
RMC2 Datasheet Document DL0xxx-01 1

RAMBUS

Preliminary Information
Direct Rambus™ Memory Controller (RMC2)

Overview
RMC2 is referred to as a “constraint-based” memory
controller. That is, it explicitly models all the logical and
physical constraints on the operation of a Rambus
memory system.

To simplify the RMC2 design, logical constraints (e.g. a
bank can’t be activated unless all neighbor banks are
precharged) are considered separately from timing (e.g. a
bank can’t be activated until tRP after it is precharged)
and retire (e.g. following a write, that word can’t be read
until the write data has been transferred to the DRAM
core) constraints.

Logical constraints are tracked by the Protocol Module
(PM), which receives transaction requests from the Bus
Interface Unit, and requests all the Row and Column
packets necessary to implement the requested transac-
tion, in the correct logical order. Timing and retire
constraints are tracked by the Constraint Module (CM),
which receives the packet requests from the PM and
outputs the formatted packets to the RAC when all
timing and retire constraints are satisfied.

Within the PM there is a separate Service Protocol Unit
(SPU) for each outstanding transaction and within the
CM there is a separate Constraint Timer for each packet
whose timing constraints have not all been satisfied .

Figure 1: RMC2 Block Diagram

Features
■ RTL coding style

■ Closed and open page policy support

■ Optimized support for 16 byte transfers

■ Optimized support for variable burst length
requests

■ Handles all RDRAM protocol, housekeeping func-
tions

■ Synchronous operation to system clock frequencies
to 200 Mhz

■ Interfaces directly to Rambus ASIC I/O Cell (RAC)

Related Documentation
Data sheets for the Rambus memory system compo-
nents, including the Rambus DRAMs, RIMM Module
and Rambus ASIC Cell (RAC) are available on the
Rambus web site at http://www.rambus.com.

A
[3

1:
4]

Protocol Module (PM)

L
[5

:0
]

O
p[

3:
0]

M
[1

5:
0]

G
et

C
T

Q
G

W
St

b

Constraint Module (CM)

W
[1

43
:0

]

R
[1

43
:0

]
T

D
at

aA
[7

1:
0]

T
D

at
aQ

[6
3:

0]

T
D

at
aB

[7
1:

0]

R
D

at
aA

[7
1:

0]
R

D
at

aB
[7

1:
0]

Maintenance

R
ef

R
dy

[4
:0

]

C
C

R
dy

[2
:0

]

C
R

R
dy

St
ar

t

R
R

eq

C
C

tlE
nO

ut

C
C

tlL
dO

ut

R
rd

y

W
rd

y

S
C

R
dy

Module
(MM)

Config[127:0]

C
R

eq

M
R

eq

R
A

ck

C
A

ck

M
A

ck

Reset

St
op

R
D

St
op

T
D

Bus Interface Unit (BIU)

P
C

lk

S
PU

St
ar

t

S
PU

R
dy

M
as

k[
15

:0
]

T
Q

E
n

PClkEn
T

Q
Se

l

T
D

Se
l

R
D

S
el

SC
R

A
C

O
ut

PClk

PClr

R
St

b

R
ef

B
nk

C
C

D
ev

RefAck

CCAck

CRAck

SCAck

®

Page 2 Last Modified on 7/13/0 1

 RMC2 Datasheet

General Description
Some of the features of the RMC2 are:

1. It generally provides the optimal Channel bandwidth for
any sequence of transaction requests possible without re-
ordering packets between transactions. Transactions are ser-
viced in-order.

2. A new transaction can be accepted and a new transaction
started on the Channel every ASIC clock (PClk).

3. Up to seven transactions may be outstanding at a time
(default). This provides optimal bandwidth for closed-page
operation and is derived from tRC/tPACKET = 7 for -40 or -45
RDRAM spec and represents the largest number of closed-
page transactions that can be outstanding on the Channel.
Each outstanding transaction requires one SPU. The number
of outstanding transactions allowed is a parameter than may
be modified for each application to minimize the amount of
logic; for example the number of outstanding transactions
may be raised to 8 for -50 RDRAMs (where
tRC/tPACKET = 8), or the number of outstanding transactions
may be lowered if the ASIC can’t generate that many out-
standing memory transactions.

4. The RMC2 will not close a page if another outstanding
transaction is addressing the same page, even if closed-page
policy is selected. For example, a read access to a closed-
page bank requires an ACT–RD–[RD–...]–PREX sequence.

But if during the transaction another transaction to the same
page is received (i.e. a page hit), the SPU for the first trans-
action will skip the PREX packet and the SPU for the second
transaction will skip the ACT packet.

5. tRCD and tCAC timings are adjustable with tCYCLE granu-

larity.

6. RMC2 initially supports closed-page policy, open-page
mode will be added.

7. RDRAM and RAC Standby modes are supported. In
closed-page mode RDRAMs will be relaxed (placed into
Standby mode), but in open-page mode RDRAMs will be
kept in Attention mode to reduce CAS latency.

8. RDRAM Nap and Powerdown packets are supported.

9. It supports three RDRAM regions (all RDRAMs in a
region have the same number of banks, number of
rows/bank, page size, bank type (doubled or independent)
and split core or not). RMC2 only supported two regions,
but RMC2 supports three because the Channel supports up
to three RIMMs so it is reasonable to support three regions

10. Wherever possible, features may be stripped out of the
RTL code using Verilog ‘define’ directives and the associ-
ated logic will not be synthesized.

Port Descriptions.

Table 1: Host Interface

Port Type Description

PClk input System clock.

PClr[3:0] input From Gearblk, indicates the phase of SynClk with respect to PClk. This is a one-hot vector, and
4’b0001 indicates the phase where PClk and SynClk rising edges occur simultaneously.

PClkEn output To Init block, disables one in four PClks (4:3 gear ratio), one in three PClks (3:2 gear ratio) or one
in two PClks (2:1 gear ratio). Init block is clocked by PClk, qualifying PClk with PClkEn enables
Init to count SynClk cycles.

Reset input System reset; puts RMC2 in a known initial state; synchronous to PClk.

Start input This port is asserted to request a transaction; it is de-asserted synchronously when GetC is
asserted and there are no more transactions to request.

GetC output This port is asserted in response to Start to accept a transaction. If CfgSyncGetC = 0, GetC may be
asserted in the same PClk cycle as Start is activated, if CfgSyncGetC = 1, GetC is asserted syn-
chronously in the next PClk cycle.

