LM6165,LM6265,LM6365

LM6165/LM6265/LM6365 High Speed Operational Amplifier

Literature Number: SNOSC01

National Semiconductor

LM6165/LM6265/LM6365 High Speed Operational Amplifier

General Description

The LM6165 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300 V/ μ s and 725 MHz GBW (stable for gains as low as +25) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5V.

These amplifiers are built with National's VIP[™] (Vertically Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

■ High slew rate: 300 V/µs

- Low supply current: 5 mA
- Fast settling: 80 ns to 0.1%
- Low differential gain: <0.1%
- Low differential phase: <0.1°
- Wide supply range: 4.75V to 32V
- Stable with unlimited capacitive load
- .

Applications

- Video amplifier
- Wide-bandwidth signal conditioning
- Radar
- Sonar

Connection Diagrams Adjust 10-Lead Flatpak Top View NC E NC V_{OS} ADJUST **⊏** ⊐ V_{os} adjust INV INPUT LM6165W V+ NON-INV INPUT VOUTPUT V- E I NC 1 DS009152-14 INV Vos input inpu Adjust Order Number LM6165W/883 DS009152-8 See NS Package Number W10A Order Number LM6165J/883 See NS Package Number J08A Order Number LM6365M See NS Package Number M08A Order Number LM6265N or LM6365N See NS Package Number N08E VIP™ is a trademark of National Semiconductor Corporation

© 1999 National Semiconductor Corporation DS009152

www.national.com

LM6165/LM6265/LM6365 High Speed Operational Amplifier

May 1999

Temperature Range			Package	NSC
Military	Industrial	Commercial		Drawing
–55°C ≤ T_A ≤ +125°C	–25°C ≤ T_A ≤ +85°C	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$		
	LM6265N	LM6365N	8-Pin	N08E
			Molded DIP	
LM6165J/883			8-Pin	J08A
5962-8962501PA			Ceramic DIP	
		LM6365M	8-Pin Molded	M08A
			Surface Mt.	
LM6165WG/883			10-Lead	WG10A
5962-8962501XA			Ceramic SOIC	
LM6165W883			10-Pin	W10A
5962-8962501HA			Ceramic Flatpak	

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. Storage Temp Range

6V
8V
7V)
ous
°C
5°C
0°C

-65°C to +150°C Max Junction Temperature 150°C (Note 3) ESD Tolerance (Notes 7, 8) ±700V

Operating Ratings

Temperature Range (Note 3)	
LM6165, LM6165J/883	$-55^{\circ}C \le T_{J} \le +125^{\circ}C$
LM6265	$-25^{\circ}C \le T_{J} \le +85^{\circ}C$
LM6365	$0^{\circ}C \le T_{J} \le +70^{\circ}C$
Supply Voltage Range	4.75V to 32V

DC Electrical Characteristics

The following specifications apply for Supply Voltage = $\pm 15V$, $V_{CM} = 0$, $R_1 \ge 100 \text{ k}\Omega$ and $R_s = 50\Omega$ unless otherwise noted.	
The following specifications apply for Supply Voltage = $\pm 15V$, V _{CM} = 0, R _L $\geq 100 \text{ k}\Omega$ and R _S = 50 Ω unless otherwise noted. Boldface limits apply for T _A = T _J = T _{MIN} to T _{MAX} ; all other limits T _A = T _J = 25°C.	

Symbol	Parameter	Conditions	Тур	LM6165	LM6265	LM6365	Units
				Limit	Limit	Limit	1
				(Notes 4, 12)	(Note 4)	(Note 4)	
V _{os}	Input Offset Voltage		1	3	3	6	mV
				4	4	7	Max
Vos	Input Offset Voltage		3				µV/°0
Drift	Average Drift						
I _b	Input Bias Current		2.5	3	3	5	μA
				6	5	6	Max
l _{os}	Input Offset Current		150	350	350	1500	nA
				800	600	1900	Max
l _{os}	Input Offset Current		0.3				nA/°0
Drift	Average Drift						
R _{IN}	Input Resistance	Differential	20				kΩ
CIN	Input Capacitance		6.0				pF
A _{VOL}	Large Signal	$V_{OUT} = \pm 10V,$	10.5	7.5	7.5	5.5	V/m\
	Voltage Gain	$R_L = 2 k\Omega$		5.0	6.0	5.0	Min
	(Note 10)	R _L = 10 kΩ	38				1
V _{CM}	Input Common-Mode	Supply = $\pm 15V$	+14.0	+13.9	+13.9	+13.8	V
	Voltage Range			+13.8	+13.8	+13.7	Min
			-13.6	-13.4	-13.4	-13.3	V
				-13.2	-13.2	-13.2	Min
		Supply = +5V	4.0	3.9	3.9	3.8	V
		(Note 5)		3.8	3.8	3.7	Min
			1.4	1.6	1.6	1.7	V
				1.8	1.8	1.8	Max
CMRR	Common-Mode	$-10V \le V_{CM} \le +10V$	102	88	88	80	dB
	Rejection Ratio			82	84	78	Min
PSRR	Power Supply	$\pm 10V \le V^{\pm} \le \pm 16V$	104	88	88	80	dB
	Rejection Ratio			82	84	78	Min

