LM7121 LM7121 235 MHz Tiny Low Power Voltage Feedback Amplifier Literature Number: SNOS750 August 1999 #### LM7121 # 235 MHz Tiny Low Power Voltage Feedback Amplifier #### **General Description** The LM7121 is a high performance operational amplifier which addresses the increasing AC performance needs of video and imaging applications, and the size and power constraints of portable applications. The LM7121 can operate over a wide dynamic range of supply voltages, from 5V (single supply) up to $\pm 15V$ (see the Application Information section for more details). It offers an excellent speed-power product delivering $1300V/\mu s$ and 235 MHz Bandwidth (–3 dB, A_V = +1). Another key feature of this operational amplifier is stability while driving unlimited capacitive loads. Due to its Tiny SOT23-5 package, the LM7121 is ideal for designs where space and weight are the critical parameters. The benefits of the Tiny package are evident in small portable electronic devices, such as cameras, and PC video cards. Tiny amplifiers are so small that they can be placed anywhere on a board close to the signal source or near the input to an A/D converter. #### **Features** (Typical unless otherwise noted) $V_S = \pm 15V$ - Easy to use voltage feedback topology - Stable with unlimited capacitive loads - Tiny SOT23-5 package typical circuit layout takes half the space of SO-8 designs - Unity gain frequency: 175 MHz - Bandwidth (-3 dB, $A_V = +1$, $R_L = 100\Omega$): 235 MHz - Slew rate: 1300V/µs - Supply Voltages SO-8: 5V to ±15V SOT23-5: 5V to ±5V - Characterized for: +5V, ±5V, ±15V - Low supply current: 5.3 mA #### **Applications** - Scanners, color fax, digital copiers - PC video cards - Cable drivers - Digital cameras - ADC/DAC buffers - Set-top boxes #### **Connection Diagrams** #### **Ordering Information** | Package | Ordering Information | NSC Drawing | Package | Supplied As | |---------------|----------------------|-------------|----------|--------------------| | | | Number | Marking | | | 8-Pin SO-8 | LM7121IM | M08A | LM7121IM | Rails | | | LM7121IMX | M08A | LM7121IM | 2.5k Tape and Reel | | 5-Pin SOT23-5 | LM7121IM5 | MA05A | A03A | 1k Tape and Reel | | | LM7121IM5X | MA05A | A03A | 3k Tape and Reel | #### Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. ESD Tolerance (Note 2) 2000V Differential Input Voltage (Note 7) ± 2 V Voltage at Input/Output Pin $(V^+)-1.4$ V, $(V^-)+1.4$ V Supply Voltage (V⁺–V⁻) 36V Output Short Circuit to Ground (Note 3) Continuous Lead Temperature 260°C (soldering, 10 sec) 260°C Storage Temperature Range -65°C to +150°C Junction Temperature (Note 4) 150°C #### **Operating Ratings** (Note 1) Supply Voltage: SO-8 $4.5V \le V_S \le 33V$ $SOT23-5 \qquad \qquad 4.5 \text{V} \leq \text{V}_{\text{S}} \leq 11 \text{V}$ Junction Temperature Range $-40^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +85^{\circ}\text{C}$ Thermal Resistance (θ_{JA}) M Package, 8-pin Surface Mount 165°C/W SOT23-5 Package 325°C/W #### ±15V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for T_J = 25°C, V⁺ = +15V, V⁻ = -15V, V_{CM} = V_O = 0V and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ
(Note 5) | LM7121I Limit (Note 6) | Units | |-----------------|-----------------------|---------------------------------------|-----------------|-------------------------------|-------| | V _{OS} | Input Offset Voltage | | 0.9 | (Note 6) | mV | | VOS | input Onset voltage | | 0.9 | 15 | max | | I _B | Input Bias Current | | 5.2 | 9.5 | μА | | .в | mpat blac carront | | 0.2 | 12 | max | | I _{os} | Input Offset Current | | 0.04 | 4.3 | μA | | 03 | | | | 7 | max | | R _{IN} | Input Resistance | Common Mode | 10 | | ΜΩ | | | | Differential Mode | 3.4 | | MΩ | | C _{IN} | Input Capacitance | Common Mode | 2.3 | | pF | | CMRR | Common Mode | -10V ≤ V _{CM} ≤ 10V | 93 | 73 | dB | | | Rejection Ratio | | | 70 | min | | +PSRR | Positive Power Supply | 10V ≤ V ⁺ ≤ 15V | 86 | 70 | dB | | | Rejection Ratio | | | 68 | min | | -PSRR | Negative Power Supply | -15V ≤ V ⁻ ≤ -10V | 81 | 68 | dB | | | Rejection Ratio | | | 65 | min | | V _{CM} | Input Common-Mode | CMRR ≥ 70 dB | 13 | 11 | V | | | Voltage Range | | | | min | | | | | -13 | -11 | V | | | | | | | max | | A_V | Large Signal | $R_L = 2 k\Omega$, $V_O = 20 V_{PP}$ | 72 | 65 | dB | | | Voltage Gain | | | 57 | min | | V_{O} | Output Swing | $R_L = 2 k\Omega$ | 13.4 | 11.1 | V | | | | | | 10.8 | min | | | | | -13.4 | -11.2 | V | | | | | | -11.0 | max | | | | $R_L = 150\Omega$ | 10.2 | 7.75 | V | | | | | | 7.0 | min | | | | | -7.0 | -5.0 | V | | | | | | -4.8 | max | | I _{sc} | Output Short Circuit | Sourcing | 71 | 54 | mA | | | Current | | | 44 | min | | | | Sinking | 52 | 39 | mA | | | | | | 34 | min | #### ±15V DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = +15V, V^- = -15V, V_{CM} = V_O = 0V and R_L > 1 M Ω . **Boldface** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ
(Note 5) | LM7121I
Limit
(Note 6) | Units | |--------|----------------|------------|-----------------|------------------------------|-------| | Is | Supply Current | | 5.3 | 6.6 | mA | | | | | | 7.5 | max | #### ±15V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 15V, V^- = -15V, V_{CM} = V_O = 0V and R_L > 1 M Ω . Bold-face limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ
(Note 5) | LM7121I
Limit
(Note 6) | Units | |---------------------------------|---------------------------|--|-----------------|------------------------------|-------------------------------| | SR | Slew Rate | $A_V = +2$, $R_L = 1 k\Omega$, | 1300 | (Note 6) | V/µs | | | (Note 8) | $V_O = 20 V_{PP}$ | | | | | GBW | Unity Gain-Bandwidth | $R_L = 1 k\Omega$ | 175 | | MHz | | φ _m | Phase Margin | | 63 | | Deg | | f (-3 dB) | Bandwidth | $R_{L} = 100\Omega, A_{V} = +1$ | 235 | | MHz | | | (Notes 9, 10) | $R_L = 100\Omega, A_V = +2$ | 50 | | | | t _s | Settling Time | 10 V _{PP} Step, to 0.1%, | 74 | | ns | | | | $R_L = 500\Omega$ | | | | | t _r , t _f | Rise and Fall Time | $A_V = +2, R_L = 100\Omega,$ | 5.3 | | ns | | | (Note 10) | $V_O = 0.4 V_{PP}$ | | | | | A _D | Differential Gain | $A_V = +2, R_L = 150\Omega$ | 0.3 | | % | | ФД | Differential Phase | $A_V = +2, R_L = 150\Omega$ | 0.65 | | Deg | | e _n | Input-Referred | f = 10 kHz | 17 | | nV | | | Voltage Noise | | | | $\overline{\sqrt{\text{Hz}}}$ | | i _n | Input-Referred | f = 10 kHz | 1.9 | | рА | | | Current Noise | | | | $\frac{pA}{\sqrt{Hz}}$ | | T.H.D. | Total Harmonic Distortion | 2 V_{PP} Output, $R_L = 150\Omega$, | 0.065 | | % | | | | $A_{V} = +2$, f = 1 MHz | | | | | | | 2 V _{PP} Output, R _L = 150Ω, | 0.52 | | | | | | $A_{V} = +2$, f = 5 MHz | | | | #### ±5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for T_J = 25°C, V⁺ = 5V, V⁻ = -5V, V_{CM} = V_O = 0V and R_L > 1 M Ω . **Bold-face** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ
(Note 5) | LM7121I
Limit | Units | |-----------------|----------------------|-------------------|-----------------|------------------|-------| | | | | | (Note 6) | | | V _{os} | Input Offset Voltage | | 1.6 | 8 | mV | | | | | | 15 | max | | I _B | Input Bias Current | | 5.5 | 9.5 | μA | | | | | | 12 | max | | I _{os} | Input Offset Current | | 0.07 | 4.3 | μA | | | | | | 7.0 | max | | R _{IN} | Input Resistance | Common Mode | 6.8 | | MΩ | | | | Differential Mode | 3.4 | | MΩ | | | • | • | • | | | # ±5V DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 5V, V^- = -5V, V_{CM} = V_O = 0V and R_L > 1 M Ω . **Bold-face** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ
(Note 5) | LM7121I
Limit | Units | |-----------------|-----------------------|-----------------------------------|-----------------|------------------|-------| | | | | | (Note 6) | | | C _{IN} | Input Capacitance | Common Mode | 2.3 | | pF | | CMRR | Common Mode | $-2V \le V_{CM} \le 2V$ | 75 | 65 | dB | | | Rejection Ratio | | | 60 | min | | +PSRR | Positive Power Supply | 3V ≤ V ⁺ ≤ 5V | 89 | 65 | dB | | | Rejection Ratio | | | 60 | min | | -PSRR | Negative Power Supply | -5V ≤ V ⁻ ≤ -3V | 78 | 65 | dB | | | Rejection Ratio | | | 60 | min | | V _{CM} | Input Common Mode | CMRR ≥ 60 dB | 3 | 2.5 | V | | | Voltage Range | | | | min | | | | | -3 | -2.5 | V | | | | | | | max | | A _V | Large Signal | $R_L = 2 k\Omega, V_O = 3 V_{PP}$ | 66 | 60 | dB | | | Voltage Gain | | | 58 | min | | Vo | Output Swing | $R_L = 2 k\Omega$ | 3.62 | 3.0 | V | | | | | | 2.75 | min | | | | | -3.62 | -3.0 | V | | | | | | -2.70 | max | | | | $R_L = 150\Omega$ | 3.1 | 2.5 | V | | | | | | 2.3 | min | | | | | -2.8 | -2.15 | V | | | | | | -2.00 | max | | I _{sc} | Output Short Circuit | Sourcing | 53 | 38 | mA | | | Current | | | 33 | min | | | | Sinking | 29 | 21 | mA | | | | | | 19 | min | | Is | Supply Current | | 5.1 | 6.4 | mA | | | | | | 7.2 | max | #### ±5V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 5V, V^- = -5V, V_{CM} = V_O = 0V and R_L > 1 M Ω . **Bold-face** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ
(Note 5) | LM7121I
Limit | Units | |---------------------------------|----------------------|--|-----------------|------------------|-------| | SR | Slew Rate | $A_{V} = +2, R_{L} = 1 k\Omega,$ | 520 | (Note 6) | V/µs | | SIX | (Note 8) | $V_{O} = 6 V_{PP}$ | 320 | | ν/μ5 | | GBW | Unity Gain-Bandwidth | $R_L = 1 k\Omega$ | 105 | | MHz | | φ _m | Phase Margin | $R_L = 1 \text{ k}\Omega$ | 74 | | Deg | | f (-3 dB) | Bandwidth | $R_{L} = 100\Omega, A_{V} = +1$ | 160 | | MHz | | | (Notes 9, 10) | $R_{L} = 100\Omega, A_{V} = +2$ | 50 | | | | t _s | Settling Time | $5 V_{PP}$ Step, to 0.1%,
R _L = $500Ω$ | 65 | | ns | | t _r , t _f | Rise and Fall Time | $A_V = +2, R_L = 100\Omega,$ | 5.8 | | ns | | | (Note 10) | $V_O = 0.4 V_{PP}$ | | | | | A _D | Differential Gain | $A_V = +2, R_L = 150\Omega$ | 0.3 | | % | #### ±5V AC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 5V, V^- = -5V, V_{CM} = V_O = 0V and R_L > 1 M Ω . **Bold-face** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ
(Note 5) | LM7121I
Limit
(Note 6) | Units | |----------------|------------------------------|--|-----------------|------------------------------|-----------| | φ _D | Differential Phase | $A_V = +2, R_L = 150\Omega$ | 0.65 | | Deg | | e _n | Input-Referred Voltage Noise | f = 10 kHz | 17 | | nV
√Hz | | i _n | Input-Referred Current Noise | f = 10 kHz | 2 | | pA
√Hz | | T.H.D. | Total Harmonic Distortion | $2 V_{PP}$ Output, R _L = 150Ω,
A _V = +2, f = 1 MHz | 0.1 | | % | | | | 2 V _{PP} Output, R _L = 150Ω,
A _V = +2, f = 5 MHz | 0.6 | | | #### +5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = +5V, V^- = 0V, V_{CM} = V_O = V+/2 and R_L > 1 M Ω . **Bold-face** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ
(Note 5) | LM7121I Limit (Note 6) | Units | |-----------------|--|--|-----------------|-------------------------------|----------| | V _{OS} | Input Offset Voltage | | 2.4 | (/ | mV | | I _B | Input Bias Current | | 4 | | μA | | l _{os} | Input Offset Current | | 0.04 | | μA | | R _{IN} | Input Resistance | Common Mode | 2.6 | | MΩ | | | | Differential Mode | 3.4 | | MΩ | | C _{IN} | Input Capacitance | Common Mode | 2.3 | | pF | | CMRR | Common Mode
Rejection Ratio | $2V \le V_{CM} \le 3V$ | 65 | | dB | | +PSRR | Positive Power Supply Rejection Ratio | 4.6V ≤ V ⁺ ≤ 5V | 85 | | dB | | -PSRR | Negative Power Supply
Rejection Ratio | 0V ≤ V ⁻ ≤ 0.4V | 61 | | dB | | V _{CM} | Input Common-Mode Voltage Range | CMRR ≥ 45 dB | 3.5 | | V
min | | | | | 1.5 | | V
max | | A _V | Large Signal
Voltage Gain | $R_L = 2 k\Omega$ to V ⁺ /2 | 64 | | dB | | Vo | Output Swing | $R_L = 2 k\Omega$ to V+/2, High | 3.7 | | V | | | | $R_L = 2 k\Omega$ to V ⁺ /2, Low | 1.3 | | 7 | | | | $R_L = 150\Omega$ to V ⁺ /2, High | 3.48 | | 1 | | | | $R_L = 150\Omega$ to V ⁺ /2, Low | 1.59 | | 1 | | I _{sc} | Output Short Circuit | Sourcing | 33 | | mA | | | Current | Sinking | 20 | | mA | | I _s | Supply Current | | 4.8 | | mA | #### +5V AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = +5V, V^- = 0V, V_{CM} = V_O = V+/2 and R_L > 1 M Ω . **Bold-face** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ
(Note 5) | LM7121I
Limit
(Note 6) | Units | |---------------------------------|---------------------------|--|-----------------|------------------------------|-------| | SR | Slew Rate | $A_V = +2, R_L = 1 \text{ k}\Omega \text{ to}$ | 145 | | V/µs | | | (Note 8) | $V^{+}/2$, $V_{O} = 1.8 V_{PP}$ | | | | | GBW | Unity Gain-Bandwidth | R _L = 1k, to V+/2 | 80 | | MHz | | φ _m | Phase Margin | R _L = 1k to V ⁺ /2 | 70 | | Deg | | f (-3 dB) | Bandwidth | $R_L = 100\Omega$ to V ⁺ /2, $A_V = +1$ | 200 | | MHz | | | (Notes 9, 10) | $R_L = 100\Omega$ to V ⁺ /2, $A_V = +2$ | 45 | | | | t _r , t _f | Rise and Fall Time | $A_V = +2, R_L = 100\Omega,$ | 8 | | ns | | | (Note 10) | $V_O = 0.2 V_{PP}$ | | | | | T.H.D. | Total Harmonic Distortion | 0.6 V_{PP} Output, $R_L = 150Ω$, | 0.067 | | % | | | | $A_V = +2$, f = 1 MHz | | | | | | | 0.6 V_{PP} Output, R_L = 150Ω, | 0.33 | | | | | | $A_V = +2$, f = 5 MHz | | | | Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. Note 2: Human body model, 1.5 k Ω in series with 100 pF. Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Note 4: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board. Note 5: Typical Values represent the most likely parametric norm. Note 6: All limits are guaranteed by testing or statistical analysis. Note 7: Differential input voltage is measured at $V_S = \pm 15V$. Note 8: Slew rate is the average of the rising and falling slew rates. Note 9: Unity gain operation for \pm 5V and \pm 15V supplies is with a feedback network of 510 Ω and 3 pF in parallel (see the Application Information section). For +5V single supply operation, feedback is a direct short from the output to the inverting input. Note 10: A_V = +2 operation with 2 $k\Omega$ resistors and 2 pF capacitor from summing node to ground. # Typical Performance Characteristics T_A = 25°C, R_L = 1 M Ω . unless otherwise specified # Supply Voltage 5.0 +85°C +25°C -40°C 1.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 V_{SUPPLY} (±V) Supply Current vs www.national.com DS012348-66 # Input Bias Current vs Temperature #### Input Offset Voltage vs Common Mode Voltage @ V_S = ±15V Input Offset Voltage vs Common Mode Voltage @ V_S = ±5V # Short Circuit Current vs Temperature (Sourcing) # Short Circuit Current vs Temperature (Sinking) Output Voltage vs Output Current (I_{SINK}, V_S = ±15V) Output Voltage vs Output Current (I_{SOURCE} , $V_S = \pm 15V$) Output Voltage vs Output Output Voltage vs Output Current (I_{SINK} , $V_S = \pm 5V$) #### Output Voltage vs Output Current (I_{SOURCE}, V_S = +5V) Output Voltage vs Output Current (I_{SINK}, V_S = +5V) **CMRR** vs Frequency #### **PSRR** vs Frequency #### **PSRR** vs Frequency Open Loop Frequency Response # Open Loop Frequency Response Open Loop Frequency Response Unity Gain Frequency vs Supply Voltage # GBWP @ 10 MHz vs Supply Voltage # Large Signal Voltage Gain vs Load, $V_S = \pm 15V$ # Large Signal Voltage Gain vs Load, V_S = ±5V #### Input Voltage Noise vs Frequency #### Input Current Noise vs Frequency #### Input Voltage Noise vs Frequency #### Input Current Noise vs Frequency #### Slew Rate vs Supply Voltage #### Slew Rate vs Input Voltage # $\textbf{Typical Performance Characteristics} \ \ \textbf{T}_{A} \text{= } 25^{\circ}\textbf{C}, \ \textbf{R}_{L} \text{= } 1 \ \textbf{M}\Omega. \ \text{unless otherwise specified (Continued)}$ Slew Rate vs Input Voltage Slew Rate vs Load Capacitance Large Signal Pulse Response, $A_V = -1$, $V_S = \pm 15V$ Large Signal Pulse Response, $A_V = -1$, $V_S = \pm 5V$ Large Signal Pulse Response, $A_V = -1$, $V_S = +5V$ Large Signal Pulse Response, $A_V = +1$, $V_S = \pm 15V$ Large Signal Pulse Response, Large Signal Pulse Response, $A_V = +1$, $V_S = +5V$ Large Signal Pulse Response, $A_V = +2$, $V_S = \pm 15V$ # $\textbf{Typical Performance Characteristics} \ \ \textbf{T}_{A} = 25^{\circ}\textbf{C}, \ \textbf{R}_{L} = 1 \ \textbf{M}\Omega. \ \ \text{unless otherwise specified (Continued)}$ Large Signal Pulse Response, $A_V = +2, V_S = \pm 5V$ Large Signal Pulse Response, $A_V = +2, V_S = +5V$ Small Signal Pulse Response, # Small Signal Pulse Response, ${\bf A_V}$ = -1, ${\bf V_S}$ = ±5V, ${\bf R_L}$ = 100 Ω Small Signal Pulse Response, $A_V = -1$, $V_S = +5V$, Small Signal Pulse Response, $A_V = +1, V_S = \pm 15V,$ Small Signal Pulse Response, A $_{V}$ = +1, V $_{S}$ = ±5V, R $_{L}$ = 100 Ω $$R_L = 100\Omega$$ Small Signal Pulse Response, $A_V = +1, V_S = +5V,$ $R_L = 100\Omega$ Small Signal Pulse Response, $A_V = +2, V_S = \pm 15V,$ $R_L = 100\Omega$ Small Signal Pulse Response, A_V = +2, V_S = ±5V, R_L = 100 Ω Small Signal Pulse Response, A_V = +2, V_S = +5V, R_L = 100 Ω Closed Loop Frequency Response vs Temperature $V_S = \pm 15V$, $A_V = +1$, $R_L = 100\Omega$ Closed Loop Frequency Response vs Temperature $V_S = \pm 5V$, $A_V = +1$, $R_L = 100\Omega$ Closed Loop Frequency Response vs Temperature V_S = +5V, A_V = +1, R_L = 100 Ω Closed Loop Frequency Response vs Temperature $V_S = \pm 15V$, $A_V = +2$, $R_L = 100\Omega$ Closed Loop Frequency Response vs Temperature $V_S = \pm 5V$, $A_V = +2$, $R_L = 100\Omega$ Closed Loop Frequency Response vs Temperature $V_S = +5V$, $A_V = +2$, $R_L = 100\Omega$ Closed Loop Frequency Response vs Capacitive Load ($A_V = +1$, $V_S = \pm 15V$) #### Closed Loop Frequency Response vs Capacitive Load (A_V = +1, V_S = ±5V) #### Closed Loop Frequency Response vs Capacitive Load (A_V = +2, V_S = ±15V) Closed Loop Frequency Response vs Capacitive Load ($A_V = +2$, $V_S = \pm 5V$) # Total Harmonic Distortion vs Frequency # Total Harmonic Distortion vs Frequency Total Harmonic Distortion vs Frequency # Total Harmonic Distortion vs Frequency # Undistorted Output Swing vs Frequency # Undistorted Output Swing vs Frequency # Undistorted Output Swing vs Frequency # **Application Information** The table below, depicts the maximum operating supply voltage for each package type: TABLE 1. Maximum Supply Voltage Values | | SOT23-5 | SO-8 | |---------------|---------|------| | Single Supply | 10V | 30V | | Dual Supplies | ±5V | ±15V | Stable unity gain operation is possible with supply voltage of 5V for all capacitive loads. This allows the possibility of using the device in portable applications with low supply voltages with minimum components around it. Above a supply voltage of 6V (±3V Dual supplies), an additional resistor and capacitor (shown below) should be placed in the feedback path to achieve stability at unity gain over the full temperature range. FIGURE 1. Typical Circuit for A_V = +1 Operation ($V_S \ge 6V$) The package power dissipation should be taken into account when operating at high ambient temperatures and/or high power dissipative conditions. Refer to the power derating curves in the data sheet for each type of package. # Total Power Dissipation vs Ambient Temperature In determining maximum operable temperature of the device, make sure the total power dissipation of the device is considered; this includes the power dissipated in the device with a load connected to the output as well as the nominal dissipation of the op amp. The device is capable of tolerating momentary short circits from its output to ground but prolonged operation in this mode will damage the device, if the maximum allowed junction temperation is exceeded. #### **APPLICATION CIRCUITS** #### **Current Boost Circuit** The circuit in Figure 2 can be used to achieve good linearity along with high output current capability. FIGURE 2. Simple Circuit to Improve Linearity and Output Drive Current By proper choice of R_3 , the LM7121 output can be set to supply a minimal amount of current, thereby improving its output linearity. R₃ can be adjusted to allow for different loads: $$R_3 = 0.1 R_L$$ The circuit above has been set for a load of 100Ω . Reasonable speeds (<30 ns rise and fall times) can be expected up to 120 mA $_{\rm PP}$ of load current (see $\it Figure~3$ for step response across the load). # Application Information (Continued) FIGURE 3. Waveform across a 100 $\!