LMX3162 Single Chip Radio Transceiver

Literature Number: SNOS416

LMX3162 Single Chip Radio Transceiver

General Description

The LMX3162 Single Chip Radio Transceiver is a monolithic, integrated radio transceiver optimized for use in ISM 2.45 GHz wireless systems. It is fabricated using National's ABiC V BiCMOS process ($f_T = 18$ GHz).

The LMX3162 contains phase locked loop (PLL), transmit and receive functions. The 1.3 GHz PLL is shared between transmit and receive sections. The transmitter includes a frequency doubler, and a high frequency buffer. The receiver consists of a 2.5 GHz low noise mixer, an intermediate frequency (IF) amplifier, a high gain limiting amplifier, a frequency discriminator, a received signal strength indicator (RSSI), and an analog DC compensation loop. The PLL, doubler, and buffers can be used to implement open loop modulation along with an external VCO and loop filter. The circuit features on-chip voltage regulation to allow supply voltages ranging from 3.0V to 5.5V. Two additional voltage regulators provide a stable supply source to external discrete stages in the Tx and Rx chains.

The IF amplifier, high gain limiting amplifier, and discriminator are optimized for 110 MHz operation, with a total IF gain of 85 dB. The single conversion receiver architecture provides a low cost, high performance solution for communications systems. The RSSI output may be used for channel quality monitoring. The Single Chip Radio Transceiver is available in a 48-pin 7mm X 7mm X 1.4mm PQFP surface mount plastic package.

Features

- Single chip solution for ISM 2.45 GHz RF transceiver
- System RF sensitivity to -93 dBm; RSSI sensitivity to -100 dBm
- Two regulated voltage outputs for discrete amplifiers
- High gain (85 dB) intermediate frequency strip
- Allows unregulated 3.0V–5.5V supply voltage
- Power down mode for increased current savings
- System noise figure 6.5 dB (typ)

Applications

- ISM 2.45 GHz frequency band wireless systems
- Personal wireless communications (PCS/PCN)
- Wireless local area networks (WLANs)
- Other wireless communications systems

Block Diagram

MICROWIRE™ is a trademark of National Semiconductor Corporation. TRI-STATE® is a registered trademark of National Semiconductor Corporation

n No.	Pin Name	I/O	Description	
7	Tx V _{REG}	_	Regulated power supply for external PA gain stage.	TxVreg
8	V _{cc}		Power supply for analog sections of PLL and doubler.	
9	GND	—	Ground.	
10	Тх _{оит}	0	Frequency doubler output.	V _{CC} V _{CC} Txout
11	GND		Ground.	
12	V _{CC}	-	Power supply for analog sections of PLL and doubler.	
13	GND	_	Ground.	
14	GND	-	Ground.	
15	f _{IN}		RF Input to PLL and frequency doubler.	
16	CE	I	Chip Enable. Pulling LOW powers down entire chip. Taking CE HIGH powers up the appropriate functional blocks depending on the state of bits F6, F7, F11, and F12 programmed in F-latch. It is necessary to initialize the internal registers once, after the power up reset. The registers' contents are kept even in power-down condition.	
17	V _P	-	Power supply for charge pump.	Vp
18	D _o	0	Charge pump output. For connection to a loop filter for driving the input of an external VCO.	
19	V _{cc}	-	Power supply for CMOS section of PLL and ESD bussing.	
20	GND	1_	Ground.	

in No.	Pin Name	I/O	Description	
21	OUT 0	0	Programmable CMOS output. Refer to Function Register Programming Description section for details.	
22	Rx PD/OUT 1	I/O	Receiver power down control input or programmable CMOS output. Refer to Function Register Programming Description section for details.	Rx PD/Out1
23	Tx PD/OUT 2	I/O	Transmitter power down control input or programmable CMOS output. Refer to Function Register Programming Description section for details.	
24	PLL PD	I	PLL power down control input. LOW for PLL normal operations, and HIGH for PLL power saving.	v _{cc}
25	CLOCK	I	MICROWIRE [™] clock input. High impedance CMOS input with Schmitt Trigger.	
26	DATA	I	MICROWIRE data input. High impedance CMOS input with Schmitt Trigger.	
27	LE	1	MICROWIRE load enable input. High impedance CMOS input with Schmitt Trigger.	<u> </u>
	OSC _{IN}		Oscillator input. High impedance CMOS input with feedback.	
29	S FIELD	1	DC compensation circuit enable. While LOW, the DC compensation circuit is enabled and the threshold is updated through the DC compensation loop. While HIGH, the switch is opened, and the comparator threshold is held by the external capacitor.	S_field
30	RSSI _{OUT}	0	Received signal strength indicator (RSSI) output.	
31	THRESH	0	Threshold level to external comparator.	

