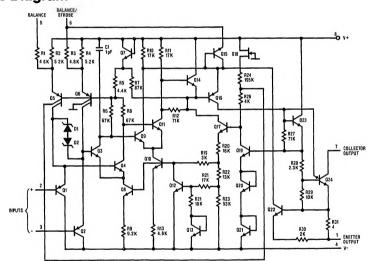


LP311 Voltage Comparator

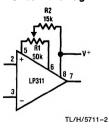

General Description

The LP311 is a low power version of the industry-standard LM311. It takes advantage of stable high-value ion-implanted resistors to perform the same function as an LM311, with a 30:1 reduction in power drain, but only a 6:1 slowdown of response time. Thus the LP311 is well suited for battery-powered applications, and all other applications where fast response is not needed. It operates over a wide range of supply voltages from 36V down to a single 3V supply, with less than 200 μA drain, but it is still capable of driving a 25 mA load. The LP311 is quite easy to apply without any oscillation, if ordinary precautions are taken to minimize stray coupling from the output to either input or to the trim pins. (See the LM311 section of the Linear Databook.)

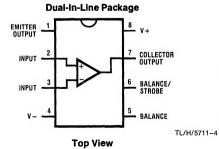
Features

- Low power drain, 900 µW on 5V supply
- Operates from ±15V or a single supply as low as 3V
- Output can drive 25 mA
- Emitter output can swing below negative supply
- Response time: 1.2 µs
- Same pin-out as LM311
- Low input currents: 2 nA of offset, 15 nA of bias
- Large common-mode input range: -14.6V to 13.6V with ±15V supply

Schematic Diagram


TL/H/5711-7

Auxiliary Circuits



Note: Do not ground strobe pin.

Offset Balancing

Connection Diagram

Order Number LP311N See NS Package Number N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Total Supply Voltage } (\mbox{V}_{8-4}) & 36\mbox{V} \\ \mbox{Collector Output to Negative Supply Voltage } (\mbox{V}_{7-4}) & 40\mbox{V} \\ \mbox{Collector Output to Emitter Output} & 40\mbox{V} \\ \mbox{Emitter Output to Negative Supply Voltage } (\mbox{V}_{1-4}) & \pm 30\mbox{V} \\ \mbox{Differential Input Voltage} & \pm 30\mbox{V} \\ \mbox{Input Voltage (Note 1)} & \pm 15\mbox{V} \\ \end{array}$

Power Dissipation (Note 2) 500 mW

Output Short Circuit Duration 10 sec
Operating Temperature Range 0°C to 70°C

Storage Temperature Range -65°C to 150°C

Lead Temperature (Soldering, 10 seconds) 260°C

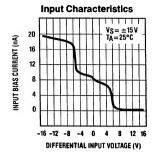
Electrical Characteristics (Note 3)

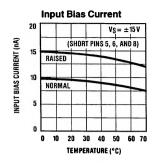
Parameter	Conditions	Min	Тур	Max	Units
Input Offset Voltage (Note 4)	T _A =25°C, R _S ≤100k		2.0	7.5	mV
Input Offset Current (Note 4)	T _A =25°C		2.0	25	nA
Input Bias Current	T _A =25°C		15	100	nA
Voltage Gain	$T_A = 25^{\circ}C, R_L = 5k$	40	200		V/mV
Response Time (Note 5)	T _A =25°C		1.2		μs
Saturation Voltage (Note 6)	$V_{IN} \le -10 \text{ mV}, I_{OUT} = 25 \text{ mA}$ $T_{A=25^{\circ}C}$		0.4	1.5	٧
Strobe Current (Note 7)	T _A =25°C	100	200	300	μΑ
Output Leakage Current	$V_{IN} \ge 10 \text{ mV}, V_{OUT} = 35V$ $T_A = 25^{\circ}\text{C}$		0.2	100	nA
Input Offset Voltage (Note 4)	R _S ≤100k			10	mV
Input Offset Current (Note 4)				35	nA
Input Bias Current				150	nA
Input Voltage Range		V-+0.5	+ 13.7, -14.7	V+-1.5	V
Saturation Voltage (Note 6)	$V^{+} \ge 4.5V, V^{-} = 0V$ $V_{IN} \le -10 \text{ mV}, I_{SINK} \le 1.6 \text{ mA}$		0.1	0.4	٧
Positive Supply Current	T _A =25°C, Output on		150	300	μА
Negative Supply Current	T _A =25°C		80	180	μА
Minimum Operating Voltage	T _A =25°C		3.0	3.5	V

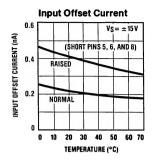
Note 1: This rating applies for ± 15V supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply, whichever is less.

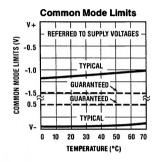
Note 2: The maximum junction temperature of the LP311 is 85°C. For operating at elevated temperatures, devices in the dual-in-line package must be derated based on a thermal resistance of 160°C/W, junction to ambient.

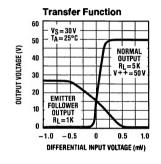
Note 3: These specifications apply for V_S = ± 15V and 0°C≤T_A≤70°C, unless otherwise specified. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 4V supply up to ±15V supplies.

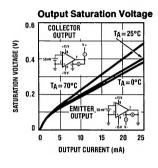

Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and input impedance.

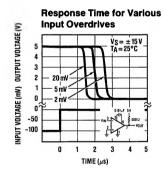

Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.

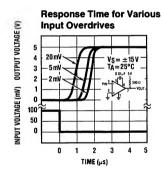

Note 6: Saturation voltage specification applied to collector-emitter voltage (V7-1) for V_{COLLECTOR} ≤ (V⁺ - 3V).

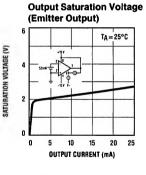

Note 7: Do not short the strobe pin to ground. It should be current driven, 100 μA to 300 μA .

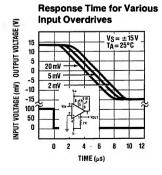

Typical Performance Characteristics

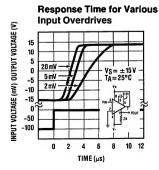


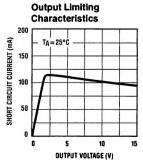


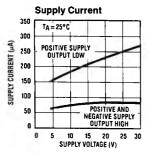


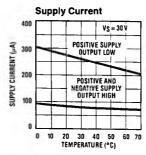


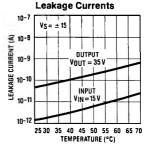












TL/H/5711-5

Typical Performance Characteristics (Continued)

TL/H/5711-6