

PRELIMINARY

LM6161/LM6261/LM6361 **High Speed Operational Amplifier**

General Description

The LM6161 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300 V/µs and 50 MHz unity gain stability with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5V.

These amplifiers are built with National's new VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High slew rate
- High unity gain freq Low supply current
- Fast settling
- Low differential gain
- Low differential phase
- Wide supply range
- Well behaved: easy to apply

- 300 V/μs 50 MHz
 - 5 mA
 - 120 ns to 0.1%
 - < 0.1%
 - 0.1°
 - 4.75V to 32V
- Stable with unlimited capacitive load

Typical AC Characteristics

TL/H/9057-1

Gain & Phase; Av = +100

TL/H/9057-2

-65°C to +150°C

4.75V to 32V

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V⁺ - V⁻) 36V Differential Input Voltage (Note 8) ±8V

CM Voltage $(V^+ - 0.7V)$ to $(V^- - 7V)$

Output Short Circuit to GND (Note 1) Continuous

Lead Temperature (Soldering, 10 sec.) 260°C

Storage Temp Range

Operating Supply Voltage Range

DC Electrical Characteristics (Note 3)

Parameter	Conditions	Тур	LM6	161	LM6261		LM6361		
			Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Units
Input Offset Voltage		5	7 10		7	9	20	22	mV max
Input Offset Voltage Average Drift		10							μV/°C
Input Bias Current		2	3 6	ı	3	5	5	6	μA max
Input Offset Current		150	350 800		350	600	1500	1900	nA max
Input Offset Current Average Drift		0.4							nA/°C
Input Resistance	Differential	325							kΩ
Input Capacitance	Av = +1 @ 10 MHz	1.5							pF
Large Signal Voltage Gain	$V_{OUT} = \pm 10V, R_L = 2 k\Omega$ (Note 11)	750	550 300		550	400	400	350	V/V min
	$R_L = 10 k\Omega$	2900							V/V
Input Common-Mode Voltage Range	Supply = ±15V	+ 14.0	+ 13.9 + 13.8		+ 13.9	+ 13.8	+13.8	+ 13.7	Volts min
		-13.2	-12.9 - 12.7		-12.9	-12.7	-12.8	-12.7	Volts min
	Supply = +5V (Note 6)	4.0	3.9 3.8		3.9	3.8	3.8	3.7	Volts min
		1.8	2.0 2.2		2.0	2.2	2.1	2.2	Volts max
Common-Mode Rejection Ratio	-10V ≤ V _{CM} ≤ +10V	94	80 74		80	76	72	70	dB min
Power Supply Rejection Ratio	±10V ≤ V± ≤ ±16V	90	80 74		80	76	72	70	dB min
Output Voltage Swing	Supply = $\pm 15V$ and R _L = $2 k\Omega$	+ 14.2	+ 13.5 + 13.3		+ 13.5	+ 13.3	+ 13.4	+ 13.3	Volts min
		-13.4	-13.0 - 12.7		-13.0	- 12.8	-12.9	- 12.8	Volts min
	Supply = $+5V$ and R _L = $2 k\Omega$ (Note 6)	4.2	3.5 3.3		3.5	3.3	3.4	3.3	Volts min
		1.3	1.7 2.0		1.7	1.9	1.8	1.9	Volts max
Output Short Circuit Current	Souce	65	30 20		30	25	30	25	mA min
	Sink	65	30 20		30	25	30	25	mA min
Supply Current		5.0	6.5 6.8		6.5	6.7	6.8	6.9	mA max

AC Electrical Characteristics (Notes 3 & 7)

Parameter	Conditions	Тур	LM6161		LM6261		LM6361		
			Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Units
Gain-Bandwidth Product	@ F = 20 MHz	50	40 32		40	35	35	32	MHZ min
	V+ = ±5V	35							MHz
Slew Rate	Av = +1 (Note 10)	300	225 200		225	210	200	180	V/μs min
	$V^+ = \pm 5V$	200							V/µs
Power Bandwidth	$V_{OUT} = 20 V_{pp}$	4.5							MHz
Settling Time	10V Step to 0.1% Av = -1 , R _L = $2 \text{ k}\Omega$	120							ns
Phase Margin		45							Deg
Differential Gain	NTSC, Av = +4	<0.1							%
Differential Phase	NTSC, Av = +4	0.1							Deg
Input Noise Voltage	f = 10 kHz	15							nV/√Hz
Input Noise Current	f = 10 kHz	1.5							pA/√Hz

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is 105°C/W, the molded plastic SO (M) package is 155°C/W, the cerdip (J) package is 125°C/W, and the TO-5 (H) package is 155°C/W. All numbers apply for packages soldered directly into a printed circuit board.

Note 3: Unless otherwise specified, all limits guaranteed for $T_A = T_j = 25^{\circ}C$ with supply voltage = \pm 15V, $V_{CM} = 0$ V, and $R_L \ge 100$ k Ω . Boldface limits apply over the range listed under "Operating Temperature Range" with $T_A = T_j$ in the "Absolute Maximum Ratings" section.

Note 4: Guaranteed and 100% production tested. These limits are used to calculate outgoing AQL levels.

Note 5: Guaranteed but not 100% production tested. These limits are not used to calculate outgoing AQL levels.

Note 6: For single supply operation, the following conditions apply: $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 2.5V$, $V_{OUT} = 2.5V$. Pin 1 & Pin 8 (Vos Adjust) are each connected to Pin 4 (V^-) to realize maximum output swing. This connection will degrade V_{OS} , V_{OS} Drift, and Input Voltage Noise.

Note 7: C_L ≤ 5 pF.

Note 8: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially Vos, los, and Noise).

Note 9: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500 Ω .

Note 10: $V_{IN} = 8V$ step. For $V^+ = \pm 5V$, $V_{IN} = 5V$ step.

Note 11: Voltage Gain is the total output swing (20V) divided by the input signal required to produce that swing.

Simplified Schematic and Pin Assignments

V_{OS} Adjust Circuit

TL/H/9057-4