Advance Information Page 3 1

RMC2 Datasheet

Op[3:0] input 4’b1100 = RDL: Read (linear address order, 1 to 64 dualocts)
4’b1000 = RDP: Read (Pentium address order, 2 dualocts only)
4’b1101 = WRL: Write (linear address order, 1 to 64 dualocts)
4’b1001 = WRP: Write (Pentium address order, 2 dualocts only)
4’b0010 = REF: RDRAM Refresh
4’b0110 = SCE: RDRAM TCEN
4’b1010 = CC: RDRAM current calibrate
4’b1110 = SCC: RDRAM TCAL and RAC slew rate control
4’b0011 = NAP: RDRAM Nap. A[7:4] is DevID; A[8] = 1 for broadcast.
4’b0111 = PDN: RDRAM Powerdown. A[7:4] is DevID; A[8] = 1 for broadcast
4’b1011 = CR: RAC current calibrate
4’b1111 = NAPC: RDRAM Conditional Nap

L[5:0] input Transaction length, in dualocts; valid when Start is asserted. Transactions may not cross RDRAM
page boundaries, so some combinations of L and A aren’t allowed.

A[31:4] input Address of the first dualoct to be transferred; valid when Start is asserted. Transactions may not
cross RDRAM page boundaries, so some combinations of L and A aren’t allowed.

M[15:0] input Write mask; valid in the same cycle in which W is valid.

W[143:0] input Write data (one dualoct); it is sampled by RMD.d2 on PClk cycles when Wrdy is asserted; W and
M must be valid during these PClk cycles. The next dualoct must be provided the PClk cycle after
Wrdy is asserted, until the last dualoct of write data has been transferred. If ‘define
RDRAM_18_BIT, W is 128 bits.

Wrdy output Write ready; asserted for one PClk cycle to acknowledge write data.

R[143:0] output Read data; valid on PClk cycles when Rrdy is asserted. If ‘define RDRAM_18_BIT, R is 128 bits.

Rrdy output Read ready; asserted for one PClk cycle to indicate read data is valid.

RefRdy[4:0] output RefRdy is decremented each time the refresh interval timer elapses, it is incremented each time a
refresh is performed; range is +15 to -16. The ASIC uses RefRdy to schedule refresh operations.

CCRdy[2:0] output CCRdy is decremented each time the Current Control (CC) interval timer elapses, it is incre-
mented each time a RDRAM CC is performed; range is +3 to -4. The ASIC uses CCRdy to sched-
ule CC operations.

CRRdy output CRRdy is decremented each time the CC interval timer elapses CfgNDev times, and is incre-
mented each time a RAC CC operation is performed, where CfgNDev is usually programmed
with the number of RDRAM devices.

SCRdy output SCRdy is decremented each time the CC interval timer elapses CfgCCPerSRC times, and is incre-
mented each time an RDRAM and RAC Slew Rate Control (SRC) operation is performed, where
CfgCCPerSRC is the programmed number of RDRAM CC operations per SRC.

Table 1: Host Interface

Port Type Description

Page 4 Last Modified on 7/13/0 1

 RMC2 Datasheet

RAC Interface.

Configuration Port

The Configuration Port configures RMC2 for the
intended operating mode. These bits are static during
normal operation; they may be hardwired or driven by
software registers, in the latter case values may be deter-
mined during the initialization process (described
below). Information from the SPD ROM (if RIMMs are
used) or the RDRAM registers may be used to deter-
mine the correct values.

To eliminate synchronization delays, PClk frequency is
an integer ratio of SynClk frequency and the clocks are

phase-locked by the ASIC. Four PClk:SynClk “gear
ratios” are supported: 1:1, 4:3, 3:2 and 2:1, indicated by
the CfgGear field of the Config bus. For example, in 4:3
gear ratio there are four PClk cycles per three SynClk
cycles, so one of every four PClk cycles is skipped. In
3:2 one of every three PClk cycles is skipped, in 2:1 one
of every two PClk cycles is skipped. CfgGear selects the
gear ratio.

CfgGear = 000 and 001 both select 1:1 gear ratio, but 000
is a “low latency” mode where RMC2 inputs generate
ROW packets at RMC2 outputs in the same PClk cycle
(i.e. it is an asynchronous path); this may only be used

Table 2: RAC Interface

Port Type Description

RDataA[71:0] input RAC receive (read) data. RDataA corresponds to R[7:0][8:0] on the Application Interface. If not
‘define RDRAM_18_BIT, RDataA[71, 62, 53, 44, 35, 26, 17, 8] are not used and the associated logic
isn’t synthesized.

RDataB[71:0] input RAC receive (read) data. RDataB corresponds to R[15:8][8:0] on the Application Interface. If not
‘define RDRAM_18_BIT, RDataB[71, 62, 53, 44, 35, 26, 17, 8] are not used and the associated logic
isn’t synthesized.

TDataA[71:0] output RAC transmit (write) data. TDataA corresponds to W[7:0][8:0] on the Application Interface. If not
‘define RDRAM_18_BIT, TDataA[71, 62, 53, 44, 35, 26, 17, 8] are not used and the associated logic
isn’t synthesized.

TDataB[71:0] output RAC transmit (write) data. TDataB corresponds to W[15:8][8:0] on the Application Interface. If
not ‘define RDRAM_18_BIT, TDataA[71, 62, 53, 44, 35, 26, 17, 8] are not used and the associated
logic isn’t synthesized.

TDataQ[63:0] output RAC request (i.e. ROW and COL packet) bus. ROW and COL packets use separate bits of the
TDataQ bus, ROW and COL bits can be viewed separately as shown:

for (i = 7; i >= 0; i = i-1)
for (j = 2; j>= 0; j= j-1)

assign ROW[3*i + j] = TData[8*i + j+5];

for (i = 7; i >= 0; i = i-1)
for (j = 4; j>= 0; j= j-1)

assign COL[5*i + j] = TData[8*i + j]

TQSel output RAC timing select for TDataQ bus.

TDSel output RAC timing select for TDataA and TDataB.

RDSel output RAC timing select for RDataA and RDataB.

StopRD output Stops RAC clock for RDataA and RDataB.

StopTD output Stops RAC clock for TDataA and TDataB.

CCtlEnOut output Used for automatic current calibration of RAC.

CCtlLdOut output Used for automatic current calibration of RAC.

SCRACOut output Used for automatic slew rate control of RAC.

Advance Information Page 5 1

RMC2 Datasheet

for closed page mode and even then it may not be
possible to meet timing constraints for a given process.
CfgGear = 001 adds one register in the path from RMC2
inputs to ROW packet outputs.

If CfgSyncGetC = 1, GetC (the handshaking signal to
acknowledge transaction requests) is asserted synchro-
nously to PClk in response to Start being asserted; the
ASIC must de-assert Start by the next PClk edge. Alter-
natively, if CfgSyncGetC = 0, GetC is asserted asynchro-
nously in response to Start being asserted, and GetC
may be sampled synchronous to PClk by the ASIC; in
this mode, Start must be valid earlier in the PClk cycle,
so most applications use CfgSyncGetC = 1.

Besides selecting open-page vs. closed-page operation,
CfgOpen = 1 also selects the use of ROW packets
(PRER) to precharge banks. CfgOpen = 0 selects auto-
precharge (WRA) for writes and XOP packets (PREX)
for reads to precharge banks, to reduce bandwidth on
the ROW bus. These are beleived to be the optimal
precharge mechanisms for each mode.

In open-page mode, CfgRelax = 1 relaxes each RDRAM
(i.e. puts it in Standby power mode) when its last open
bank is closed; if CfgRelax = 0 the RDRAM is left in
Attention power mode at all times.

CfgRelax has no effect in closed-page mode, when the
RDRAM is always relaxed, unless CfgTrcd = 5, in whch
case the RDRAM is left in Attention at all times because
tRCD < tFRM, which means the RDRAM can’t frame a RD
or WR packet tRCD after an ACT packet. This means one
SynClk would be added to all accesses when

CfgTrcd = 5, which is not acceptable. CfgRelax is not
implemented in the current RMC2.

CfgBackToBackRD = 1 prevents two RD packets being
issued to different RDRAMs without at least tPACKET
time between them. Some three-RIMM systems suffer
reduced voltage margin for back-to-back RD packets if
the first RD is to an RDRAM near the controller and the
second is to the RDRAM at the end of the Channel. This
is a simple mechanism to prevent this situation. Gener-
ally, CfgBackToBackRD = 0.

CfgTrcd, CfgTcac, CfgTrp and CfgToffp have tCYCLE
granularity, while CfgTrasSyn, CfgTrasrefSyn and
CfgTrpSyn have SynClk (4 tCYCLE) granularity. CfgTras-
refSyn and CfgTrprefSyn are similar to CfgTrasSyn and
CfgTrp, respectively, but apply to refresh transactions.
For all current RDRAMs, CfgTrasrefSyn = CfgTrasSyn
and CfgTrprefSyn = ceiling(CfgTrp/4), but future
RDRAMs may incorporate multibank refresh where a
single refresh transaction refreshes two or four banks, in
which case CfgTrasrefSyn and CfgTrprefSyn may be
increased relative to CfgTras and CfgTrp.

There are three RDRAM “regions” called U, V and W.
Within each region all RDRAMs must have the same
numbers of banks, rows and columns, and core organi-
zation (dependent banks and split core). Each of these
paramaters may vary between regions. Regions corre-
spond to RIMMs, which is why three regions are
supported. CfgNDev, CfgDepBnk, CfgSpCore,
Cfg2KBPage, CfgNRowBits and CfgNBnkBits configu-
ration fields are replicated for each of the three regions.

Table 3: Configuration Port

Bits Name Description

2:0 CfgGear[2:0] 3’b000: 1:1 gear ratio (low latency)
3’b001: 1:1 gear ratio (normal)
3’b010: 4:3 gear ratio
3’b011: 3:2 gear ratio
3’b101: 2:1 gear ratio. Other options are reserved.

3 CfgSyncGetC 1’b1: GetC activated PClk cycle after Start is asserted.
1’b0: GetC activated asynchronously in same cycle as Start is asserted.

4 CfgOpen 1’b1: Open-page mode; keep banks open following transactions.
1’b0: Closed-page mode; precharge after each transaction unless another transaction is
already requested to same page and there are no intervening transactions to different
pages in same bank.

5 CfgRelax 1’b1: RDRAM is relaxed when its last open bank is closed.
1’b0: RDRAMs are never relaxed, stay at attention always.

6 CfgBackToBackRD 1’b1: Back-to-back RD packets may be issued to different RDRAMs
1’b0: There must be at least one SynClk between RD packets to different RDRAMs.

Page 6 Last Modified on 7/13/0 1

 RMC2 Datasheet

10:7 CfgTrcd[3:0] 4’b0101: tRCD = 5 tCYCLE
4’b0111: tRCD = 7 tCYCLE
4’b1001: tRCD = 9 tCYCLE
4’b1011: tRCD = 11 tCYCLE
Other values are reserved.

14:11 CfgTcac[3:0] 4’b1000: tCAC = 8 tCYCLE
4’b1001: tCAC = 9 tCYCLE
4’b1010: tCAC = 10 tCYCLE
4’b1011: tCAC = 11 tCYCLE
4’b1100: tCAC = 12 tCYCLE
Other values are reserved.

17:15 CfgTrasSyn[2:0] 3’b100: tRAS = 16 tCYCLE
3’b101: tRAS = 20 tCYCLE
3’b110: tRAS = 24 tCYCLE
3’b111: tRAS = 28 tCYCLE
Other values are reserved.

21:18 CfgTrp[3:0] 4’b0110: tRP = 6 tCYCLE
4’b1000: tRP = 8 tCYCLE
4’b1010: tRP = 10 tCYCLE
4’b1100: tRP = 12 tCYCLE
Other values are reserved.

24:22 CfgToffp[2:0] 3’b100: tOFFP = 4 tCYCLE
3’b101: tOFFP = 5 tCYCLE
3’b110: tOFFP = 6 tCYCLE
3’b111: tOFFP = 7 tCYCLE
Other values are reserved

28:25 CfgTrasrefSyn[3:0] 4’b0100: tRASREF = 16 * tCYCLE
4’b0101: tRASREF = 20 * tCYCLE
4’b0110: tRASREF = 24 * tCYCLE
...
4’b1111: tRASREF = 60* tCYCLE
tRASREF is the interval between REFA and a subsequent REFP packet to the same bank.

31:29 CfgTrprefSyn[2:0] 3’b010: tRPREF = 8 tCYCLE
3’b011: tRPREF = 12 tCYCLE
3’b100: tRPREF = 16 tCYCLE
...
3’b111: tRPREF = 28 tCYCLE
tRPREF is the interval between REFP and subsequent REFA or ACT packets to the same bank.

