

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

LV0221CS-

Monolithic Linear IC For Optical Pickups Front Monitor OE-IC

Overview

The LV0221CS is a front monitor optoelectronic IC for optical pickups that has a built-in photo diode compatible with three waveforms. LV0221CS is small size and type CSP packages.

Functions

- PIN photodiode compatible with three wavelengths incorporated.
- Gain adjustment (-6dB to +6dB in 256 steps) through serial communication.
- Amplifier to amplify differential output.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC}		6	V
Allowable power dissipation	Pd1	Glass epoxy one-side substrate 55mm × 45mm × 0.8mm Copper foil area (about 80%), Ta=75°C	136	mW
	Pd2	Glass epoxy one-side substrate $55mm \times 45mm \times 0.8mm$ Copper foil area (head: about 85% Tail: about 90%), Ta=75°C	100	mW
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-40 to +100	°C

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol Conditions	Qualities		1.1-14		
		min	typ	max	Unit	
Operating supply voltage	V _{CC}		4.5	5	5.5	V
Output load capacitance	CO		12	20	33	pF
Output load resistance	z _O		3			kΩ

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. http://www.sanyosemi.com/en/network/

LV0221CS

Electrical Characteristics at Ta = 25°C, V_{CC} = 5V, RL=6k Ω , CL=20pF

Parameter	Symbol	Conditions		Unit		
	Cymbol		min	typ	max	Onic
Current dissipation	ICC			18	23.4	mA
Sleep current	Islp				1	mA
Output voltage when shielded	VC	At shielding	1.8	2.0	2.2	V
Output offset voltage	Vofs	At shielding, voltage between VOP-VON	-30	0	30	mV
Temperature dependence of offset voltage *1	Vofs	Ta=-10 to +85°C	-60	0	60	μV/°C
Optical output voltage *1	VLC	Low Gain, λ=780nm, G=0dB	0.21	0.262	0.31	mV/μV
Voltage between VOP-VON	VLD	Low Gain, λ =650nm, G=0dB	0.22	0.275	0.33	mV/μV
	VLB	Low Gain, λ=405nm, G=0dB	0.14	0.172	0.21	mV/μV
	VMC	Middle Gain, λ=780nm, G=0dB	0.66	0.83	0.99	mV/μV
	VMD	Middle Gain, λ=650nm, G=0dB	0.70	0.87	1.05	mV/μV
	VMB	Middle Gain, λ=405nm, G=0dB	0.43	0.54	0.65	mV/μV
	VHC	High Gain, λ=780nm, G=0dB	1.97	2.46	2.95	mV/μV
	VHD	High Gain, λ=650nm, G=0dB	2.07	2.58	3.10	mV/μV
	VHB	High Gain, λ=405nm, G=0dB	1.29	1.62	1.94	mV/μV
Light output voltage adjustment range *1	output voltage adjustment range *1 G G=0dB reference, absolute value of adjustment width			6.0	6.5	dB
D range *1	VoD	Voltage between VOP-VON	1700	2200		mV
Frequency characteristics *1, *2	FcC	-3dB(1MHz reference), λ =780nm Light input = 40 μ W(DC) + 20 μ W(AC)	50	75		MHz
	FcD	-3dB(1MHz reference), λ =650nm Light input = 40 μ W(DC) + 20 μ W(AC)	60	85		MHz
	FcB	-3dB(1MHz reference), λ =405nm Light input = 40 μ W(DC) + 20 μ W(AC)	60	85		MHz
Settling time *1	Tset			15		ns
Response time *1	Tr, Tf	Vo=0.9Vp-p, output level 10 to 90% fc=10MHz, duty=50%			10	ns
Overshoot *1	Ovst	Vo=0.9Vp-p			15	%
Undershoot *1	Unst	Vo=0.9Vp-p			15	%
Linearity *1	Lin	At output voltage 0.5V and 1.0V (Between VOP-VON)	-1	0	1	%
Light-output voltage temperature dependence	тс	λ=780nm, 25°C reference	10	13	16	%
Voltage between VOP-VON *1, *3	TD	λ=650nm, 25°C reference	0	3	6	%
	ТВ	λ=405nm, 25°C reference	0	3	6	%
Light-output voltage spectral sensitivity	Vf	λ=785nm ±10nm	-0.8		0.1	%/nm
Voltage between VOP-VON *1		λ =660nm ±10nm	-0.4		0.4	%/nm
		λ =405nm \pm 10nm	0		1.2	%/nm
Step-step voltage ratio *1	DG	(Vn-Vn-1) / Vn *100 *4 Deviation from the ideal curve of above equation	-3	0	3	%

Item with *1 mark indicate the design reference value.

