SYNCHRONOUS 4-BIT COUNTER | S54160 N74160 | S54161 N74161

S54160-B,F,W • S54161-B,F,W • S54162-B,F,W • S54163-B,F,W N74160-B,F • N74161-B,F • N74162-B,F • N74163-B,F

DIGITAL 54/74 TTL SERIES

DESCRIPTION

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting schemes. The S54160, S54162, N74160, and N74162 are decade counters and the S54161, S54163, N74161, and N74163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four J-K master-slave flip-flops on the rising (positive-going) edge of the clock input waveform.

All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design. A full fan-out to ten normalized Series 54/74 loads is available from each of the outputs in the low-level state. A fan-out to 20 normalized Series 54/74 loads is provided in the high-level state to facilitate connection of unused inputs and power dissipation is typically 325 milliwatts.

LOGIC DIAGRAM

PIN CONFIGURATION

S54162 N74162

S54163 N74163

SIGNETICS DIGITAL 54/74 TTL SERIES - S54/N74160 • S54/N74161 • S54/N74162 • S54/N74163

LOGIC DIAGRAM (Cont'd)

RECOMMENDED OPERATING CONDITIONS

	\$54160, \$54161 \$54162, \$54163			N			
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage V _{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized Fan-Out from each Output, N: High logic level			20			20	- <u>\$</u>
Low logic level			10		1	10	
Input Clock Frequency, f _{clock}	0		25	0		25	MHz
Width of Clock Pulse, twiclock)	25			25			ns
Width of Clear Pulse, tw(clear)	20			20			ns
Setup Time, t _{setup} : Data Inputs, A,B,C,D	15			15			
Enable P	20			20			
Load	15			15			ns
Clear	20			20			
Hold Time at any Input, t _{hold}	0			0			ns
Operating Free Air Temperature, T _A	-55	25	125	0	25	70	°C

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise specified)

PARAMETER		TEST CONDITIONS*		\$54160,\$54161 \$54162,\$54163			N74160,N74161 N74162,N74163			
				MIN	TYP**	MAX	MIN	TYP**	MAX	UNIT
VIH	High-level input voltage			2			2			v
VIL	Low-level input voltage	$V_{CC} = MAX,$				0.8			0.8	V
V _I	Input clamp voltage	$V_{CC} = MAX,$	l _l = -12mA			-1.5			-1.5	V
V _{OH}	High-level output voltage	$V_{CC} = MIN,$ $V_{IL} = 0.8V,$	V _{IH}	2.4			2.4			v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8V,	V _{IH} = 2V, I _{OL} = 16mA			0.4	i		0.4	v
ij –	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5V			1			1	mA
н	High-level Clock or enable T input current Other inputs	V _{CC} = MAX,	V ₁ = 2.4V			80 40			80 40	μA
I₁∟	Low-level Clock or enable T input current Other inputs	V _{CC} = MAX,	V ₁ = 0.4V			-3.2 -1.6			-3.2 -1.6	mA
IOS	Short-circuit output current [†] Supply current, all outputs high	$V_{CC} = MAX$ $V_{CC} = MAX$	See Note 3	-20	59	-57 85	-18	59	-57 94	mA mA
ICCL	Supply current, all outputs low	$V_{CC} = MAX,$	See Note 4		63	91		63	101	mA

SWITCHING CHARACTERISTICS, V_{CC} = 5V, T_A = 25°C, N = 10

	PARAMETER	TEST CONDITIONS	MIN	түр	MAX	UNIT
fmax	Maximum input clock frequency		25	32		MHz
^T PLH	Propagation delay time, low-to-high-level carry output from clock			23	35	ns
^t PHL	Propagation delay time, high-to-low-level carry output from clock			23	35	
^t PLH	Propagation delay time, low-to-high-level Q output from clock			13	20	
PHL	Propagation delay time, high-to-low-level Q output from clock	C _L = 15pF, R _L = 400Ω		15	23	
PLH	Propagation delay time, low-to-high-level carry output from enable T			8	13	
PHL	Propagation délay time, high-to-low-level carry output from enable T			10	15	n
PHL	Propagation delay time, high-to-low-level Ω output from clear			20	30	n

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

** All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. † Not more than one output should be shorted at a time.

NOTES:

I_{CCH} is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.
I_{CCL} is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

TYPICAL CLEAR, PRESET, COUNT, AND INHIBIT SEQUENCES

PARAMETER MEASUREMENT INFORMATION

NOTES:

- A. The input pulses are supplied by a generator having the following characteristics: $t_r \le 10ns$; $t_q \le 10ns$, PRR ≤ 1 MHz, duty cycle $\le 50\%$,
- $Z_{out} \approx 50\Omega$. Vary PRR to measure f_{max}. B. Outputs Ω_D and carry are tested at t_{n+10} for the S54160, S54162, N74160, and N74162, and at t_{n+16} for the S54161, S54163, N74161, and N74163, where t_n is the bit time when all outputs are low.

NOTES:

A. The input pulses are supplied by a generator having the following characteristics: $t_r \leq 10ns$; $t_f \leq 10ns$; PRR ≤ 1 MHz, duty cycle $\leq 50\%$; $Z_{out} \approx 50\Omega$.

B. Enable P and enable T setup times are measured at $t_0 = 0$.