36:32 CfgMaxDevID[4:0] Largest Device ID for any RDRAM; Device IDs must be contiguous starting with 0 so
CfgMaxDevID equals the number of RDRAMs, minus 1. Tells RMC2 how many
RDRAMs to perform current calibration on. Every CfgMaxDevID + 1 RDRAM CC
transactions, CRRdy is decremented to request a RAC CC cycle.

47:37 CfgRefCnt[10:0] RefCnt resets to 0 and increments every PClk cycle it reaches CfgRefCnt, then it returns
to 0 and RefRdy is decremented.

Table 3: Configuration Port

Bits Name Description

Advance Information Page 7 1

RMC2 Datasheet

50:48 CfgNRefBnkBits[2:0] 3’b010: 4 refresh banks
3’b011: 8 refresh banks
3’b100: 16 refresh banks
3’b101: 32 refresh banks
CfgNRefBnkBits should be set to the least of RefreshBankBits for any of Region U, V, or
W.

57:51 CfgCCCnt[6:0] CCIntCnt[19:0] resets to 0 and increments every PClk cycle. When CCIntCnt[19:13] ==
CfgCCCnt, it retunrs to 0 and CCRdy is decremented.

63:58 CfgCCPerSRC[5:0] Every CfgCCPerSRC CC transactions, SCRdy is decremented to request RAC and
RDRAM slew rate control. This field adjusts the rate of SRC requests relative to CC
requests, usually to adjust for the number of devices. If CfgCCPerSRC is programmed to
CfgMaxDevID + 1, each device has SRC and CC transactions at the same rate.

79:64 reserved Must be set to zero.

85:80 CfgNDevU[5:0] Number of devices in region U (0–32)

86 CfgDepBnkU 1’b1: dependent (doubled) banks in region U
1’b0: independent banks in region U

87 CfgSpCoreU 1’b1: split core in region U
1’b0: no split core in region U

88 Cfg2KBPageU 1’b1: 2KB (128 dualoct) page size in region U
1’b0: 1KB (64 dualoct) page size in region U

92:89 CfgNRowBitsU[3:0] 4’b1001: 512 rows per bank in region U
4’b1010: 1024 rows per bank in region U
4’b1011: 2048 rows per bank in region U
4’b1100: 4096 rows per bank in region U
4’b1101: 8192 rows per bank in region U
4’b1110: 16,384 rows per bank in region U
Other values are reserved.

95:93 CfgNBnkBitsU[2:0] 3’b010: 4 banks per device in region U
3’b011: 8 banks per device in region U
3’b100: 16 banks per device in region U
3’b101: 32 banks per device in region U
Other values are reserved.

101:96 CfgNDevV[5:0] Number of devices in region V (0–32).

102 CfgDepBnkV 1’b1: dependent (doubled) banks in region V
1’b0: independent banks in region V

103 CfgSpCoreV 1’b1: split core in region V
1’b0: no split core in region V

104 Cfg2KBPageV 1’b1: 2KB (128 dualoct) page size in region V
1’b0: 1KB (64 dualoct) page size in region V

Table 3: Configuration Port

Bits Name Description

Page 8 Last Modified on 7/13/0 1

 RMC2 Datasheet

Table 4 shows configurations for all DRAM bin specs (values are decimal).

108:105 CfgNRowBitsV[3:0] 4’b1001: 512 rows per bank in region V
4’b1010: 1024 rows per bank in region V
4’b1011: 2048 rows per bank in region V
4’b1100: 4096 rows per bank in region V
4’b1101: 8192 rows per bank in region V
4’b1110: 16,384 rows per bank in region V
Other values are reserved.

111:109 CfgNBnkBitsV[2:0] 3’b010: 4 banks per device in region V
3’b011: 8 banks per device in region V
3’b100: 16 banks per device in region V
3’b101: 32 banks per device in region V
Other values are reserved.

117:112 CfgNDevW[5:0] Number of devices in region W (0–32)

118 CfgDepBnkW 1’b1: dependent (doubled) banks in region W
1’b0: independent banks in region W

119 CfgSpCoreW 1’b1: split core in region W
1’b0: no split core in region W

120 Cfg2KBPageW 1’b1: 2KB (128 dualoct) page size in region W
1’b0: 1KB (64 dualoct) page size in region W

124:121 CfgNRowBitsW[3:0] 4’b1001: 512 rows per bank in region W
4’b1010: 1024 rows per bank in region W
4’b1011: 2048 rows per bank in region W
4’b1100: 4096 rows per bank in region W
4’b1101: 8192 rows per bank in region W
4’b1110: 16,384 rows per bank in region W
Other values are reserved

127:125 CfgNBnkBitsW[2:0] 2’b010: 4 banks per device in region W
2’b011: 8 banks per device in region W
2’b100: 16 banks per device in region W
2’b101: 32 banks per device in region W
Other values are reserved.

Table 4: Configuration Port settings for 64/72M RDRAM Bin Specs

Bits Name -40-800 -45-800 -50-800 -45-711 -50-711 -45-600 -53-600

10:7 CfgTrcd 7 9 11 7 9 5 7

17:15 CfgTrasSyn 5 5 6 5 5 4 5

21:18 CfgTrp 8 8 10 8 8 6 8

24:22 CfgToffpSyn 4 4 4 4 4 4 4

28:25 CfgTrasrefSyn 5 5 6 5 5 4 5

31:29 CfgTrprefSyn 2 2 3 2 2 2 2

Table 3: Configuration Port

Bits Name Description

Advance Information Page 9 1

RMC2 Datasheet

Timings

All timings are function of chip layout and process. Values below are only approximate.

