Voltage             | I <sub>C</sub> = 1.0A, T <sub>A</sub> = +25"C                                     | <b>{</b>     | 0.9 |     | - 20  | 0.9 |     | v     |
| Switching Time                      | V <sub>CE</sub> = 36V, R <sub>L</sub> = 36Ω,<br>Ț <sub>A</sub> = +25"C            |              | 500 |     |       | 500 |     | ns    |
| Thermal Resistance Junction to      | TO-3 Package                                                                      |              | 2.3 | 3.0 |       | 2.3 | 3.0 | °C/W  |
| Case (Note 2)                       | TO-5 Package                                                                      |              | 12  | 15  |       | 12  | 15  | °C/W  |

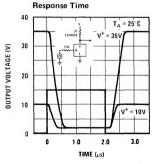

Note 1: Unless otherwise specified, these specifications apply for  $-55^{\circ}C \le T_{j} \le +150^{\circ}C$  for the LM195,  $-25^{\circ}C \le T_{j} \le +150^{\circ}C$  for the LM295 and  $0^{\circ}C \le +125^{\circ}C$  for the LM395.

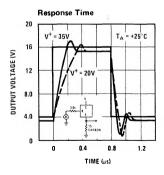

Note 2: Without a heat sink, the thermal resistance of the TO-5 package is about  $+150^{\circ}$  C/W, while that of the TO-3 package is  $+35^{\circ}$  C/W.


### **Typical Performance Characteristics**

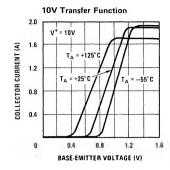


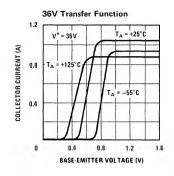



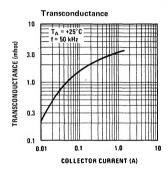



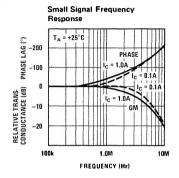





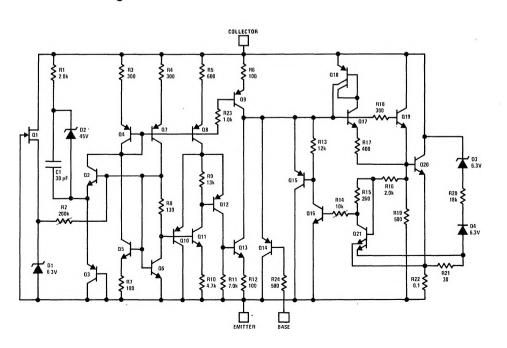



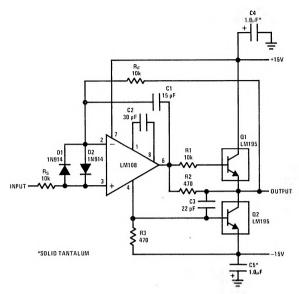



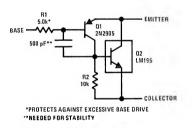

#### Typical Performance Characteristics (Cont'd.)



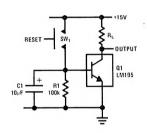


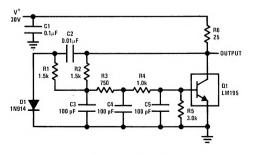




#### **Schematic Diagram**

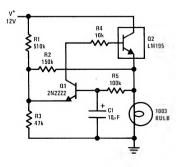



# **Typical Applications**



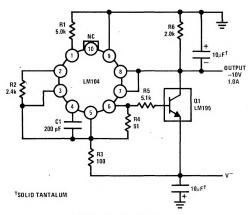

1.0 Amp Voltage Follower



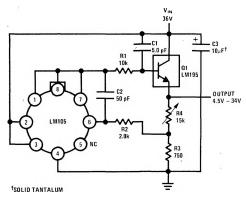

Power PNP



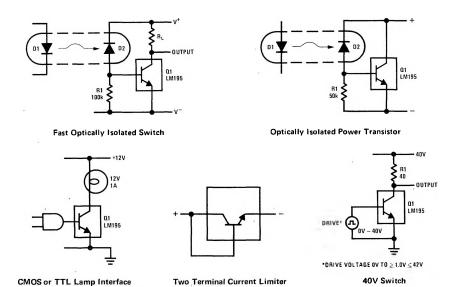
Time Delay



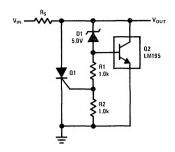

1.0 MHz Oscillator



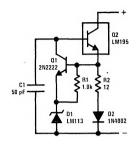

1.0 Amp Lamp Flasher


# Typical Applications (Cont'd.)

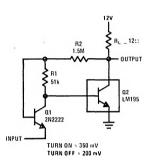



1.0 Amp Negative Regulator

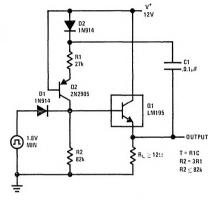



1.0 Amp Positive Voltage Regulator

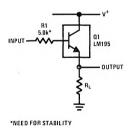



# Typical Applications (Cont'd.)

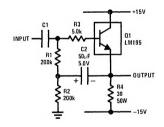



6.0V Shunt Regulator with Crowbar

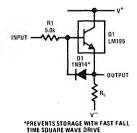



Two Terminal 100 mA Current Regulator



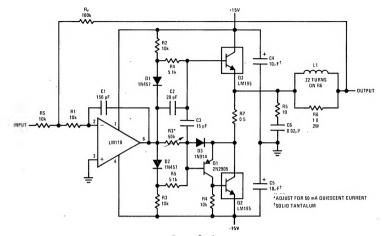

Low Level Power Switch



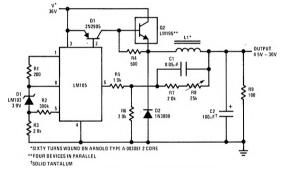

Power One-Shot



Emitter Follower




High Input Impedance AC Emitter Follower




Fast Follower

# Typical Applications (Cont'd.)



Power Op Amp



6.0 Amp Variable Output Switching Regulator