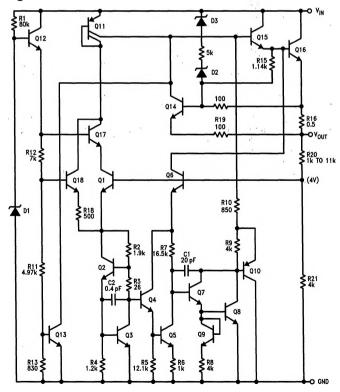
LM341 Series 3-Terminal Positive Regulators

General Description

The LM341-XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM341-XX series is available in TO-202 and TO-220 plastic packages allowing these regulators to deliver over 0.5A if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.


Considerable effort was expended to make the LM341-XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For output voltage other than 5V, 12V and 15V the LM117 series provides an output voltage range from 1.2V to 57V.

Features

- Output current in excess of 0.5A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-202 and TO-220 package
- Special circuitry allows start-up even if output is pulled to negative voltage (± supplies)

Schematic Diagram

TL/H/10484-1

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Input Voltage

Internal Power Dissipation

351/

Internally Limited

Maximum Junction Temperature

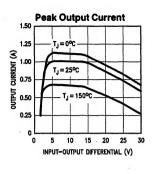
Storage Temperature Range Lead Temperature (Soldering, 10 sec.) + 125°C -65°C to + 150°C

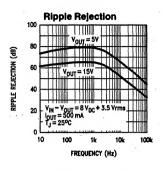
+230°C

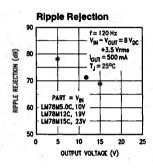
ESD Susceptibility

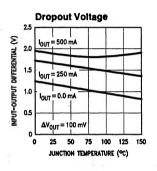
TBD

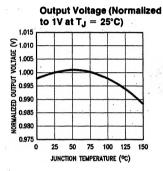

Operating Temperature Range 0°C to +70°C

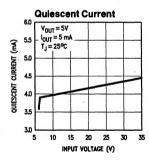

Electrical Characteristics $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $I_O = 500$ mA, unless otherwise noted

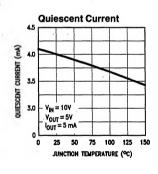

Output Voltage Input Voltage (unless otherwise noted)				5V 10V			12V 19V			15V 23V		
V _O	Output Voltage	$T_{J} = 25^{\circ}C$	4.8	5	5.2	11.5	12	12.5	14.4	15	15.6	V
		$P_D \le 7.5W$, 5 mA $\le I_O \le 500$ mA and $V_{MIN} \le V_{IN} \le V_{MAX}$	1	≤V _{IN} :		11.4 (14.8	≤V _{IN}		14.25 (18:	≤V _{IN} ≤	15.75 (30)	٧
ΔVΟ	Line Regulation	$T_J = 25^{\circ}\text{C}, I_O = 100 \text{ mA}$ $T_J = 25^{\circ}\text{C}, I_O = 500 \text{ mA}$	(7.2	≤V _{IN} :	50 100 ≤25)	(14.5	≤V _{IN}	120 240 ≤30)	(17.6	i≤V _{IN}	150 300 ≤30)	mV mV
Δ۷ο	Load Regulation	$T_J = 25^{\circ}\text{C}, 5 \text{ mA} \le I_O \le 500 \text{ mA}$		1-	100			240			300	mV
Δ۷ο	Long Term Stability				20			48			60	mV/khrs
la	Quiescent Current	T _J = 25°C		4	10		4	10		4	10	mA
ΔIQ	Quiescent Current Change	$T_J = 25^{\circ}C$ 5 mA $\leq I_O \leq 500$ mA			0.5			0.5			0.5	mA
		$T_J = 25^{\circ}C$ $V_{MIN} \le V_{IN} \le V_{MAX}$	(7.5	≤V _{IN} :	1 ≤25)	(14.8	≤V _{IN}	1 ≤30)	(18:	≤V _{IN} ≤	1 (30)	mA
Vn	Output Noise Voltage	T _J = 25°C, f = 10 Hz-100 kHz		40			75			90		μ٧
ΔV _{IN} ΔV _{OUT}	Ripple Rejection	f = 120 Hz		78			71			69		dB
	Input Voltage Required to Maintain Line Regulation	$T_{\rm J} = 25^{\circ}{\rm C}, I_{\rm O} = 500 {\rm mA}$	7.2	-		14.5			17.6			\
	Thermal Resistance Junction to Case	P Package T Package		12 5			12 5			12 5		°C/W
	Thermal Resistance Junction to Ambient	P Package T Package		70 60			70 60			70 60		°C/W

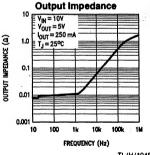

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

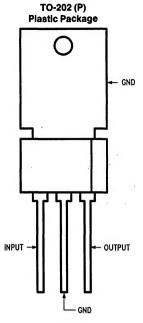

Typical Performance Characteristics











TL/H/10484-3

Connection Diagrams

TL/H/10484-2

Order Numbers LM341P-5.0 LM341P-12 LM341P-15 See NS Package Number P03A Plastic Package

GND

INPUT — OUTPUT

GND

TO-220 (T)

Order Numbers
LM341T-5.0
LM341T-12
LM341T-15
See NS Package Number T03B