Symbol	Parameter	Conditions	Тур	LM6165 Limit	LM6265 Limit	LM6365 Limit	Units
				(Notes 4, 12)	(Note 4)	(Note 4)	
Vo	Output Voltage	Supply = $\pm 15V$,	+14.2	+13.5	+13.5	+13.4	V
	Swing	$R_L = 2 k\Omega$		+13.3	+13.3	+13.3	Min
			-13.4	-13.0	-13.0	-12.9	V
				-12.7	-12.8	-12.8	Min
		Supply = +5V	4.2	3.5	3.5	3.4	V
		$R_L = 2 k\Omega$ (Note 5)		3.3	3.3	3.3	Min
			1.3	1.7	1.7	1.8	V
				2.0	1.9	1.9	Max
	Output Short	Source	65	30	30	30	mA
	Circuit Current			20	25	25	Min
		Sink	65	30	30	30	mA
				20	25	25	Min
I _s	Supply Current		5.0	6.5	6.5	6.8	mA
				6.8	6.7	6.9	Max

- - ---......

•

AC Electrical Characteristics

The following specifications apply for Supply Voltage = ±15V, V_{CM} = 0, $R_L \ge 100 \text{ k}\Omega$ and R_S = 50 Ω unless otherwise noted. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25$ °C. (Note 6)

Symbol	Parameter	Conditions	Тур	LM6165	LM6265	LM6365	Units
				Limit	Limit	Limit	1
				(Notes 4, 12)	(Note 4)	(Note 4)	
GBW	Gain Bandwidth	F = 20 MHz	725	575	575	500	MHz
				350			Min
	Product	Supply = $\pm 5V$	500				1
SR	Slew Rate	A _V = +25 (Note 9)	300	200	200	200	V/µs
				180			Min
		Supply = $\pm 5V$	200				1
PBW	Power Bandwidth	V_{OUT} = 20 V_{PP}	4.5				MHz
	Product						
t _s	Settling Time	10V Step to 0.1%	80				ns
		$A_V = -25$, $R_L = 2 k\Omega$					
φ _m	Phase Margin	A _V = +25	45				Deg
A _D	Differential Gain	NTSC, $A_V = +25$	<0.1				%
φ _D	Differential Phase	NTSC, $A_V = +25$	<0.1				Deg
e _{np-p}	Input Noise Voltage	F = 10 kHz	5				nV/√Hz
i _{np-p}	Input Noise Current	F = 10 kHz	1.5				pA/√Hz
							"

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

Note 3: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is 105°C/Watt, and the molded plastic SO (M) package is 155°C/Watt, and the cerdip (J) package is 125°C/Watt. All numbers apply for packages soldered directly into a printed circuit board.

Note 4: All limits guaranteed by testing or correlation.

Note 5: For single supply operation, the following conditions apply: $V_{+} = 5V$, $V_{-} = 0V$, $V_{CM} = 2.5C$, $V_{OUT} = 2.5V$. Pin 1 & Pin 8 (V_{OS} Adjust) are each connected to Pin 4 (V_{-}) to realize maximum output swing. This connection will degrade V_{OS} .

Note 6: $C_L \le 5 \text{ pF.}$

Note 7: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exeeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially V_{OS}, I_{OS}, and Noise).

AC Electrical Characteristics (Continued)

Note 8: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.

Note 9: V_{IN} = 0.8V step. For supply = ±5V, V_{IN} = 0.2V step.

Note 10: Voltage Gain is the total output swing (20V) divided by the input signal required to produce that swing.

Note 11: The voltage between V^+ and either input pin must not exceed 36V.

Note 12: A military RETS electrical test specification is available on request. At the time of printing, the LM6165J/883 RETS spec complied with the Boldface limits in this column. The LM6165J/883 may also be procured as Standard Military Drawing #5962-8962501PA.

Typical Performance Characteristics $R_L = 10 \text{ k}\Omega$, $T_A = 25^{\circ}C$ unless otherwise specified

Gain-Bandwidth Product

Slew Rate vs Load Capacitance

Propagation Delay, **Rise and Fall Times**

Overshoot vs Capacitive Load

Gain-Bandwidth Product vs Load Capacitance

Simplified Schematic

Application Tips

The LM6365 is stable for gains of 25 or greater. The LM6361 and LM6364, specified in separate datasheets, are compensated versions of the LM6365. The LM6361 is unity-gain stable, while the LM6364 is stable for gains as low as 5. The LM6361, and LM6364 have the same high slew rate as the LM6365, typically 300 V/µs.

To use the LM6365 for gains less than 25, a series resistor-capacitor network should be added between the input pins (as shown in the Typical Applications, Noise Gain Compensation) so that the high-frequency noise gain rises to at least 25.

Power supply bypassing will improve stability and transient response of the LM6365, and is recommended for every design. 0.01 μ F to 0.1 μ F ceramic capacitors should be used

(from each supply "rail" to ground); an additional 2.2 μF to 10 μF (tantalum) may be required for extra noise reduction. Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling between adjacent nodes, and can cause circuit gain to unintentionally vary with frequency.

Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.

 $[R1 + R_F (1 + R1/R2)] = 25 R_X$

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 93 58		
www.national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated