

HEX QUADRUPLE D-TYPE | S54S174 FLIP-FLOPS WITH CLEAR | S54S175

N74S174

DIGITAL 54/74 TTL SERIES N74S175

S54S174, N74S174

AR

Positive Logic: See function table

DESCRIPTION

These high-performance monolithic, positive-edge-triggered flipflops utilize Schottky TTL technology to implement D-type flip-flop logic. All have a direct clear input, and the S54S175 and N74S175 feature complementary outputs from each flip-flop. Pin assignments for these Schottky flip-flops are identical to the standard TTL versions meaning that these Schottky versions can be utilized to upgrade existing system performance in most cases.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

FEATURES

- FULL SCHOTTKY CLAMPING TO ACHIEVE TYPICAL MAX-IMUM TOGGLE RATES OF 110 MHz
- FUNCTIONALLY AND MECHANICALLY IDENTICAL TO THE SERIES 54/74 COUNTERPARTS AND CAN BE USED TO UPGRADE EXISTING SYSTEMS WITH SIGNIFICANT IMPROVEMENT IN SPEED
- FULLY COMPATIBLE WITH OTHER TTL CIRCUITS
- S54S174 AND S54S175 OPERATE OVER FULL MILITARY TEMPERATURE RANGE OF –55°C TO 125°C
- FOR USE IN HIGH-PERFORMANCE: BUFFER/STORAGE HEGISTERS SHIFT REGISTERS COUNTERS PATTERN GENERATORS

2 3 4

CLEAR 10 10 20 20 30 30

PIN CONFIGURATION

FUNCTION TABLE (EACH FLIP-FLOP)

INPUTS			OUTPUTS			
CLEAR	CLOCK	D	٩	ā t		
L	x	×	L	н		
н	†	н	н	L		
н	† 1	L	L	н		
н	L	x	Q0	00		

H = High level (steady state)

- L = Low level (steady state)
- X = Irrelevant
- t = Transition from low to high level
- Q0= The level of Q before the indicated steady-state
- input conditions were established

RECOMMENDED OPERATING CONDITIONS

		S54S174, S54S175		N74S174, N74S175				
		MIN	N NOM MAX MIN	MIN	NOM	MAX		
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
New Strand Concerns from such as shown in N	High logic level			20			20	1
Normalized fan-out from each output, N	Low logic level			10			10	
Input clock frequency, fclock		0		75	0		75	MHz
Width of clock or clear pulse, tw		12			12	_		ns
Catura time t	Data input	8			8			ns
Setup time, t _{setup}	Clear inactive-state	15			15			
Data hold time, thold		2			2	_		ns
Operating free-air temperature, T _A		-55		125	0		70	°C

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT	
VIH	High-level input voltage				2			v
VIL	Low-level input voltage						0.8	v
VI.	Input clamp voltage	$V_{CC} = MIN,$	II =18 mA				-1.2	v
Maria		V _{CC} = MIN,	VIH = 2 V,	Series 54S	2.5	3.4		v
⊻он	VOH High-level output voltage	V _{IL} = 0.8 V,	IOH = −1 mA	Series 74S	2.7	3.4		
Vai	Low-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V,				0.5	v
VOL	Low-level output voltage	V _{IL} = 0.8 V,	I _{OL} = 20 mA				0.5	ľ
4	Input current at maximum input voltage	V _{CC} = MAX,	V1 = 5.5 V				1	mA
Чн	High-level input current	V _{CC} = MAX,	VI = 2.7 V				50	μA
ηL	Low-level input current	V _{CC} = MAX,	V _I ≈ 0.5 V				-2	mA
los	Short-circuit output current‡	V _{CC} = MAX			-40		-100	mA
1	Supply current	V _{CC} = MAX,	See Note 1	S54S174, N74S174		90		
lcc				\$54\$175, N74\$175		60		mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

**All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}$ C. \$\text{Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 1: With all outputs open and 4.5 V applied to all data and clear inputs, ICC is measured after a momentary ground, then 4.5 V, is applied to clock.

SWITCHING CHARACTERISTICS, VCC = 5 V, TA = 25°C, N = 10

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
fmax	Maximum input clock frequency		75	110		MHz
Propagation delay time, low-to-high-level Q output from clear	0 - 15 - 5		13		ns	
tΡLΗ	(S54S175,N74S175 only)	CL = 15 pF, RL = 280 Ω, See Note 2		13		
TPHL	Propagation delay time, high-to-low-level Q output from clear			13		ns
tPLH	Propagation delay time, low-to-high-level output from clock		9			ns
TPHL	Propagation time, high-to-low-level output from clock			11		ns

FUNCTIONAL BLOCK DIAGRAMS