	Pin Name	I/O	Description	
32	DC COMP _{IN}	I	Input to DC compensation circuit.	
33	DISC _{OUT}	0	Demodulated output of discriminator.	
34	GND	-	Ground.	
35	V _{CC}	1-	Power supply for the discriminator circuit.	
36	QUAD _{IN}	Ι	Quadrature input for tank circuit.	Quadin = From limiter
37	V _{cc}	_	Power supply for limiter output stage.	
38	GND	—	Ground.	
39	V _{cc}	-	Power supply for limiter gain stages.	
40	GND	-	Ground.	
41	V _{cc}	-	Power supply for IF amplifier gain stages.	
42	LIM _{IN}	I	IF input to the limiter.	V _{CC} LIMin
43	GND	—	Ground.	
44	ΙF _{Ουτ}	0	IF output from IF amplifier.	TVcc TVcc TVcc IFout
45	V _{CC}		Power supply for IF amplifier output.	
	GND	_	Ground.	

Pin No.	Pin Name	I/O	Description	
47	IF _{IN}	1	IF input to IF amplifier.	
48	Rx V _{REG}		Regulated power supply for external LNA stages.	V _{CC} PwdnRcc RxVreg

Absolute Maximum Ratings (Notes 1, 2)

Power Supply Voltage (V _{CC}) V _P	-0.3V to +6.5V -0.3V to +6.5V
Voltage on Any Pin with	
$GND = 0V (V_1)$	-0.3V to V _{CC} +0.3V
Storage Temperature Range (T _S)	–65°C to +150°C
Lead Temp. (solder, 4 sec)(T_L)	+260°C

Recommended Operating Conditions

Operating Temperature (T_A)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics section. The guaranteed specifications apply only for the test conditions listed.

Note 2: This device is a high performance RF integrated circuit with an ESD rating < KeV and is ESD sensitive. Handling and assembly of this device should only be done at ESD work stations.

