LV52130A0XA LV52130A4XA

BI-CMOSIC 1 coil Boost DC-DC converter and Inverter Charge Pump

Overview

The LV52130A0XA and LV52130A4XA are dual-output with 1coil boost DC-DC converter and built-in inverter charge pump circuit.

Feature

- 1 coil Dual-outputs
- VOUT1 output (+5V/+5.4V)
- VOUT2 output (-5V/-5.4V)
- Operating Voltage from 2.5V to 5.5V
- Each output voltages adjusted by I2C
 - (I²C disable at standby)
- Synchronous Rectification
- SCP(VOUT1 to gnd / VOUT2 to gnd)
- Standby current dissipation 0.3µA

Typical Applications

LCD / AMOLED panel power supply

Fig.1 Application

* I²C Bus is a trademark of Philips Corporation.

ORDERING INFORMATION

See detailed ordering and shipping information on page 19 of this data sheet.

WLP15 - 0.4mm pitch (1.55mm × 2.15mm, Amax=0.625mm)

Specifications

LV52130A0XA DEFAULT: VOUT1=+5V, VOUT2=-5V MARKING: 130A0 YMXX

LV52130A4XA DEFAULT: VOUT1=+5.4V, VOUT2=–5.4V MARKING: 130A4 YMXX

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VINmax	VIN to GNDs	+6	V
Maximum Pin voltage1	Vpin1max	CN, VOUT2 to GNDs	-6	V
Maximum Pin voltage2	Vpin2max	LX	+7	V
Maximum Pin voltage3	Vpin3max	Other pin to GNDs	+6	V
Allowable power dissipation	Pdmax	Ta=25°C The specified board*1	1	W
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

*1 Mounted on a specified board: 50mm×50mm×1mm (2 layer glass epoxy)

Caution 1) Absolute maximum ratings represent the values which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	V _{IN op}	VIN	2.5 to 5.5	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics

at Ta = 25°C, PVIN=VIN=3.7V VOUT1=5V VOUT2=-5V (Unless otherwise noted)

Description	0 set at			Ratings		Linit	
Parameter	Symbol	Conditions	min	typ	max	Unit	
VIN current							
Standby current dissipation	ICC1	IC disable		0.3		μA	
VBST DCDC Converter							
VBST current limit	ICLBST	LX	0.9	1.2	1.5	А	
VOUT1 LDO							
VOUT1 voltage	VOUT1	Default		5		V	
VOUT1 voltage range	VOUT1	100mVsteps by I2C	4.1		5.7	V	
VOUT1 voltage accuracy	VOUT1		_1		1	%	
VOUT1 dropout voltage	Vdrop	150mA		150		mV	
VOUT1 current	IOUT1	IOUT2=0		200		mA	
VOUT1 line regulation	VLINR1	dVo=1V lo=30mA		0.3		%/V	
VOUT1 load regulation	VLDR1	lo=2mA/150mA		4		mV	
Discharge Resistance 1	RVO1			70		Ω	
Soft-start	tssvo1			0.2		ms	

Continued on next page

	0 set et			Ratings		
Parameter	Symbol Conditions		min	typ	max	Unit
VOUT2 Charge pump						-
VOUT2 voltage	VOUT2	Default		-5		V
VOUT2 voltage range	VOUT2R	100mV steps by I2C	-5.7		-4.1	V
VOUT2 voltage accuracy	VOUT2A		-1		1	%
VOUT2 current	IOUT2	IOUT1=0		100		mA
VOUT2 line regulation	VLINR2	dVo=1V lo=30mA		0.3		%/V
VOUT2 load regulation	VLDR2	lo=2mA/60mA		20		mV
Discharge Resistance 2	RVO2			20		Ω
Soft-start	tssvo2			0.2		ms
OSC						
OSC frequency1	Fosc1	Boost-DCDC	1.48	1.85	2.22	MHz
OSC frequency2	Fosc2	charge pump	0.74	0.925	1.11	MHz
ULVO						
UVLO up	Vuvlo_h	VIN up			2.5	V
UVLO down	Vuvlo_l	VIN down			2.3	V
Control Input						
High level input voltage	VINH	SDA/SCL/EN1/EN2	1.26		VIN	V
Low level input voltage	VINL	SDA/SCL/EN1/EN2	0		0.54	V
Pulldown Resistance	Rpd	EN1/EN2		400		kΩ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Package Dimensions

unit : mm

WLCSP15, 2.15x1.55 CASE 567HY

ISSUE A

BOTTOM VIEW

	MILLIMETERS				
DIM	MIN	MAX			
Α		0.625			
A1	0.16	0.26			
b	0.20	0.30			
D	2.15 BSC				
E	1.55 BSC				
е	0.40	BSC			

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

LV52130A0XA/LV52130A4XA is as follows.

MARKING DIAGRAM Top view

= Device Mark
XX = Assembly lot Code (Tentative)

Block Diagram

Fig.2 Block Diagram

Pin Function

PIN #	Pin Name	Description
A1	EN2	Enable1 input pin
A2	VOUT2	VOUT2 output pin
A3	CN	Flying capacitor connection pin for charge pump
B1	EN1	Enable1 input pin
B2	SCL	I2C clock signal input pin
B3/E1	PGND	Power Ground
C1	VIN	Power supply voltage
C2	SDA	I2C data signal input / output pin
C3	СР	Flying capacitor connection pin for charge pump
D1	LX	Boost converter switching pin
D2	SGND	Signal Ground
D3/E2	VBST	Boost converter direct output pin
E3	VOUT1	VOUT1 output pin

PIN CONNECTIONS

Pd-Max

Mounted on a specified board: 50mm×50mm×1mm (2 layer glass epoxy)

Fig.3 Recommendation Applications

Reference	Description	Manufacturer and Part Number			
	2.2µF, +-10%, 10V, X5R, ceramic	TDK - C1608X5R1A225K			
С	4.7µF, +-10%, 10V, X5R, ceramic	TDK - C1608X5R1A475K			
	10µF, +-10%, 10V, X5R, ceramic	TDK - C1608X5R1A106K			
	2.2μH, 1.1A, 120mΩ, 2.5mm×2.0mm×1.1mm	TDK – MLP2520V2R2ST0S1			
L	4.7μH, 0.8A, 220mΩ, 2.5mm×2.0mm×1.1mm	TDK – MLP2520V4R7ST0S1			

Table . Component List for Typical Characteristics Circuit

BITMAP (I2C control) / I2C disable at standby

	Sub	MSB							LSB
	Address	(7)	(6)	(5)	(4)	(3)	(2)	(1)	(0)
VOUT1	0000 0000	-	-	-	VOUT1	VOUT1	VOUT1	VOUT1	VOUT1
VOUT2	0000 0001	-	-	-	VOUT2	VOUT2	VOUT2	VOUT2	VOUT2
Mode	0000 0011							No use	No use

WRITE: IC Address: 0111110x x=0:Write mode / x=1:inhibition

NOTE: About Sub address "0000 0011"

Prohibit data's setting "0" of DATA (0) and DATA (1).

hita		
bits	VOUT1 [V]	VOUT2 [V]
0	not use	not use
1	4.1	-4.1
2	4.2	-4.2
3	4.3	-4.3
4	4.4	-4.4
5	4.5	-4.5
6	4.6	-4.6
7	4.7	-4.7
8	4.8	-4.8
9	4.9	-4.9
10	5.0*	-5.0*
11	5.1	-5.1
12	5.2	-5.2
13	5.3	-5.3
14	5.4**	-5.4**
15	5.5	-5.5
16	5.6	-5.6
17	5.7	-5.7

* :default = +-5.0V (LV52130A0XA)

** :default = +-5.4V (LV52130A4XA)

Serial Bus Communication Specifications Standard mode

Parameter	symbol	Conditions	min	typ	max	unit
SCL clock frequency	fscl	SCL clock frequency	0	-	100	kHz
Data set up time	ts1	SCL setup time relative to the fall of SDA	4.7	-	-	μs
	ts2	SDA setup time relative to the rise of SCL	250	-	-	μs
	ts3	SCL setup time relative to the rise of SDA	4.0	-	-	μs
Data hold time	th1	SCL data hold time relative to the rise of SDA	4.0	-	-	μs
	th2	SDA hold time relative to the fall of SCL	0	-	-	μs
Pulse width	twL	SCL pulse width for the L period	4.7	-	-	μs
	twH	SCL pulse width for the H period	4.0	-	-	μs
Input waveform	ton	SCL and SDA (input) rise time	-	-	1000	ns
conditions t	tof	SCL and SDA (input) fall time	-	-	300	ns
Bus free time	tbuf	Time between STOP and START conditions	4.7	-	-	μs

High-speed mode

Parameter	Symbol	Conditions	min	typ	max	unit
SCL clock frequency	fscl	SCL clock frequency	0	-	400	kHz
Data setup time	ts1	SCL setup time relative to the fall of SDA	0.6	-	-	μs
	ts2	SDA setup time relative to the rise of SCL	100	-	-	ns
	ts3	SCL setup time relative to the rise of SDA	0.6	-	-	μs
Data hold time	th1	SCL data hold time relative to the rise of SDA	0.6	-	-	μs
	th2	SDA hold time relative to the fall of SCL	0	-	-	μs
Pulse width	twL	SCL pulse width for the L period	1.3	-	-	μs
	twH	SCL pulse width for the H period	0.6	-	-	μs
Input waveform	ton	SCL and SDA (input) rise time	-	-	300	ns
conditions	tof	SCL and SDA (input) fall time	-	-	300	ns
Bus free time	tbuf	Time between STOP and START conditions	1.3	-	-	μs

I²C serial transfer timing conditions

Input waveform condition

I²C control transmission method

In start and stop conditions of the I²C bus, SDA should be kept in the constant state while SCL is "H" as shown below during data transfer.

When data transfer is not made, both SCL and SDA are in the "H" state.

When SCL = SDA="H", change of SDA from "H" to "L" enables the start conditions to start access. When SCL is "H", change of SDA from "L" to "H" enables the stop conditions to stop access.

Data transfer and acknowledgement response

After establishment of start conditions, Data transfer is made by one byte (8 bits). Data transfer enables continuous transfer of any number of bytes. Each time of the 8-bit data is transferred, the ACK signal is sent from the receive side to the send side. The ACK signal is issued when SDA(on the send side) is released and SDA(on the receive side) is set "L" immediately after fall of the clock pulse at the SCL eighth bit of data transfer to "L". When the next 1-byte transfer is left in the receive state after transmission of the ACK signal. Instead, 7-bit slave address is assigned to each device and the first byte of transfer is assigned to the command (R/W) representing the 7-bit slave address and subsequent transfer direction. Note that only WRITE is valid in this IC. The 7-bit address is transferred sequentially from MSB and the eighth bit is "L" representing WRITE.

Input 1data

Input 2data (register address auto Increment)

Detailed Descriptions

The LV52130Ax has dual-output VOUT1 (LDO) and VOUT2 (built-in inverter charge pump) with 1coil boost dc-dc converter. Both outputs are separately controlled by I2C control and pin EN1/EN2. Boost converter is a fixed-frequency pulse width modulated (PWM) regulator. At rated load, each converter operates at continuous conduction mode (CCM). At light loads, both converters can enter in discontinuous conduction mode (DCM). Cycle-by-cycle peak current limit and thermal provide value added features to protect the device.

Inductor Selection

Three different electrical parameters need to be considered when selecting an inductor, the value of the

inductor, the saturation current and the DCR. During normal and heavy load operation, the LV52130Ax is intended to operate in Continuous Conduction Mode (CCM). The equation below can be used to calculate the peak current.

