National Semiconductor

LM194/LM394 Supermatch Pair

General Description

The LM194 and LM394 are junction isolated ultra wellmatched monolithic NPN transistor pairs with an order of magnitude improvement in matching over conventional transistor pairs. This was accomplished by advanced linear processing and a unique new device structure.

Electrical characteristics of these devices such as drift versus initial offset voltage, noise, and the exponential relationship of base-emitter voltage to collector current closely approach those of a theoretical transistor. Extrinsic emitter and base resistances are much lower than presently available pairs, either monolithic or discrete, giving extremely low noise and theoretical operation over a wide current range. Most parameters are guaranteed over a current range of 1 μ A to 1 mA and 0V up to 40V collector-base voltage, ensuring superior performance in nearly all applications.

To guarantee long term stability of matching parameters, internal clamp diodes have been added across the emitterbase junction of each transistor. These prevent degradation due to reverse biased emitter current—the most common cause of field failures in matched devices. The parasitic isolation junction formed by the diodes also clamps the substrate region to the most negative emitter to ensure complete isolation between devices.

The LM194 and LM394 will provide a considerable improvement in performance in most applications requiring a closely matched transistor pair. In many cases, trimming can be eliminated entirely, improving reliability and decreasing costs. Additionally, the low noise and high gain make this device attractive even where matching is not critical.

The LM194 and LM394/LM394B/LM394C are available in an isolated header 6-lead TO-5 metal can package. The LM394/LM394B/LM394C are available in an 8-pin plastic dual-in-line package. The LM194 is identical to the LM394 except for tighter electrical specifications and wider temperature range.

Features

- Emitter-base voltage matched to 50 µV
- Offset voltage drift less than 0.1 µV/°C
- Current gain (hFE) matched to 2%
- Common-mode rejection ratio greater than 120 dB
- Parameters guaranteed over 1 µA to 1 mA collector current
- Extremely low noise
- Superior logging characteristics compared to conventional pairs
- Plug-in replacement for presently available devices

Typical Applications Low Cost Accurate Square Root Circuit Low Cost Accurate Squaring Circuit $I_{OUT} = 10^{-5} \sqrt{10 V_{IN}}$ $I_{OUT} = 10^{-6} (V_{IN})^2$ INPUT $0 \le V_{IN} \le +10V$ 1006 M301 100. 1% 150k INPILT $0 \le V_{IN} \le +10V$ 2k 75 nF LM394 **6%** 300 300 pl 1% 1N45 M394 I M394 LM301A 150k 2k 150k 1/2 LM394 ເດດໄ 1/2 LM394 E% 1% 1% 1% 1.2k 5% 15V 15 REGULATED REGULATED TL/H/9241-2 TL/H/9241-1 Trim for full scale accuracy

Absolute Maximum Ratings

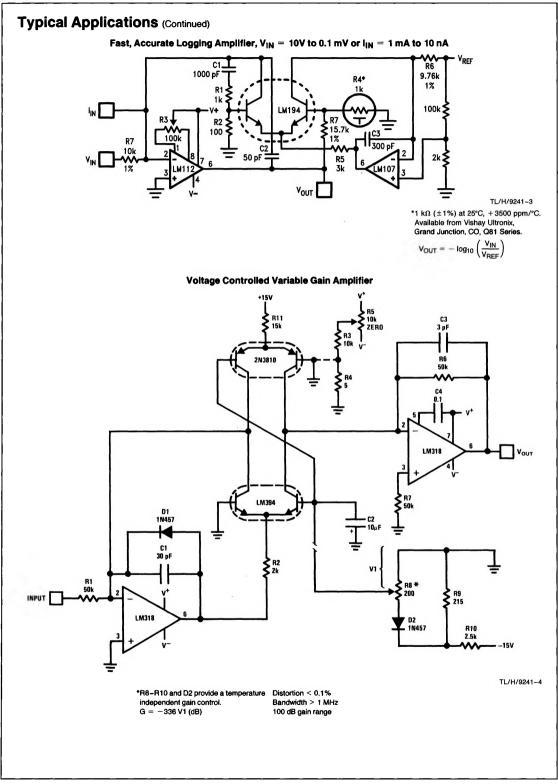
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 4)

(
Collector Current	20 mA
Collector-Emitter Voltage	VMAX
Collector-Emitter Voltage	35V
LM394C	20V
Collector-Base Voltage	35V
LM394C	20V
Collector-Substrate Voltage	35V
LM394C	20V
Collector-Collector Voltage	35V
LM394C	20V

Base-Emitter Current	2	± 10 mA
Power Dissipation		500 mW
Junction Temperature		
LM194		-55°C to +125°C
LM394/LM394B/LM394C		-25°C to +85°C
Storage Temperature Range		-65°C to +150°C
Soldering Information		
Metal Can Package (10 sec.)		260°C
Dual-In-Line Package (10 sec.)		260°C
Small Outline Package		15 B
Vapor Phase (60 sec.)		215°C
Infrared (15 sec.)		220°C
0		