Item with *2 mark indicate the frequency characteristics when VOP and VON are applied individually.

The frequency characteristics are for the case of High / Middle / Low gain and for the case when the output voltage adjustment range is -6 to +6dB Item with *3 mark indicates the temperature dependence for the case of High / Middle / Low gain and for the case when the temperature is 25 to 85°C for the output voltage adjustment range of -6 to +6dB

Vn in Item with *4 mark is Vn = (sensitivity / 2) \times 5400 / (5400-16 \times GCAstep) \times light intensity (µW)

GCA = Gain Control Amplifier

Package Dimensions

unit : mm (typ)

Pin Assignment

Pin No.	Pin name	Function
1A	SDIO	Serial communication Data pin
1B	VOP	Positive side output pin
1C	VON	Negative side output pin
2A	SCLK	Serial communication Clock pin
2C	SSEL	Register selection pin
		SSEL = Low, Open : Address 00 to 0Fh used
		SSEL = High : Address 10 to 1Fh used
ЗA	SEN	Serial communication Enable pin
3B	GND	GND pin
3C	Vcc	Power supply voltage pin

PD assignment

*PD size for reference to be used for design

Block diagram and Test circuit diagram

Resister table

Enable selection of the register group from the SSEL pin.

SSEL = Low, Open

	Address	7	6	5	4	3	2	1	0			
Name		POWER		IV GA	IV GAIN SEL		GAIN SEL					
Default		00		(00		00		х			
Value	00h	11: Po	ower on	00 01	00 01: High		1: BD					
		00 01 1	00 01 10: Sleep		10: Middle		10: DVD					
				11:	Low	11:	CD					
Name			BD GAIN									
Default	01h	1	1	1	1	1	1	1	1			
Value			00000000 to 1111111									
Name					DVD	GAIN						
Default	02h	1	1	1	1	1	1	1	1			
Value] [00000000 t	o 11111111						
Name					CD (GAIN						
Default	03h	1	1	1	1	1	1	1	1			
Value] [00000000 t	o 11111111						
Name	0Eh				TEST	⁻ 1 (*1)						
Name	0Fh	TEST2 (*1)										

SSEL = High

	Address	7	6	5	4	3	2	1	0		
Name		POWER 00		IV GAIN SEL 00		GAIN SEL 00					
Default] [x	х		
Value	10h	11: Po	wer on	00 01	: High	00 0	1: BD				
		00 01 1	0: Sleep	10: N	liddle	10:	DVD				
				11: Low 11:		CD					
Name			BD GAIN								
Default	11h	1	1	1	1	1	1	1	1		
Value			00000000 to 1111111								
Name					DVD	GAIN					
Default	12h	1	1	1	1	1	1	1	1		
Value					00000000 t	to 11111111					
Name					CD	GAIN					
Default	13h	1	1	1	1	1	1	1	1		
Value					00000000 t	to 11111111					
Name	1Eh	TEST1 (*1)									
Name	1Fh	TEST2 (*1)									

*1 TEST1 and TEST2 are either the time when power is applied or "00000000" is set. Do not attempt to change "00000000" during operation. "000000000" is returned when reading is made.

*2 No problem in terms of operation occurs even when writing is made to the address 04h to 0Dh and 14h to 1Dh. "00000000" is returned when this address is read.

Serial protocol

SDIO pin load / CL=20pF (The table below shows the design reference value.)

Parameter	Symbol	Min.	Тур.	Max.	Unit
SCL clock frequency Write	^f SCL	0		10	MHz
SCL clock frequency Read	^f SCL	0		4	MHz
SDIO data setup time	^t DSU	50			ns
SDIO data hold time	^t DHO	50			ns
SDIO output delay	^t DDLY		10	80	ns
SEN "H" period	^t ENH	1.6			μS
SEN "L" period	^t ENL	200			ns
SCL rise time after SEN rise	^t STA	60			ns
SEN fall time after final SCL rise	^t STO	100			ns
Serial input "H" voltage	VIH	2.4			V
Serial input "L" voltage	V _I L			0.6	V
SDIO output "H" voltage	V _О Н	2.5	2.9	3.3	V
SDIO output "L" voltage	V _O L	0	0.3	0.8	V

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of August, 2010. Specifications and information herein are subject to change without notice.