Electrical Characteristics

The following specifications are guaranteed for V_{CC} = 3.6V and T_A = 25°C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
	Current Consumption							
I _{CC, RX}	-Open-Loop Receive Mode	PLL & TX chain powered down		50	65	mA		
I _{CC, TX}	-Open-Loop Transmit Mode	PLL & RX chain powered down	—	27	40	mA		
I _{CC, PLL}	-PLL only Mode	RX & TX chain powered down	- 1	6	9	mA		
I _{PD}	-Power Down Mode			_	70	μA		
MIXER		f _{RF} = 2.45 GHz, f _{IF} = 110 MHz, f _{LO} = 2340 MHz (f _{IN} = 1170 MHz)						
f _{RF}	RF Frequency Range	(Note 3)	2.4	_	2.5	GHz		
f _{IF}	IF Frequency	(Note 4)	- 1	110	_	MHz		
Z _{IN}	Input Impedance, RF _{IN}		_	12+j6	_	Ω		
Z _{OUT}	Output Impedance, Mixer Out			160–j65	_	Ω		
NF	Noise Figure (Single Side Band)	(Notes 5, 6)	_	11.8	16	dB		
G	Conversion Gain	(Note 5)	13	17	_	dB		
P _{1dB}	Input 1dB Compression Point	(Note 5)	- 1	-20	_	dBm		
OIP3	Output 3rd Order Intercept Point	(Note 5)		7.5	_	dBm		
F _{IN} -RF	Fin to RF Isolation	F _{IN} =1170 MHz, RFOUT=1170 MHz		-30	_	dB		
		F _{IN} =1170 MHz, RFOUT=2340 MHz	- 1	-20	_	dB		
		F _{IN} =1170 MHz, RFOUT=3510 MHz	_	-30	_	dB		
F _{IN} -IF	Fin to IF Isolation	F _{IN} =1170 MHz, IF _{OUT} =1170 MHz	_	-30	_	dB		
		F _{IN} =1170 MHz, IF _{OUT} =2340 MHz		-30	_	dB		
		F _{IN} =1170 MHz, IF _{OUT} =3510 MHz		-30	_	dB		
RF–IF	RF to IF Isolation	P _{IN} =0 to -85 dB	—	-30	_	dB		
IF AMPL	IFIER	f _{IN} = 110 MHz						
NF	Noise Figure	(Note 7)		8	11	dB		
A _V	Gain	(Note 7)	15	24	_	dB		
Z _{IN}	Input Impedance			35–j180	_	Ω		
Z _{OUT}	Output Impedance		_	210–j50	_	Ω		
IF LIMIT	ER	f _{IN} = 110 MHz	-1	11				
Sens	Limiter/Discriminator Sensitivity	BER=10 ⁻³ (Note 16)		-65	_	dBm		
IF _{IN}	IF Limiter Input Impedance		—	100–j300	_	Ω		
DISCRIM	IINATOR	f _{IN} = 110 MHz	_					
	Disc Gain	1X Mode		10	_	mV/°		
	(mV/° of Phase Shift from Tank Circuit)	3X Mode	- 1	33	_	mV/°		
V _{OUT}	Discriminator Output Peak to Peak	1X Mode (Note 8)	80	160	_	mV		
	Voltage	3X Mode (Note 8)	400	580	_	mV		
V _{os}	Disc. Output DC Voltage	Nominal (Note 10)	1.2	—	1.82	V		
DISCOUT	Disc. Output Impedance		_	300	_	Ω		

Electrical Characteristics (Continued)

RSSI (No	Parameter	Conditions	Min	Тур	Max	Unit
	te 11)	f _{IN} = 110 MHz				
RSSI _{out}	Output Voltage	P _{IN} =-80 dBm@IF _{IN} input pin	0.12	0.2	0.6	V
		P _{IN} =-20 dBm@IF _{IN} input pin	0.9	1.2	_	V
	Slope	P _{IN} = -85 to -25 dBm@IF _{IN} input pin	10	18	25	mV/d
RSSI	Dynamic Range	P _{IN} min= -90 dBm@IF _{IN} input pin	_	60	_	dB
ос сомі	PENSATION CIRCUIT					1
V _{os}	Input Offset Voltage		-6		+6	mV
V _{I/O}	Input/Output Voltage Swing	Centered at 1.5V	_	1.0	_	V _{PP}
R _{SH}	Sample and Hold Resistor		2000	3000	3600	Ω
						1
f _{IN}	Input Frequency Range	(Note 9)	1100		1300	MHz
P _{IN}	Input Signal Level	Z _{IN} =200Ω (Note 15)	_	-11.5	_	dBm
f _{osc}	Oscillator Frequency Range	(Note 12)	5	_	20	MHz
V _{osc}	Oscillator Sensitivity	(Note 12)	0.5	1.0		V _{pp}
Do-source	Charge Pump Output Current	$V_{do} = V_P/2$, $I_{cpo} = LOW$	_	-1.5		mA
Do-source		(Note 14)				
Do-sink		$V_{do} = V_{P}/2$, $I_{cpo} = LOW$	_	1.5	_	mA
Do sint		(Note 14)				
Do-source		$V_{do} = V_{P}/2$, $I_{cpo} = HIGH$	_	-6.0	_	mA
		(Note 14)				
Do-sink		$V_{do} = V_{P}/2$, $I_{CPO} = HIGH$	—	6.0	—	mA
		(Note 14)				
Do-Tri		$0.5 \leq V_{do} \leq V_p - 0.5$	-1.0	_	1.0	nA
		$T_A = 25^{\circ}C$				
FREQUE	NCY DOUBLER(Note 17)	$f_{IN} = 1225 \text{ MHz}, f_{OUT} = 2.45 \text{ GHz}$				
fout	Output Frequency Range	(Note 13)	2250		2500	MHz
P _{OUT}	Output Signal Level	$P_{IN} = -11.5 \text{ dBm}, f_{OUT} = 2.45 \text{ GHz}$	-12	-7.5	—	dBm
	Fundamental Output Power	$P_{IN} = -11.5 \text{ dBm}, f_{OUT} = 1225 \text{ MHz}$	—	-17	-10	dBm
	Harmonic Output Power	$P_{IN} = -11.5 \text{ dBm}, f_{OUT} = 3.675 \text{ GHz}$	—	-30	-15.5	dBm
VOLTAG	E REGULATOR					
Vo	Output Voltage	$I_{LOAD} = 5 \text{ mA}$	2.55	2.75	2.90	V
DIGITAL	INPUT/OUTPUT PINS					
V _{IH}	High Level Input Voltage		2.4	—	—	V
V _{IL}	Low Level Input Voltage		_	_	0.8	V
ін	Input Current	$GND < V_{IN} < V_{CC}$	-10	_	10	μA
V _{он}	High Level Output Voltage	I _{ОН} =-0.5 mA	2.4	_	_	V
V _{OL}	Low Level Output Voltage	I _{QL} =0.5 mA				

Electrical Characteristics (Continued)

Note 15: Tested in a 50Ω environment.

Note 16: The matching network used on pin LIM_{IN} for this measurement consists of a series 330 nH inductance and a shunt 1.8 pF into the pin. Note 17: The optimum load as seen by the TX OUT pin should be between 50 and 100 ohms.

Typical Performance Characteristics

11

Serial Data Input Timing (Continued)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
MICROWIRI	MICROWIRE™ Interface							
t _{cs}	Data to Clock Set Up Time	Refer to Test Condition.	50	_	_	ns		
t _{CH}	Data to Clock Hold Time	Refer to Test Condition.	10	—	_	ns		
t _{CWH}	Clock Pulse Width High	Refer to Test Condition.	50	_	_	ns		
t _{CWL}	Clock Pulse Width Low	Refer to Test Condition.	50	_	_	ns		
t _{ES}	Clock to Load Enable Set Up Time	Refer to Test Condition.	50	_	_	ns		
t _{EW}	Load Enable Pulse Width	Refer to Test Condition.	50	_	_	ns		

PLL Functional Description

The simplified block diagram below shows the building blocks of frequency synthesizer and all internal registers, which are 20-bit data register, 18-bit F-latch, 13-bit N-counter, and 5-bit R-counter.

DS100929-4

The DATA stream is clocked into the data register on the rising edge of CLOCK signal, MSB first. The last two bits are the control bits to indicate which register to be written. Upon the rising edge of the LE (Load Enable) signal, the rest of data bits is transferred to the addressed register accordingly. The decoding scheme of the two control bits is as follows:

Contro	ol Bits	Register
C2	C1	
0	0	N-Counter
1	0	R-Counter
Х	1	F-Latch

Note: X = Don't Care Condition

Programmable Feedback Divider (N-Counter)

The N-counter consists of the 6-bit swallow counter (A-counter) and the 7-bit programmable counter (B-counter). When the control bits are "00", data is transferred from the 20-bit shift register into two latches. One latch sets the A-counter while the other sets the B-counter. The serial data format is shown below.

MSB	REGISTER'S BIT MAPPING											L	LSB						
19	18	17	16	15	14	4 13 12 11 10 9 8 7 6 5 4 3 2									1	0			
	RE	SERVE	ED			N-COUNTER's Divide Ratio						C2	C1						
Х	Х	Х	Х	Х	N13	N12	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1	0	0

Note: X = Don't Care Condition

Swallow Counter Divide Ratio (A-Counter)

Divide Ratio, A	N6	N5	N4	N3	N2	N1
0	0	0	0	0	0	0
1	0	0	0	0	0	1
*	*	*	*	*	*	*
63	1	1	1	1	1	1

Swallow Counter Divide Ratio (A-Counter) (Continued)

Note: Divide ratio must be from 0 to 63, and B must be \ge A.

Programmable Counter Divide Ratio (B-Counter)

Divide Ratio, B	N13	N12	N11	N10	N9	N8	N7
3	0	0	0	0	0	1	1
4	0	0	0	0	1	0	0
*	*	*	*	*	*	*	*
127	1	1	1	1	1	1	1

Note: Divide ratio must be from 3 to 127, and B must be \geq A.