See AN-450 "Surface Mounting and their Effects on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics $(T_J = 25^{\circ}C)$

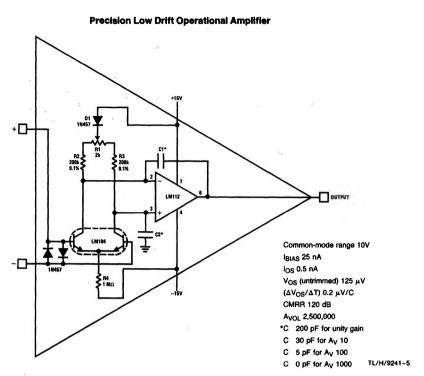

Parameter	Conditions		LM194	•	LM394			LM394B/394C			Units
rarameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Current Gain (h _{FE})	$V_{CB} = 0V \text{ to } V_{MAX} \text{ (Note 1)}$ $I_{C} = 1 \text{ mA}$ $I_{C} = 100 \mu \text{A}$ $I_{C} = 10 \mu \text{A}$ $I_{C} = 1 \mu \text{A}$	350 350 300 200	700 550 450 300		300 250 200 150	700 550 450 300) 1	225 200 150 100	500 400 300 200		
Current Gain Match, (h _{FE} Match) = $\frac{100 [\Delta I_B] [h_{FE(MIN)}]}{I_C}$	$V_{CB} = 0V$ to V_{MAX} $I_{C} = 10 \ \mu A$ to 1 mA $I_{C} = 1 \ \mu A$	• X •	0.5 1.0	2		0.5 1.0	4		1.0 2.0	5	%
Emitter-Base Offset Voltage	$V_{CB} = 0$ $I_C = 1 \ \mu A$ to 1 mA		25	100		25	150		50	200	μ٧
Change in Emitter-Base Offset Voltage vs Collector-Base Voltage (CMRR)	(Note 1) $I_C = 1 \ \mu A$ to 1 mA, $V_{CB} = 0V$ to V_{MAX}		10	25		10	50		10	100	μ٧
Change in Emitter-Base Offset Voltage vs Collector Current	$V_{CB} = 0V,$ $I_{C} = 1 \ \mu A \text{ to } 0.3 \text{ mA}$		5	25		5	50		5	50	μ٧
Emitter-Base Offset Voltage Temperature Drift	$I_{C} = 10 \ \mu A \text{ to } 1 \ \text{mA} \text{ (Note 2)}$ $I_{C1} = I_{C2}$ $V_{OS} \text{ Trimmed to } 0 \text{ at } 25^{\circ}\text{C}$		0.08 0.03	0.3 0.1		0.08 0.03	1.0 0.3	-	0.2 0.03	1.5 0.5	μV/°C μV/°C
Logging Conformity	$I_{\rm C} = 3 \text{ nA to } 300 \ \mu\text{A},$ $V_{\rm CB} = 0, \text{ (Note 3)}$		150			150			150		μ٧
Collector-Base Leakage	$V_{CB} = V_{MAX}$		0.05	0.25		0.05	0.5		0.05	0.5	nA
Collector-Collector Leakage	V _{CC} = V _{MAX}		0.1	2.0		0.1	5.0		0.1	5.0	nA
Input Voltage Noise	$I_{\rm C} = 100 \ \mu$ A, $V_{\rm CB} = 0$ V, f = 100 Hz to 100 kHz		1.8			1.8		(1)	1.8		nV/√Hz
Collector to Emitter Saturation Voltage	$I_{C} = 1 \text{ mA}, I_{B} = 10 \mu \text{A}$ $I_{C} = 1 \text{ mA}, I_{B} = 100 \mu \text{A}$		0.2 0.1			0.2 0.1			0.2 0.1		v v

Note 1: Collector-base voltage is swept from 0 to V_{MAX} at a collector current of 1 µA, 10 µA, 100 µA, and 1 mA.

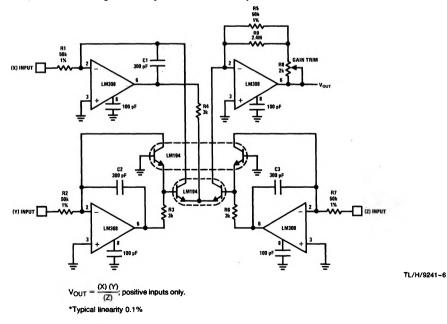
Note 2: Offset voltage drift with $V_{OS} = 0$ at $T_A = 25^{\circ}C$ is valid only when the ratio of I_{C1} to I_{C2} is adjusted to give the initial zero offset. This ratio must be held to within 0.003% over the entire temperature range. Measurements taken at $+25^{\circ}C$ and temperature extremes.

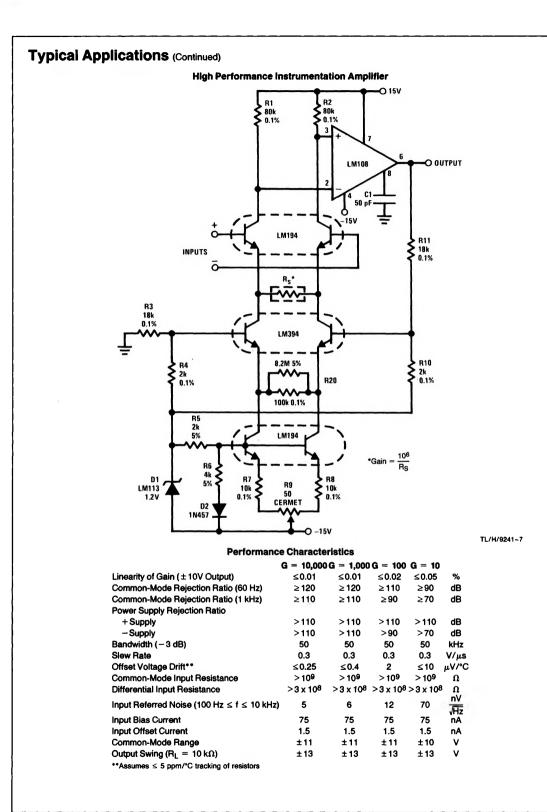
Note 3: Logging conformity is measured by computing the best fit to a true exponential and expressing the error as a base-emitter voltage deviation.

Note 4: Refer to RETS194X drawing of military LM194H version for specifications.

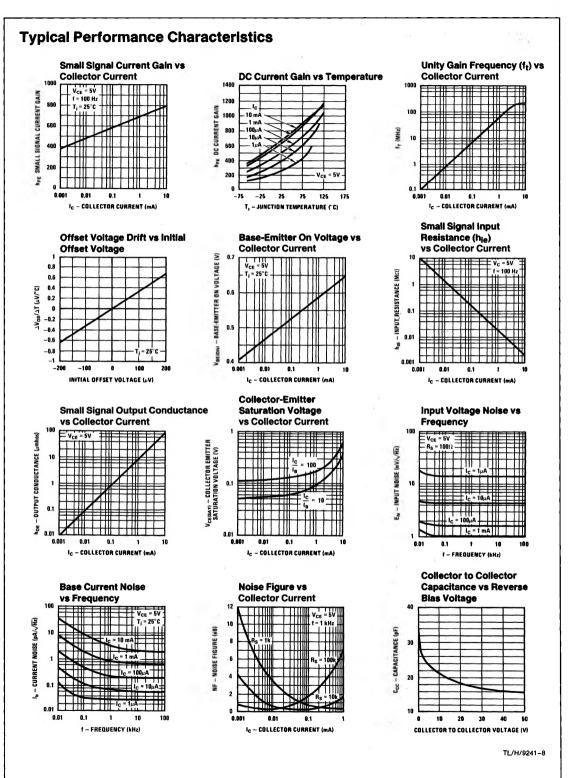


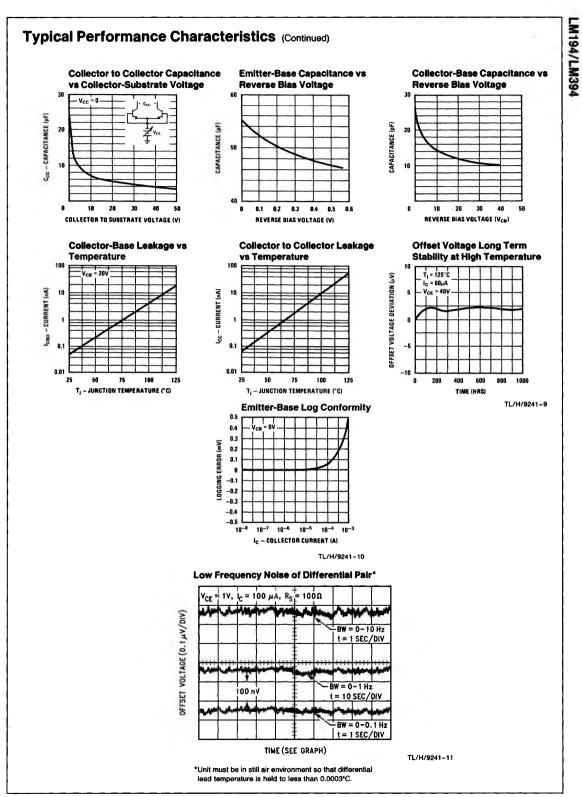
LM194/LM394

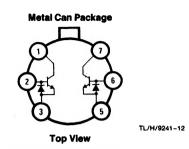

5-25

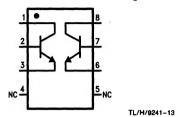

LM194/LM394

Typical Applications (Continued)




High Accuracy One Quadrant Multiplier/Divider


LM194/LM394



5-29

Connection Diagrams

Order Number LM194H/883*, LM394H, LM394BH or LM394CH See NS Package Number H06C **Dual-In-Line and Small Outline Packages**

Top View

Order Number LM394N or LM394CN See NS Package Number N08E