

LM160/LM360 High Speed Differential Comparator **General Description Features**

The LM160/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the µA760/µA760C, for which it is a pin-for-pin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 400 mV.

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disk file systems.

- Guaranteed high speed
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

Connection Diagrams

Metal Can Package

TL/H/5707-4

Order Number LM160H/883* or LM360H See NS Package Number H08C

Dual-In-Line Package

TL/H/5707-5

20 ns max

Order Number LM160J/883*. LM360M or LM360N See NS Package Number J08A, M08A or N08E

Dual-In-Package

Order Number LM160J-14/883* See NS Package Number J14A

TL/H/5707-6

*Also available in SMD # 5962-8767401

Absolute Maximum Ratings (Note 5)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Note 7) Positive Supply Voltage +8V -8V **Negative Supply Voltage Peak Output Current** 20 mA Differential Input Voltage ±5V $V^+ \ge V_{IN} \ge V^-$ Input Voltage ESD Tolerance (Note 8)

Operating Temperature Range

LM160 -55°C to +125°C LM360 0°C to +70°C

Storage Temperature Range -65°C to +150°C

260°C Lead Temperature (Soldering, 10 sec.)

Soldering Information

Dual-In-Line Package

Soldering (10 seconds) 260°C

Small Outline Package Vapor Phase (60 seconds) Infrared (15 seconds)

215°C 220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics ($T_{MIN} \le T_A \le T_{MAX}$)

Parameter	Conditions	Min	Тур	Max	Units
Operating Conditions Supply Voltage V _{CC} + Supply Voltage V _{CC} -		4.5 -4.5	5 -5	6.5 -6.5	V V
Input Offset Voltage	$R_S \le 200\Omega$		2	5	mV
Input Offset Current			0.5	3	μΑ
Input Bias Current			5	20	μΑ
Output Resistance (Either Output)	V _{OUT} = V _{OH}		100	1	Ω
Response Time	$T_A = 25^{\circ}C, V_S = \pm 5V \text{ (Notes 1, 6)}$ $T_A = 25^{\circ}C, V_S = \pm 5V \text{ (Notes 2, 6)}$ $T_A = 25^{\circ}C, V_S = \pm 5V \text{ (Notes 3, 6)}$		13 12 14	25 20	ns ns ns
Response Time Difference between Outputs $ \begin{aligned} &(t_{pd} \text{ of } + V_{IN1}) - (t_{pd} \text{ of } - V_{IN2}) \\ &(t_{pd} \text{ of } + V_{IN2}) - (t_{pd} \text{ of } - V_{IN 1}) \\ &(t_{pd} \text{ of } + V_{IN1}) - (t_{pd} \text{ of } + V_{IN2}) \\ &(t_{pd} \text{ of } - V_{IN1}) - (t_{pd} \text{ of } - V_{IN2}) \end{aligned} $	T _A = 25°C (Notes 1, 6) T _A = 25°C (Notes 1, 6) T _A = 25°C (Notes 1, 6) T _A = 25°C (Notes 1, 6)		2 2 2 2		ns ns ns
Input Resistance	f = 1 MHz		17		kΩ
Input Capacitance	f = 1 MHz		3		pF
Average Temperature Coefficient of Input Offset Voltage	$R_S = 50\Omega$		8		μV/°C
Average Temperature Coefficient of Input Offset Current			7		nA/°C
Common Mode Input Voltage Range	V _S = ±6.5V	±4	±4.5		V
Differential Input Voltage Range		±5			٧
Output High Voltage (Either Output)	$I_{OUT} = -320 \mu A, V_S = \pm 4.5 V$	2:4	3		٧
Output Low Voltage (Either Output)	I _{SINK} = 6.4 mA		0.25	0.4	٧
Positive Supply Current	V _S = ±6.5V		18	32	mA
Negative Supply Current	$V_{S} = \pm 6.5 V$		-9	-16	mA

Note 1: Response time measured from the 50% point of a 30 mVp-p 10 MHz sinusoidal input to the 50% point of the output.

Note 2: Response time measured from the 50% point of a 2 Vp-p 10 MHz sinusoidal input to the 50% point of the output.

Note 3: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold.

Note 4: Typical thermal impedances are as follows:

Cavity DIP (J): Molded DIP (N): θ_{A} θ_{A} 135°C/W 130°C/W Header (H)

 θ_{JC}

165°C/W

(Still Air)

67°C/W (400 LF/min Air Flow) 25°C/W

Note 5: The device may be damaged if used beyond the maximum ratings.

Note 6: Measurements are made in AC Test Circuit, Fanout = 1

Note 7: Refer to RETS 160X for LM160H, LM160J-14 and LM160J military specifications.

Note 8: Human body model, 1.5 k Ω in series with 100 pF.

Typical Performance Characteristics