Programmable Reference Divider (R-Counter)

If the control bits are "10", data is transferred from the 20-bit shift register into a latch, which sets the 5-bit R-counter. The serial data format is shown below.

MSB	MSB REGISTER'S BIT MAPPING																LSB		
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED R-COUNTER's Divide Ratio										C2	C1								
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	R5	R4	R3	R2	R1	1	0

Note: X = Don't Care Condition

Reference Counter Divide Ratio (R-Counter)

Divide Ratio, R	R5	R4	R3	R2	R1
3	0	0	0	1	1
4	0	0	1	0	0
*	*	*	*	*	*
31	1	1	1	1	1

Note: Divide ratio must be from 3 to 31.

Pulse Swallow Function

$$f_{vco} = \frac{\left[(P \cdot B) + A \right] \cdot f_{osc}}{R}$$

 f_{vco} : Output frequency of external voltage controlled oscillator (VCO)

B: Preset divide ratio of binary 7-bit programmable counter (3 to 127)

A: Preset divide ratio of binary 6-bit swallow counter ($0 \le A \le P, A \le B$)

f_{OSC}: Output frequency of the external reference frequency oscillator

R: Preset divide ratio of binary 5-bit programmable reference counter (3 to 31)

P: Preset modulus of dual modulus prescaler (32 or 64)

Receiver Functional Description

The simplified block diagram below shows the mixer, IF amplifier, limiter, and discriminator. In addition, the DC compensation circuit, doubler, and voltage regulator for an external LNA stage are shown.

Receiver Functional Description (Continued)

Note 18: The receiver can be powered down, either by hardware through the Rx PD pin, or by software through the programming of F6 bit in the F-Latch. The power down control method is determined by the settings of F11 and F12 in F-Latch. (Refer to Function Register Programming Description section for details.) **Note 19:** The internal capacitor of the discriminator has a value of 1 pF, and has been optimized for operation at 110 MHz.

Transmitter Functional Description

The simplified block diagram below shows the doubler and voltage regulator for an external transmit gain stage.

Note: The transmitter can be powered down, either by hardware through the Tx PD pin, or by software through the programming of F7 bith in F-Latch. The power down control method is determined by the settings of F11 and F12 in F-Latch. (Refer to Function Register Programming Description section for details.)

Function Register Programming Description (F-Latch)

If the control bits are "1X", data is transferred from the 20-bit shift register into the 18-bit F-latch. Serial data format is shown below.

MSB							REGI	STER	'S BIT	MAP	PING								LSB
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	MODE CONTROL WORD										C2	C1							
F18	F17	F16	F15	F14	F13	F12	F11	F10	F9	F8	F7	F6	F5	F4	F3	F2	F1	Х	1

Note: X = Don't Care Condition

Various modes of operation can be programmed with the function register bits F1–F18, including the phase detector polarity, charge pump TRI-STATE and CMOS outputs. In addition, software or hardwire power down modes can be specified with bits F11 and F12.

Function Register Programming Description (F-Latch) (Continued)

