

8-BIT PARALLEL-OUT SERIAL | \$54164 SHIFT REGISTERS

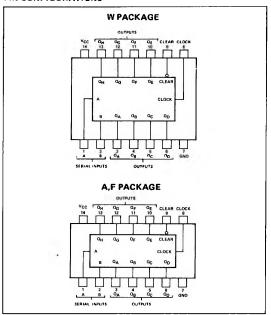
N74164

S54164-A,F,W • N74164-A,F

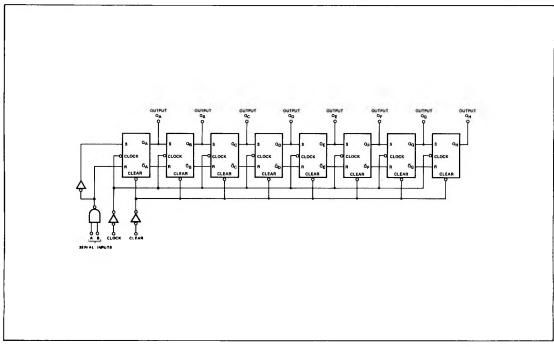
DIGITAL 54/74 TTL SERIES

DESCRIPTION

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either (or both) input(s) inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high, but only information meeting the setup requirements will be entered. Clocking occurs on the low-to-high-level transition of the clock input.


All inputs are diode-clamped to minimize transmission-line effects, and are buffered to represent only one Series 54/74 load which simplifies system design. Power dissipation is typically 21 milliwatts per bit. Maximum input clock frequency is typically 36 megahertz.

The S54164 is characterized for operation over the full military temperature range of -55°C to 125°C; the N74164 is characterized for operation from 0°C to 70°C.


TRUTH TABLE

 SERIA	SERIAL INPUTS A AND B			
INP	UTS	OUTPUT		
A1	Гt _п	ATt _n +1		
A	В	Q _A		
Н	Н	Н		
L	Н	L		
H	L	Ľ		
L	L	L		

PIN CONFIGURATIONS

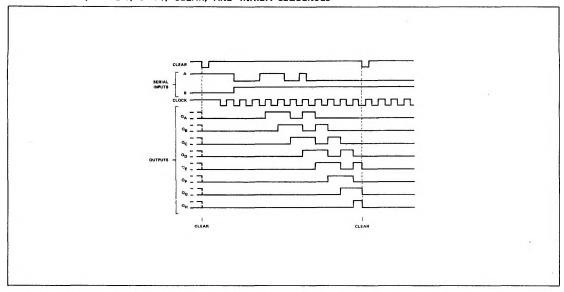
LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

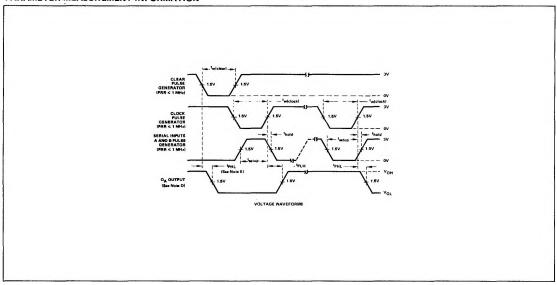
	S54164				UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply Voltage V _{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized Fan-Out from each Output, N: High logic level		l	10			10	
Low logic level			5	}		5	
Input Clock Frequency, f _{clock}	0		25	0		25	MHz
Width of Clock or Clear Input Pulse, t _W	20			20			ns
Data Setup Time, t _{setup}	15			15			ns
Data Hold Time, thold	0			0			ns
Operating Free-Air Temperature, TA	-55	25	125	0	25	70	°c

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

0.0		TEST CONDITIONS*		S54164		N74164				
	PARAMETER	TEST COND	ITIONS*	MIN	TYP*	MAX	MIN	TYP	· MAX	UNIT
VIH	High-level input voltage			2			2			٧
VIL	Low-level input voltage					0.8			0.8	V
V _I	Input clamp voltage	V _{CC} = MAX,	I _I = -12mA			-1.5			-1.5	V
v _{oh}	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8V,	V _{IH} = 2V, I _{OH} = -400μA	2.4			2.4			V
VOL	Low-level output voltage	$V_{CC} = MIN,$ $V_{1L} = 0.8V,$	V _{IH.} = 2V, I _{OL} = 8mA			0.4			0.4	v
11	Input current at maximum input voltage	V _{CC} = MAX,	$V_1 = 5.5V$			1			1	mA
I _{IH}	High-level input current	V _{CC} = MAX,	$V_1 = 2.4V$			40			40	μΑ
III.	Low-level input current	VCC = MAX,	$V_1 = 0.4V$			-1.6			-1.6	mA
os	Short-circuit output current †	V _{CC} = MAX		-10		-27.5	-9		-27.5	mA
^I cc	Supply current	V _{CC} = MAX,	V _{I(clock)} = 0.4V		30	- 4		30		mA
CC	55 , 55, 55, 55, 55, 55, 55, 55, 55, 55, 5	See Note	V _{I(clock)} = 2.4V		37	54		37	54	


SWITCHING CHARACTERISTICS, V_{CC} = 5V, T_A = 25°C, N = 5

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}	Maximum input count frequency	C ₁ = 15pF	25	36		MHz
III d	Propagation delay time, high-to-	C = 15pF		24	36	
^t PHL	low-level Q outputs from clear		}			l n
riic	input	C _L = 50pF		28	42	
	Propagation delay time, low-to-	C ₁ = 15pF	8	17	27	
^t PLH	high-level Q outputs from clock					r
TLN	input	C ₁ = 50pF	10	20	30	
	Propagation delay time, high-to-	C _L = 15pF	10	21	32	i
^t PHL	low-level Q outputs from clock		1			n
	input	C _L = 50pF	10	25	37	


^{*} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable

^{**} All typical values are at V_{CC} = 5V, T_A = 25°C.
† Not more than two outputs should be shorted at a time.

TYPICAL CLEAR, INHIBIT, SHIFT, CLEAR, AND INHIBIT SEQUENCES

PARAMETER MEASUREMENT INFORMATION

NOTES:

- A. The pulse generators have the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, duty cycle $\le 50\%$, $Z_{out} \approx 50\Omega$. B. C_L includes probe and jig capacitance. C. All diodes are 1N3064.

- D. Q_A output is illustrated. Relationship of serial input A and B data to other Q outputs is illustrated in the typical shift sequence.
 E. Outputs are set to the high level prior to the measurement of t_{PHL} from the clear input.