Ipeak_p = lout1 / (n1 x (1- D1)) + (VIN x D1) / 2 x L1 x Fosc1

VIN:battery voltage, IOUT1:load current, L:inductor value, Fosc1: OSC frequency1, D1:duty cycle, n1:converter efficiency varies with load current.

A good approximation is to use $\eta = 0.85$. It is important to ensure that the inductor current rating is high enough such that it not saturate. As the inductor size is reduced, the peak current for a given set of conditions increases along with higher current ripple so it is not possible to deliver maximum output power at lower inductor values. Finally an acceptable DCR must be selected regarding losses in the coil and must be lower than 250 m Ω (typical) to limit excessive voltage drop. In addition, as DCR is reduced, overall efficiency will improve. The inductor value is recommended to use a 4.7 μ H or 2.2 μ H.

POR function

This is "Power On Reset" function to reset internal logic circuits which include SCP's latch. This function can be worked by reducing IC's VIN voltage until about 1V.

Start/Shutdown Sequencing

Enable input (pin EN1/EN2) is used as enable input logic. An active high logic level on this pin enables the device. A built-in pull-down resistor disables the device if the pin is left open. If a high logic signal is applied, the LV52130Ax starts with timing sequence as depicted Figure 4. It must be kept below points in the start/shutdown sequence for stable operation.

- ✓ When Vout set $5.5V \ge VOUT1 / VOUT2 \le -5.5V$, please change to its voltage 45msec later.
- ✓ About shutdown, please send default (5.0V/5.4V) data by IIC before EN=OFF.
- ✓ The each load current of VOUT1 and VOUT2 while startup is only charging current for the each external capacitor (4.7uF).
- ✓ IC needs 55msec waiting time from the EN1 until loading of panel module.
- ✓ Keep each the H/L levels at lease 1msec

(a) EN on simultaneously

Power ON (EN1/EN2:Hi)(*1) Operation after 45ms (Until VOUT1&2 becomes stable)(*2) Data send (5.5V or 5.7V)(*3) #2 Operations to Power OFF Data send (5.0V)(*4) Power OFF (EN1/EN2:Lo)(*5)

(c) In the case of LV52130A0XA-VH

Fig.4 Sequencing Diagram

OCP and SCP function

IC has OCP and SCP function and the behavior is shown in figures below.

(1) OCP limit transition in normal operation

The OCP means "Over Current Protection" and is equipped for preventing excessive inrush current about Vout1. It watches for limit of 150mA during 300usec from ramp up of Vout1, and then changes almost free.

^{(1).} Transition of OCP limit current in start sequence

(2) Heavy load of during ramp up

If vout1 voltage doesn't reach target voltage at the end of time of the 300usec, then IC is doubtful of excessive current load and changes the limit to 25mA. This small current is held until recovery of the Vout1 voltage. By way of example of a case, if high load current like as 25ohm that is bigger than 150mA current capacity of Vout1 comes during ramp up term and after 300usec at Vout1, then IC chooses 25mA mode which is defeated the load. As a result, IC goes to off with latch and requires VIN's re-installation. As it was mentioned in Start/Shutdown Sequencing section above, the 55msec waiting time is needed to avoid the case.

(2). Transition of OCP limit current in start sequence at abnormal case

(3) SCP function

The SCP means "Short Circuit Protection". This is used to protect each Vout when they are connected to the GND. SCP function becomes active when Vout voltage reaches under 60% of its target voltage. Once SCP is activated, the counter begins to count 10msec. If the SCP detection is active for full 10msec, IC then gets shut down and latch. On the other hand, if the Vout voltage is recovered within this 10msec IC will reactivate. This latch is released by dropping VIN.

(3). Transition of OCP limit current in start sequence at shorted circuit to GND case

Startup shutdown sequence summary

When Vout set $5.5V \ge VOUT1 / VOUT2 \le -5.5V$

For start up

- (1) EN1=H;
- (2) 45msec later, send I²C wish data;
- (3) After 50msec from (1), EN2=H;
- (4) 55msec later, start panel load;

- (1) stop panel load
- (2) send I²C data of 0x0A;
- (3) EN1 and EN2 = L;

Note: Need spacing over 1ms until the next EN1=H or EN2=H from "(3) EN1 and EN2=L".

TYPICAL OPERATING CHARACTERISTICS

Efficiency

VOUT1=5V, VOUT2=-5V (lout=VOUT1 to VOUT2) Cvout1=4.7μF, Cvout2=4.7μF, Cbst=4.7μF, Ccp_cn=2.2μF, Cvin=10μF+4.7μF, L=4.7μH

Load Regulation VOUT1

VOUT1=5V, VOUT2=-5V (lout=VOUT1 to VOUT2) Cvout1=4.7µF, Cvout2=4.7µF, Cbst=4.7µF, Ccp_cn=2.2µF, Cvin=10µF+4.7uF, L=4.7µH

Load Regulation VOUT2

VOUT1=5V, VOUT2=-5V (lout=VOUT1 to VOUT2) Cvout1=4.7μF, Cvout2=4.7μF, Cbst=4.7μF, Ccp_cn=2.2μF, Cvin=10μF+4.7μF, L=4.7μH

Efficiency

VOUT1=5.4V, VOUT2=-5.4V (lout=VOUT1 to VOUT2) Cvout1=4.7μF, Cvout2=4.7μF, Cbst=4.7μF, Ccp cn=2.2μF, Cvin=10μF+4.7μF, L=4.7μH

Load Regulation VOUT1

VOUT1=5.4V, VOUT2=-5.4V (lout=VOUT1 to VOUT2) Cvout1=4.7 μ F, Cvout2=4.7 μ F, Cbst=4.7 μ F, Ccp_cn=2.2 μ F, Cvin=10 μ F+4.7 μ F, L=4.7 μ H

Load Regulation VOUT2

VOUT1=5.4V, VOUT2=-5.4V (lout=VOUT1 to VOUT2) Cvout1=4.7 μ F, Cvout2=4.7 μ F, Cbst=4.7 μ F, Ccp_cn=2.2 μ F, Cvin=10 μ F+4.7 μ F, L=4.7 μ H

TYPICAL OPERATING CHARACTERISTICS

Efficiency

VOUT1=5V, VOUT2=-5V (lout=VOUT1 to VOUT2) Cvout1=4.7 μ F, Cvout2=10 μ F, Cbst=10 μ F, Ccp_cn=4.7 μ F, Cvin=10 μ F+4.7 μ F, L=2.2 μ H

Load Regulation VOUT1 VOUT1=5V, VOUT2=-5V (lout=VOUT1 to VOUT2) Cvout1=4.7µF, Cvout2=10µF, Cbst=10µF, Ccp_cn=4.7µF, Cvin=10µF+4.7µF, L=2.2µH

Load Regulation VOUT2

VOUT1=5V, VOUT2=-5V (lout=VOUT1 to VOUT2) Cvout1=4.7µF, Cvout2=10µF, Cbst=10µF, Ccp_cn=4.7µF, Cvin=10µF+4.7µF, L=2.2µH

Efficiency

VOUT1=5.4V, VOUT2=-5.4V (lout=VOUT1 to VOUT2) Cvout1=4.7μF, Cvout2=10μF, Cbst=10μF, Ccp cn=4.7μF, Cvin=10μF+4.7μF, L=4.7μH

Load Regulation VOUT1

VOUT1=5.4V, VOUT2=-5.4V (lout=VOUT1 to VOUT2) Cvout1=4.7μF, Cvout2=10μF, Cbst=10μF, Ccp_cn=4.7μF, Cvin=10μF+4.7μF, L=4.7μH

Load Regulation VOUT2

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV52130A0XA-VH	WLP15 (1.55×2.15) (Pb-Free)	4000 / Tape & Reel
LV52130A4XA-VH	WLP15 (1.55×2.15) (Pb-Free)	4000 / Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC modults for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent reg