Table 5: Timing Conditions

Symbol Description Min Max Units Figure

tR, tF Rise and fall times for all inputs — 200 ps 3-1

tPCYCLE PClk cycle time 5.0 — ns 3-1

tERRDC PClk duty cycle error (compared to 50%) — 250 ps 3-1

tERRP Instantaneous PClk/SynClk phase error — 500 ps 3-1

t1 Reset setup time to rising edge of PClk — ps none

t2 Reset hold time from rising edge of PClk — ps none

t3 A[31:4], Op[3:0], L[5:0] setup time to rising edge of PClk — ps 3-2, 3-3

t4 A[31:4], Op[3:0], L[5:0] hold time from falling edge of PClk — ps 3-2, 3-3

t5 Start setup time to rising edge of PClk — ps 3-2, 3-3

t6 Start hold time from rising edge of PClk — ps 3-2, 3-3

t7 W[15:0][8:0], M[15:0] setup time to rising edge of PClk — ps 3-2

t8 W[15:0][8:0], M[15:0] hold time from rising edge of PClk — ps 3-2

t9 RDataA, RDataB setup time to either edge of PClk 250 — ps 3-3

t10 RDataA, RDataB hold time from either edge of PClk 100 — ps 3-3

Table 6: Timing Characteristics

Symbol Description Min Max Units Figure

t11 GetC valid from PClk (CfgSyncGetC = 1) ps 3-2, 3-3

t12 GetC valid from Start (CfgSyncGetC = 0) ps 3-2, 3-3

t13 Rrdy, Wrdy, RefRdy, CCRdy, CRRdy, SCRdy valid from PClk ps 3-2, 3-3

t14 R[15:0][8:0] valid from PClk ps 3-3

t15 TDataQ (Row bits) valid from rising edge of PClk ps 3-2, 3-3

t16 TDataQ (Row bits) valid from falling edge of PClk ps none

t19 TDataA, TDataB valid from rising edge of PClk ps none

t20 TDataA, TDataB valid from falling edge of PClk ps 3-2

tRD Read latency from Start active to first read data valid see Table tPCYCLE 3-3

Page 10 Last Modified on 7/13/0 1

 RMC2 Datasheet

Read latency is a function of Pclk/SynClk frequency
ratio (CfgGear), RDRAM tRCD, the state of the
addressed RDRAM bank, as well as any other pending
transactions that may delay issuing ROW or COL
packets for the read transaction. tRD values assume the
addressed bank is precharged and there are no timing
constraints due to any outstanding transactions; in this

case the transaction consists of an ACT and one or more
RD packets.

For CfgGear other than 3’b001, the read data latency
depends on the phase of PClk compared to SynClk
when Start is issued, and there will be two possible
minimum values, and an “average” assuming Start is
asserted at a random PClk phase.

Figure 2: SynClk and PClk waveform

Table 7: Read Latency Values

CfgGear tRCD Min Average Max Units

3’b001
(1:1)

7 8 PClk

9 8 PClk

11 9 PClk

3’b010
(4:3)

7 10 10.5 11 PClk

9 10 10.75 11 PClk

11 11 11.75 12 PClk

3’b011
(3:2)

7 11 10.7 12 PClk

9 12 12.3 13 PClk

11 12 12.7 13 PClk

3’b10
(2:1)

7 15 15.5 16 PClk

9 16 16.5 17 PClk

11 17 17.5 18 PClk

SynClk

PClk

tR tF
VDD
80%
50%
20%
GND

tPCYCLE

tPCYCLE/2 tPCYCLE/2

tERRP

tERRDC

Advance Information Page 11 1

RMC2 Datasheet

Figure 3: Write System Timing (CfgGear=3’b001, tRCD = 7, Closed Page Mode)

t4

PClk

CFM/CFM

VALIDAddr, Op, L

GetC (CfgSyncGetC = 0)

W, M

WRdy

SynClk

TDataQ(ROW)

TDataQ(COL)

TDataA,TDataB

t5(RAC)

WR a1

t4(RAC)

t15,MIN

t17,MAX

t5(RAC)t4(RAC)

t5(RAC)t4(RAC)

t17,MIN

ROW

COL

DQA,DQB

WR a1

tRCD = 7

M a1WRA a2

tCWD = 6
tRTR = 8

tRAS = 20 tRP = 8

Transaction a: WR a0 = {Da,Ba,Ra} a1 = {Da,Ba,Ca1} a2 = {Da,Ba,Ca2}

D a1 D a2

D a1 D a2

t8

ACT a0

t13,MAX t13,MIN

t3

TQ1Sel=1000 TQ0Sel=0100 TDSel=0001

t20,MAX t20,MIN

t12,MIN

t3(RAC)t3(RAC) t3(RAC)

Start

t6

t15,MAX

GetC (CfgSyncGetC = 1)

t11,MIN

t11,MAX

t5

t12,MAX

t7

retire a1
M a2

retire a2

tOFFP = 4

WR a2

ACT a

M a1

D a1 D a2

M a2

tRC = 28

Page 12 Last Modified on 7/13/0 1

 RMC2 Datasheet

Figure 4: Read System Timing (CfgGear=3’b001, tRCD = 7, Closed Page Mode)

t4

PClk

CFM/CFM

VALIDAddr, Op, L

GetC (CfgSyncGetC = 0)

R

RRdy

SynClk

TDataQ(ROW)

TDataQ(COL)

TDataA,TDataB

t5(RAC)

RD a1

t4(RAC)

t15,MIN

t17,MAX

t5(RAC)t4(RAC)

t2,MIN(RAC)t2,MAX(RAC)

t17,MIN

ROW

COL

DQA,DQB

RD a1

tCAC = 8

tRAS = 20

tRC = 32

Transaction a: WR a0 = {Da,Ba,Ra} a1 = {Da,Ba,Ca1} a2 = {Da,Ba,Ca2}

D a1 D a2

t14,MAX

ACT a0

t13,MAX

t3

TQ1Sel=1000 TQ0Sel=0100 RDSel=1000

t9 t10

t12,MIN

t3(RAC)t3(RAC) t1(RAC)

Start

t6

t15,MAX

GetC (CfgSyncGetC = 1)

t11,MIN

t11,MAX

t5

t12,MAX

RD a2

ACT a

Q a1 Q a2

RD a2

tRCD = 7
tRP = 8

Q a1 Q a2

t14,MIN

tRD

PREX a3

tOFFP = 4

a2 = {Da,Ba}

Advance Information Page 13 1

RMC2 Datasheet

Simulating and Synthesizing RMC2

Figure 5: Testbench Organization

Testbench organization
Figure 5 shows a simplified view of the RMC2 testbench
(tbench). There are 10 modules instantiated at the top
level, and four included files, described below:

At the start of a simulation, INIT0 initializes the
RDRAMs, RAC, and RMC0. sio0 controls the RDRAM
SIO bus to allow read and writing RDRAM registers
and exiting Powerdown and Nap modes. The Bus Func-
tional Model (BFM0) controls the host interface to
RMC0; the included ‘pat.v’ file is a list of read, write,
and maintenance operations to be performed. RMC0,
rac0 and Direct Rambus Clock Generator (drcg0)

modules are self-explanatory. rac0 is connected from
one to three RIMMs.

The gear module (Gearblk0) receives the host clock
(PClk) and Rambus clock divided by four (SynClk);
these must be harmonically related in the ratios of 1:1,
4:3, 3:2 or 2:1. It generates three outputs: PClr tells
RMC0 the phase of SynClk with respect to PClk; PClkM
and SClkN are PClk and SynClk divided by down to
generate a common base frequency. If PClk and SynClk
are phase-locked, PClkM and SClkN edges occur simul-
taneously. In a real system the DRCG uses the phase
delay between PClkM and SClkN to adjust the delay of
CTM and CTMN to acheive and maintain phase lock.

Gearblk0

PClk

CrStart
CrOp

CrWrData
CrRdData
CrRdRdy
CrBusy

sio0
INIT0

Start
A
L
Op

GetC
W, M
Wrdy
R
Rrdy

BFM0

RMC0

drcg0

SClkNPClkM
RefClk

TDataA rac0

rimm0

TDataQ

TDataB
RDataA
RDataB
TQSel

TDSel
RDSel

DQA
RQ
DQB
CFM, CFMN
CTM, CTMN

CFMN

SynClk

SCK
CMD
SIO[0]

SioOut
SIO[1] SIO[2] SIO[3]

SioEn

pat.v

config.v

BOOT.v

tbench

rimm1 rimm2

debug.v

PClr

ConfigRMC

CrBrCast
CrSqAdrs
CrAdrs

ConfigSIO

ResetRMC
PwrUpRACi

ResetRACExt
CCtlAutoExt
CCtlEnExt
CCtlLdExt
SRCtrlExt

In
it

D
on

e

PC
;lC

yc

SynClkGearInit
CfgGear

CCtlAuto
CCtlEn
CCtlLd
SRCtrl

Page 14 Last Modified on 7/13/0 1

 RMC2 Datasheet

The three RIMM modules (rimm0, rimm1 and rimm2)
may be configured to model any number and type of
RDRAMs. Note the Rambus channel is bussed, not
routed through the RIMM modules like a real RIMM.
Channel transport delay (tTR) is not modeled, but there
are parameters in the RIMM to delay the data, simu-
lating different tTR values.

The channel is terminated by Verilog pullup primitives
to model termination resistors. These are necessary
because the RAC uses open-collector drivers, so the
RAC model only drives the channel to ‘0’ or ‘z’ states;
the pullups are required to achieve ‘0’ and ‘1’ states on
the Channel.

There are four included files at the top level:

BOOT.v models the operations necessary to make the
testbench functional and in a known state. For reference,
the sequence is broken into the following parts:

// Stage 1 - Start Clocks

// Determine maximum Channel frequency

// Set PClk and RefClk frequencies and DRCG Mult0 and
Mult1 inputs

// Configure RMC gear ratio

// Begin DRCG Lock period

//

// Stage 2 - RAC Initialization

// Assert Init1 sequence

//

// Stage 3 - RDRAM Register Initialization

// 3.1 Initial quiet period on CMD

// 3.2 SIO Reset

// 3.3 Write TEST77 register

// 3.4 Write TCYCLE register

// 3.5 Write SDEVID register

// 3.6 Write DEVID register

// 3.7 Write PDNX and PDNXA registers

// 3.8 Write NAPX register

// 3.9 Write TPARM register

// 3.10 Write TCDLY1 register

// 3.11 Write TFRM register

// 3.12 SETR/CLRR

// 3.13 Write CCA and CCB registers

// 3.14 Powerdown Exit

// 3.15 SETF

//

// Stage 4 - RMC Configuration

// 4.1 Initial value for read data offset

// 4.2 Configure cycles for row and column operations

// 4.3 Set Refresh Interval

// 4.4 Set Current Control Interval

// 4.5 Set Slew Rate Control Interval

// 4.6 Configure RMC for Bank/Row/ColBits and ByteWidth
per region

// 4.7 Configure RMC for Address Mapping

// 4.8 Configure the RMC to issue Relax commands

// 4.9 Any other steps necessary to configure memory con-
troller.

//

// Stage 5 - RDRAM Slew Rate and Current Control

// Assert Init2 sequence

//

// Stage 6 - RDRAM Core Initialization and Read Leveliza-
tion

// 6.1 Core Initialization

// 6.2 Levelize Read Domains

//

// Stage 7 - RDRAM Remaining Registers

// 7.1 Set Self Refresh for Powerdown and Nap

config.v is the RMC and RIMM configuration file. It sets
the gear ratio, number and type of RIMMs, and all RMC
configuration bits.

debug.v contains all code for debuging the RMC. This
includes $dump or $vtDump, $dumpon, $dumpoff,
$dumpvars. It is good to include a “#long_delay $finish”
statement so the simulation won’t run forever in the
event of an endless loop. The Rambus Channel monitor
module, MonitorD, should be instantiated here if you
want graphical output of Channel activity. Also, it is
useful to define signals for debug here.

The test pattern, pat.v, is included in module BFM0. This
defines all the read, write and maintenance operations
to be requested in the simulation. pat.v is orthogonal to
config.v, any pattern can be run using any configuration
(see section)

File structure

The file structure for the RMC2 project is:

$PROJECT/ top-level directory

bin/ setup file, scripts, etc.

doc/ documentation

frame/ FrameMaker doc’s (including this spec)

pdf/ PDF files for release

ppt/ Powerpoint slides

text/ text documentation files

xls/ Excel spreadsheets

models/ model (simulation) directories

$MODEL/ your model directory; files in this

directory aren’t under RCS or included

in releases (all subdirectories are).

Place simulation logs, etc. here.

tbench/ all Verilog testbench files

rmc/ all Verilog RMC2 files

BIU.v Bus Interface Unit; buffers read and

write data

CM.v Contraint Module; check timing con-

straints on packets

MM.v Maintenance Module; tells when to do

refresh, current calibration and slew

rate control, track addresses

PC.v Page Cache; tracks bank state in open-

page systems

PM.v Protocol Module; assigns transactions to

SPUs in a round-robin manner; selects

packet request from SPUs

RMC.v Top-level RMC2 module

SPU.v Service Protocol Unit; converts a single

transaction into a logically correct

sequence of Rambus packets

Advance Information Page 15 1

RMC2 Datasheet

pat/ test pattern files

config/ configuration files

debug/ debug (instrumentation) files

results/ simulation results

PASS list of all passing simulation

FAIL list of all failing simulations

sim/ directories for log & dump files from

each failed sim

releases/ RCS directories and archives of past

releases

vYYMMDD.Z archived releasees, where YYYYMMDD is

release date

tbench/RCS/ RCS directory for tbench files

rmc/RCS/ RCS directory for RMC2 files

pat/RCS/ RCS directory for test pattern files

config/RCS/ RCS directory for configuration files

debug/RCS/ RCS directory for debug (instrumentation)

files

Scripts

Setup

Add the following to your .cshrc file prior to running
setup.

setenv PROJECT /proj/rmc/RMC.d2

Also, make sure $PROJECT/bin is in your search path.