Mode Control Bit	Mode Control Description	Setting to "0" to Select	Setting to "1" to Select
F1	Prescaler modules select.	32/33	64/65
F2	Phase detector polarity. It is used to reverse the polarity of the phase detector according to the VCO characteristics.	Negative VCO Characteristics	Positive VCO Characteristics
F3	Charge pump current gain select.	LOW Charge Pump Current (1X I _{cpo}).	HIGH Charge Pump Current (4X I _{cpo}).
F4	TRI-STATE charge pump output.	Normal Operation	Force to TRI-STATE
F5	Reserved. Setting to "0" always.	—	—
F6	Receive chain power down control. Software power down can only be activated when both F11 and F12 are set to "0".	Power Up RX Chain	Power Down RX Chain
F7	Transmit chain power down control. Software power down can only be activated when both F11 and F12 are set to "0".	Power Up TX Chain	Power Down TX Chain
F8	Out 0 CMOS output.	OUT 0 = LOW	OUT 0 = HIGH
F9	Out 1 CMOS output. Functions only in software power down mode, when both F11 and F12 are set to "0".	OUT 1 = LOW	OUT 1 = HIGH
F10	Out 2 CMOS output. Functions only in software power down mode, when both F11 and F12 are set to "0".	OUT 2 = LOW	OUT 2 = HIGH
F11 F12	Power down mode select. Set both F11 and F12 to "0" for software power down mode. Set both F11 and F12 to "1" for hardwire power down mode. Other combinations are reserved for test mode.	Software Power Down	Hardware Power Down
F13	Demodulator gain select	1X Gain Mode	3X Gain Mode
F14	Demodulator DC level shift +/- level shifting polarity	Set Negative Polarity	Set Positive Polarity
F15	Demodulator DC level shift of 1.000V	No Shift	Shift the DC Level by 1.000V
F16	Demodulator DC level shift of 0.500V	No Shift	Shift the DC Level by 0.500V
F17	Demodulator DC level shift of 0.250V	No Shift	Shift the DC Level by 0.250V
F18	Demodulator DC level shift of 0.125V	No Shift	Shift the DC Level by 0.125V

Power Down Mode/Control Table

Software F	Power Down Mode (F	11=F12=0)	Hardwire Power Down Mode (F11=F12=1)						
Pin/Bit	Setting to "0"	Setting to "1"	Pin/Bit	Setting to "0"	Setting to "1"				
	means	means		means	means				
F6	Receiver ON	Receiver OFF	Rx PD	Receiver OFF	Receiver ON				
F7	Transmitter ON	Transmitter OFF	Tx PD	Transmitter OFF	Transmitter ON				
PLL PD	PLL ON	PLL OFF	PLL PD	PLL ON	PLL OFF				
CE	LMX3162 OFF	LMX3162 ON	CE	LMX3162 OFF	LMX3162 ON				

Loop Filter Design Consideration f_{IN} 1/N MAIN DIVIDER CHARGE PUMP PHASE DETECTOR φp LOOP FILTER VCO Do Φ \mathbf{O} RF_{out} Z(s) φr 1/R REFERENCE CRYSTAL DIVIDER REFERENCE Frequency Synthesizer DS100929-8 **FIGURE 1. Conventional PLL Architecture**

Loop Gain Equations

A linear control system model of the phase feedback for a PLL in the locked state is shown in *Figure 2*. The open loop gain is the product of the phase comparator gain (K $_{\phi}$), the VCO gain (K_{vco}/s), and the loop filter gain Z(s) divided by the gain of the feedback counter modulus (N). The passive loop filter configuration used is displayed in *Figure 3*, while the complex impedance of the filter is given in *Equation (2)*.

FIGURE 2. PLL Linear Model

FIGURE 3. Passive Loop Filter

PASSIVE LOOP FILTER

Open loop gain = H(s) G(s) =
$$\theta i/\theta e = K_{\phi} Z(s) K_{VCO}/Ns$$
 (1)

LMX3162

$$Z(s) = \frac{s(C2 \bullet R2) + 1}{s^2(C1 \bullet C2 \bullet R2) + sC1 + sC2}$$
(2)

The time constants which determine the pole and zero frequencies of the filter transfer function can be defined as

$$T1 = R2 \bullet \frac{C1 \bullet C2}{C1 + C2} \tag{3}$$

and

$$T2 = R2 \bullet C2 \tag{4}$$

The 3rd order PLL Open Loop Gain can be calculated in terms of frequency, ω , the filter time constants T1 and T2, and the design constants $K_{\varphi},\,K_{vco},\,and\,N.$

$$G(S) \bullet H(S) \bigg|_{S = j \bullet \omega} \frac{-K_{\phi} \bullet K_{vco}(1 + j\omega \bullet T2)}{\omega^2 C1 \bullet N(1 + j\omega \bullet T1)} \bullet \frac{T1}{T2}$$
(5)

From Equations (3), (4) we can see that the phase term will be dependent on the single pole and zero such that the phase margin is determined in Equation (6).

$$\phi(\omega) = \tan^{-1}(\omega \bullet T2) - \tan^{-1}(\omega \bullet T1) + 180^{\circ}$$
 (6)

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated