

QUADRUPLE BISTABLE LATCH | S5475

\$5475-B . N7475-B

N7475

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

TRUTH TABLE

units.

DESCRIPTION

-	<u>c</u>		
(Each Latch)		:h)	
tn	tn	+1	NOTES:
D	Q	ā	 t_n = bit time before clock pulse.
1	1	0	2. t _{n+1} = bit time after clock pulse
0	0	1	 These voltages are with respect to network ground terminal.

SCHEMATIC (each latch)

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage V _{CC} (See Note 3): S5475 Circuits	4.5	5	5.5	v v
N7475 Circuits	4.75	5	5.25	V V
Normalized Fan-Out from Outputs			10	
Operating Free-Air Temperature Range, TA: S5475 Circuits	-55	25	125	°C
N7475 Circuits	0	25	70	°C

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP** MAX	UNIT
Vin(1)	Input voltage required to ensure logical 1 level at any input terminal	V _{CC} = MIN		2		v
Vin(0)	Input voltage required to ensure logical O level at any input terminal	V _{CC} = MIN			0.8	v
V _{out(1)}	Logical 1 output voltage	V _{CC} = MIN,	$I_{load} = -400 \mu A$	2.4		l v
V _{out(0)}	Logical O output voltage	V _{CC} = MIN,	I _{sink} = 16mA		0.4	l v

ELECTRICAL CHARACTERISTICS (Cont'd)

	PARAMETER	Т	MIN	TYP	MAX	UNIT	
lin(0)	Logical O level input current at D	V _{CC} = MAX,	V _{in} = 0.4V			-3.2	mA
lin(0)	Logical O level input current at clock	V _{CC} = MAX,				-6.4	mA
lin(1)	Logical 1 level input current at D	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V			80 1	μA mA
lin(1)	Logical 1 level input current at clock	V _{CC} = MAX V _{CC} = MAX	V _{in} = 2.4V V _{in} = 5.5V			160 1	μΑ mA
los	Short circuit output current [†]	$V_{CC} = MAX,$ $V_{out} = 0$	S5475 N7475	-20 -18		-75 -75	m/ m/
lcc	Supply current	VCC = MAX,	S5475 N7475		32 32	46 53	m A m A

SWITCHING CHARACTERISTICS, V_{cc} = 5V, T_A = 25°C, N = 10

PARAMETER		TEST CONDITIONS NOTE A		MIN	түр	MAX	UNIT
^t setup 1	Minimum logical 1 level input setup time at D input	C _L = 15pF,	R _L = 400Ω		7	20	ns
^t setup0	Minimum logical O level input setup time at D input	C _L = 15pF,	R _L = 400Ω		14	20	ns
^t hold1	Maximum logical 1 level input hold time required at D input	С _L = 1БрF,	RL = 400Ω	0	15¶		ns
^t hold0	Maximum logical 0 level input hold time required at D input	С _L = 15рF,	RL = 400Ω	0	6¶		ns
^t pd1(I)-Q)	Propagation delay time to logical 1 level from D input to Q output	C _L = 15pF,	R _L = 400Ω	2	16 ,	30	ns
r≂ ^t pd0(D-Q)	Propagation delay time to logical 0 level from D input to Ω output	С _L = 15рF,	R _L = 400Ω		14	25	ns
^t pd1(D-Q)	Propagation delay time to logical 1 level from D input to $\overline{\Omega}$ output	С _L = 15pF,	RL = 400Ω		24	40	ns
tpd0(D-Q)	Propagation delay time to logical 0 level from D input to $\overline{\mathbf{Q}}$ output	C _L = 15pF,	RL = 400Ω		7	15	ns
^t pd1(C-Q)	Propagation delay time to logical 1 level from clock input to Q output	С _L = 15рF,	R _L = 400Ω		16	30	ns
^t pd0(C-Q)	Propagation delay time to logical 0 level from clock input to Q output	C _L = 15pF,	R _L		7	15	ns
^t pd1(C-Q)	Propagation delay time to logical 1 level from clock input to $\overline{\Omega}$ output	С _L = 15рF,	R _L = 400Ω		16	30	ns
tpd0(C-Q)	Propagation delay time to logical 0 level from clock input to Q output	С _L = 15pF,	RL = 400Ω		7	15	ns

For conditions shown as M1N or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 All typical values are at V_{CC}= 5V, T_A = 25°C.
 Not more than one output should be shorted at a time.

These typical times indicate that period occurring prior to the fall of clock pulse (t₀) below 1.5V when data at the D input will still be recognized and stored.

Note A AC Test circuit, voltage waveforms and switching times are given on page 2-76.

SWITCHING CHARACTERISTICS*

NOTES: 1. The pulse generators have the following characteristics: $V_{gen} = 3 V$, $t_1 = t_0 \le 10$ ns, and $Z_{Out} \approx 50 \Omega$. For pulse generator A $t_{p1} = 1 \mu s$ and PRR = 500 kHz. For pulse generator B, $t_{p2} = 500$ ns and PRR = 1 MHz. Positions of D-input and clock-input pulses are varied with respect to each other to verify setup and hold times.

- 2. Each latch is tested separately.
- C_L includes probe and jig capacitance.
 All diodes are 1N3064.

5. When measuring tpd1(D-Q) and tpd0(D-Q) (or tpd0(D-Q) and tpd1(D-Q) for the S5474/N7475), clock input must be held at logical 1.

tComplementary Q outputs are on the S5475/N7475 only.