$PROJECT/bin/setup should be run before performing
simulations, making testbench releases, etc.; please run
it from your .cshrc file. This script adds $PROJECT/bin/
to the user’s $PATH, and creates several aliases,
including:

alias mkmod ’setenv MODEL \!*; makemodel; pushd
$PROJECT/models/$MODEL’

alias pbin ’pushd $PROJECT/bin’

alias pdoc ’pushd $PROJECT/doc’

alias pmod ’pushd $PROJECT/models/$MODEL’

alias ptbench ’pushd $PROJECT/models/$MOD-
EL/tbench’

alias ppat ’pushd $PROJECT/models/$MOD-
EL/tbench/pat’

alias pconfig ’pushd $PROJECT/models/$MOD-
EL/tbench/config’

alias prel ’pushd $PROJECT/releases’

alias psyn ’pushd $PROJECT/syn’

Creating a model (simulation) directory

The ‘mkmod model’ alias sets the environment variable
$MODEL to model, executes the makemodel script to
create the model directory and all subdirectories, make
soft links to all the RCS directories, and check out read-
only copies of all the files from RCS. It then changes
tothe $PROJECT/models/$MODEL directory; if that

directory already exists, mkmod informs the user and
just pushes to that directory.

Simulation

Simulations are run using the runpat script:

runpat [pattern_file [config_file [debug_file
[simulator_options]]]]

runpat creates the following three soft links:

$MODEL/tbench/pat.v -> pattern_file.v
$MODEL/tbench/config.v -> config_file.v
$MODEL/tbench/debug.v -> debug_file.v

Arguments have a fixed order: if there is only one argu-
ment it is interpreted as pattern_file. Two arguments are
interpreted as pattern_file and config_file, respectively.
Three arguments are interpreted as pattern_file,
config_file and debug_file, respectively. With no parame-
ters, runpat re-runs the previous simulation. If
debug_file, config_file or pattern_file are not specified,
runpat uses the existing links. If any of pattern_file,
config_file or debug_file are not specified and there is no
existing link, or the target of the link does not exist,
runpat issues an error message.

“runpat -h” displays usage information.

Pattern, configuration and debug files are stored in
separate subdirectories to avoid clutter; they are main-
tained under RCS so they can be shared. Pattern and
configuration files are included in design relases, but
not debug files because these are site-specific (e.g. if the
customer doesn’t use Undertow, a $vtDump command
will cause a compile error).

Verilog Compiler Directives

Verilog ‘define directives are used to configure the RMC,
RAC, RDRAMs and testbench for simuation and testing.
For simulation, these are all contained in the file config.v
(this is actually a soft link), and they effect the whole
design. For Synopsys, ‘defines in one file do not have
any effect in another file; the same definitions must be
made in the synthesis script using the Synopsys
command

analyze -f verilog -d { defines_for_that_file } filename

Be sure to set Synopsys variable hdlin_enable_vpp true
to enable interpretation of ‘indef... ‘else... ‘endif
constructs.

The following table lists user ‘defines in config.v, in what
files the ‘define is used, and what the ‘define does.

Page 16 Last Modified on 7/13/0 1

 RMC2 Datasheet

Table 8: User ‘defines in config.v

Name Values Used in Description

BackdoorInit none BOOT.v,
BOOT_tasks.

v
DRCG.v,
tbench.v

If defined, the normal sequence register writes to configure RDRAMs is
bypassed and RDRAM model parameters are set directly. This saves
considerable simulation time.

BFM_144_BIT none BFM.v,
tbench.v

If defined, 144 bits are read and written by the BFM (9 bit bytes); other-
wise 128 bits are read and written. BFM_144_BITS should not be defined
unless RDRAM_18_BIT is also defined. If RDRAM_18_BIT is defined and
BFM_144_BIT is not, the testbench generates odd parity on the ninth bit
of each write data byte and checks parity on the ninth bit of each read
data byte (if parity doesn’t match it asserts PERR).

CfgOpen none BOOT.v,
BOOT_tasks.

v
tbench.v

Sets the value of the RMC CfgOpen field Selects open-page (1) or
closed-page (0) operation. OPEN_PAGE and/or CLOSED_PAGE must
also be defined to include the logic in SPU to support open- or closed-
page operation.

CfgRelax none BOOT_tasks.
v

tbench.v

Sets the value of the RMC CfgRelax field. If 1, the RDRAMs are Relaxed
(put into Standby mode) after transactions when in closed-page mode
(CfgRelax is don’t care in open-page mode); if 0, the RDRAMs are
always left in Attention mode.

CfgSyncGetC none BFM.v
BOOT.v,

BOOT_tasks.
v

tbench.v

Sets the value of the RMC CfgSyncGetC field (1 or 0). If 1 GetC is driven
synchronously to PClk and sampled asynchronously by the BFM; if 0
GetC is driven asynchronously by the RMC and sample synchronously
by the BFM.

CLOSED_PAGE none SPU.v If defined, code is included in SPU to support closed-page operation. This
is not exclusive of OPEN_PAGE, both may be defined to include logic for
both modes. CfgOpen defines which mode is selected.

CTMCyc800
Gear800

2.500*‘ns2v
1

BOOT.v
INIT.v

Defines 800 MHz Channel operation. Both must be defined. One one
pair should be defined of{CTMCyc800, Gear800}; {CTMCyc711,
Gear711};{CTMCyc600, Gear600}.

CTMCyc711
Gear 711

2.813*‘ns2v
1

BOOT.v
INIT.v

Defines 711 MHz Channel operation. Both must be defined. One one
pair should be defined of {CTMCyc800, Gear800}; {CTMCyc711,
Gear711};{CTMCyc600, Gear600}.