\Omega$ Load It is very important to keep the lead lengths to a minimum and to provide a low impedance current path by using a ground-plane on the board. **Caution:** If R_L is removed, the current balance at the output of LM7121 would be disturbed and it would have to supply the full amount of load current. This might damage the part if power dissipation limit is exceeded. #### Color Video on Twisted Pairs Using Single Supply The circuit shown in *Figure 4* can be used to drive in excess of 25 meters length of twisted pair cable with no loss of resolution or picture definition when driving a NTSC monitor at the load end #### Application Information (Continued) #### Note: Pin numbers shown are for SO-8 package. *Input termination of NTSC monitor. # FIGURE 4. Single Supply Differential Twister Pair Cable Transmitter/Receiver 8.5V \leq $V_{CC} \leq$ 30V Differential Gain and Differential Phase errors measured at the load are less than 1% and 1° respectively. R_G and C_C can be adjusted for various cable lengths to compensate for the line losses and for proper response at the output. Values shown correspond to a twisted pair cable length of 25 meters with about 3 turns/inch (see *Figure 5* for sten response) The supply voltage can vary from 8.5V up to 30V with the output rise and fall times under 12 ns. With the component values shown, the overall gain from the input to the output is about 1. Even though the transmission line is not terminated in its nominal characteristic impedance of about $600\Omega,$ the resulting reflection at the load is only about 5% of the total signal and in most cases can be neglected. Using 75Ω termination instead, has the advantage of operating at a low impedance and results in a higher realizable bandwidth and signal fidelity. # Application Information (Continued) FIGURE 5. Step Response to a 1 ${\rm V_{PP}}$ Input Signal Measured across the 75 $\!\Omega$ Load (a) $A_V = -1$ $$C_C$$ = 2 pF for R_L = 100 Ω C_C = Open for R_L = Open (c) $A_V = +2$, Capacitive Load $$\begin{aligned} &\mathsf{R_F} = 0\Omega,\, \mathsf{C_C} = \mathsf{Open}\;\mathsf{for}\;\mathsf{V_S} < \mathsf{6V}\\ &\mathsf{R_F} = \mathsf{510\Omega},\, \mathsf{C_C} = \mathsf{3}\;\mathsf{pF}\;\mathsf{for}\;\mathsf{V_S} \geq \mathsf{6V} \end{aligned}$$ (d) $$A_V = +1$$ (e) A_V = +1, V_S = +5V, Single Supply Operation FIGURE 6. Application Test Circuits #### Physical Dimensions inches (millimeters) unless otherwise noted 8-Lead (0.150" Wide) Small Outline Package, JEDEC Order Number LM7121IM or LM7121IMX NS Package Number M08A #### Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 5-Lead Molded SOT23-5 Order Number LM7121IM5 or LM7121IM5X NS Package Number MA05A #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe Fax: 449 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: 449 (0) 1 80-530 85 85 English Tel: 449 (0) 1 80-532 78 32 Français Tel: 449 (0) 1 80-532 93 58 Italiano Tel: 449 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | Applications | |----------|--------------| |----------|--------------| Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID <u>www.ti-rfid.com</u> OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated