

EXCESS 3-GRAY-TO-DECIMAL DECODER | \$5444

S5444-B,W • N7444-B,F

N7444

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The 54/7444 Excess-3-Gray Code to Decimal Decoder is a TTL MSI array utilized in decoding and logic conversion applications. The 54/7444 decodes excess three gray code to one of ten outputs.

LOGIC DIAGRAM

TRUTH TABLE

S5444/N7444 EXCESS 3 GRAY INPUT				ALL TYPES DECIMAL OUTPUT									
D	c	В	A	0	1	2	3	4	5	6	7	8	I
)	0	1	0	0	1	1	1	1	1	1	1	1	T
	1	1	0	1	0	1	1	1	1	1	1	1	l
	1	1	1	1	1	0	1	1	1	1	1	1	I
	1	0	1	1	1	1	0	1	1	1	1	1	I
	1	0	0	1	1	1	1	0	1	1	1	1	I
	1	0	0	1	1	1	1	1	0	1	1	1	
	1	0	1	1	1	1	1	1	1	0	1	1	
1	1	1	1	1	1	1	1	1	1	1	0	1	
J	1	1	0	1	1	1	1	1	1	1	1	0	ł
1	0	1	0	1	1	1	1	1	1	1	1	1	ļ
1	0	1	1	1	1	1	1	1	1	1	1	1	
J	0	0	1	1	1	1	1	1	1	1	1	1	ľ
	0	0	0	1	1	1	1	1	1	1	1	1	
	0	0	0	1	1	1	1	1	1	1	1	1	
	0	0	1	1	1	1	1	1	1	1	1	1	
	0	1	1	1	1	1	1	1	1	1	1	1	

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage V _{CC} : S5444 Circuits	4.5	5	5.5	V
N7444 Circuits	4.75	5	5.25	v
Normalized Fan-Out from each Output, N			10	

PARAMETER		TEST CONDITIONS *		MIN	TYP**	MAX	UNIT
	Input voltage required to				-		
V _{in(1)}	ensure logical 1 at any input terminal	V _{CC} = MIN		2			v
	Input voltage required to						
V _{in(0)}	ensure logical 0 at any input terminal	V _{CC} = MIN				0.8	v
V _{out(1)}		$I_{load} = -400 \mu A$	1) = 2V, V _{in(0)} = 0.8V,	2.4			v
V _{out(0)}	Logical O output voltage	V _{CC} = MIN, V _{in(} I _{sink} = 16mA	1) = 2V, V _{in(0)} = 0.8V,	l		0.4	v
	Logical 1 level input	V _{CC} = MAX, V _{in}	= 2.4∨			40	μA
lin(1)	current (each input)	V _{CC} = MAX, V _{in}	= 5.5V			1	mA
l _{in(0)}	Logical O level input current (each input)	V _{CC} = MAX, V _{in}				-1.6	mA
los	Short-circuit output current [†]	V _{CC} = MAX,	S5444 N7444	-20 -18		-55 -55	mA mA
^I cc	Supply Current	VCC = MAX,	S5444 N7444		28 28	41 56	mA mA

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, VCC = 5V, TA = 25°C, N = 10

PARAMETER			MIN	түр	MAX		
	Propagation delay time to						
^t pd0	logical O level through	C _L = 15pF,	R _L = 400Ω	10	22	30	ns
	two logic levels			ļ			
	Propagation delay time to						
t _{pd0}	logical O level through	С _L = 15рF,	R _L = 400Ω		23	35	ns
•	three logic levels		-				
	Propagation delay time to						
tpd1	logical 1 level through	$C_1 = 15 pF_2$	R ₁ = 400Ω	10	17	25	ns
put	two logic levels	-	-				
	Propagation delay time to						
^t pd1	logical 1 level through three logic levels	С ∟ = 15рF,	R _L - 400Ω		26	35	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

•• All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. † Not more than one output should be shorted at a time.