CTMCyc600
Gear 600

3.336*‘ns2v
1

BOOT.v
INIT.v

Defines 600 MHz Channel operation. Both must be defined. One one
pair should be defined of {CTMCyc800, Gear800}; {CTMCyc711,
Gear711};{CTMCyc600, Gear600}.

false 0 BFM.v
BOOT.v,

BOOT_tasks.
v

MonitorD.v
RACD.v
RIMM.v
SPDpar-

ams.v
tbench.v

Defines alias for logic 0.

Advance Information Page 17 1

RMC2 Datasheet

FAST_SCK none BOOT.v
INIT.v
SIO.v

tbench.v

If defined, selects ~50 MHz frequency for SCK; else selects ~1 MHz.
1 MHz is the maximum frequency for RDRAM register operations, but
the higher frequency speeds simulation when BackdoorInit is not
defined. It’s used in config.v to select nine other ‘defines, which are
used in INIT.v to determine the CTM/SCK frequency ratio.

OPEN_PAGE none PM.v
SPU.v

If defined, the PC module is instantiated in PM and code is included in
SPU to support open-page operation. This is not exclusive of
CLOSED_PAGE, both may be in defined to include logic for both
modes. CfgOpen defines which mode is selected.

rac_netlist_model none tbench.v If defined, useRAC netlist model (rac_syn.v) instead of behavioral
model (rac.v). The behavioral model simulates faster, but at this time the
netlist model is the most accurate representation of the actual RAC.

rac_062 none tbench.v If defined, use RAC revision 0.6.2 model (RACD_062.v) instead of RAC
behavioral model (rac.v). Some ASIC vendors use revision 0.6.2-com-
patible RAC cells.

RDRAM_18_BIT none BFM.v If defined, 18-bit-wide RDRAM models are used and 144-bit datapaths
are included in the RMC2 code; otherwise 16-bit-wide RDRAM models
and 128-bit datapaths in the RMC2 are used. If RDRAM_18_BIT is
defined, BFM_144_BIT may also be defined.

REF_TEST none RDRAM refresh is performed by a bfm_Op(‘REF, 0, bank) call in pat-
tern.v. Usually the refresh bank address is provided by the Maintenance
Module (MM), but if REF_TEST is defined the bank address comes from
the bank field in the bfm_Op() call.

rimm0,
rimm1,
rimm2

RIMM0,
RIMM1,
RIMM2

BOOT.v,
BOOT_tasks.

v
tbench.v

Define which RIMMs are present and their names. rimm0 must be
defined; for two RIMMs rimm0 and rimm1 must be defined; for three
RIMMs rimm0, rimm1 and rimm2 must be defined. The defined strings
are the names of the RIMMs

rimm0_NumDevs,
rimm1_NumDevs,
rimm2_NumDevs

1–16 tbench.v Defines number of RDRAM devices on RIMM0, RIMM1 and RIMM2,
respectively.

rimm0_CoreOrg
rimm1_CoreOrg
rimm2_CoreOrg

“r64MD”
“r72MD”
“r128MD”
“r144MD”
“r256MDc”
“r288MDc”
“r256MDr”
“r288MDr”

“user”

tbench.v RDRAM core organization for RIMM0, RIMM1 and RIMM2, respec-
tively. For 256M or 288M parts, “c” or “r” mean “2KB page size, 1024
rows” or “1KB page size, 2048 rows”, respectively. RDRAM architec-
tural parameters are derived from these defines; for “user” the default
parameters are: DoubledBanks=1, Split Core=0, BankBits=4, RowBits=9,
ColBits=6, RefBankBits=4, RefRowBits=10 and DataWidth=16 but these
may be overridden by defparams.

rimm0_Option
rimm1_Option
rimm2_Option

“40-800”
“45-800”
“50-800”
“45-600”
“50-600”
“user”

tbench.v RDRAM option (speed bin) for RIMM0, RIMM1 and RIMM2, respec-
tively. RDRAM AC parameters are derived from these defines; for “user”
the defaults are fIMIN=300, fIMAX=400, fRAS=400, tRPr_MIN=8,
tRASr_MIN=20, tRCDr_MIN=10, tRRr_MIN=8, tPPr_MIN=8,
tCYCLEA_MIN=19, tCYCLEA_MAX=27, tCDLYA_MIN=5 and
tCDLYA_MAX=9; these may be overridden by defparams.

Table 8: User ‘defines in config.v

Name Values Used in Description

Page 18 Last Modified on 7/13/0 1

 RMC2 Datasheet

Reporting results

Results from runpat are reported in the
$MODEL/results directory.

runpat scans the Verilog and BFM log files and RIMM
message files for the words “error” or “warning” (case
insensitive). If it finds any, or if Verilog exits with a non-
zero exit code, it considers the simulation to have failed
and informs the user.

For each simulation that fails, one line is concatenated to
the file FAIL; the line contains (separated by spaces)
“pattern_file config_file fail_time” where fail_time is
returned by

set fail_time = `date`

For each simulation that passes, a similar line is concate-
nated to the file PASS.

This provides an easy way to check which simulations
passed and failed, and when.

For each simulation that fails, a new subdirectory is
created named (separated by a space) pattern_file
config_file. The verilog log file, BFM log file, RIMM
message files, and (if they exist) Channel tiling and
dump files are copied to this directory. This way results
of failing simulations can be examined later. If a subdi-
rectory by the same name already exists, it is over-
written.

rimm0_ChPropDly
rimm1_ChPropDly
rimm2_ChPropDly

0-7 tbench.v The testbench does not model propagation delay of signals on the Ram-
bus channel. The RDRAM model includes a parameter, ChPropDly, that
emulates the RDRAM being in different read domains. These define
ChPropDly for RIMM0, RIMM1 and RIMM2, respectively.

SPD none BOOT.v,
BOOT_tasks.

v
DRCG.v

MonitorD.v
RIMM.v
SPDpar-

ams.v
tbench.v

Number and type of RDRAMs are taken from SPD ROM, otherwise
these must be specified directly

SPU6, SPU5,
SPU4, SPU3,
SPU2, SPU1,
SPU0

none PM.v
SPU.v

Defines the number of SPUs - 1 (i.e. SPU6 -> seven SPUs). At most one
of these should be defined, if none are defined default is one SPU. This
determines how many transactions may be in progress at once, and
allows optimizing performance vs. gate count.

true 1 BFM.v
BOOT.v,

BOOT_tasks.
v

INIT.v
MonitorD.v

RACD.v
RIMM.v
SPDpar-

ams.v
tbench.v

Defines alias for logic 1.

Table 8: User ‘defines in config.v

Name Values Used in Description

