

DECADE COUNTER | \$5490

N7490

\$5490-A.F.W . N7490-A.F

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The S5490/N7490 is a high-speed, monolithic decade counter consisting of four dual-rank, master-slave flip-flops internally interconnected to provide a divide-by-two counter and a divide-by-five counter. Gated direct reset lines are provided to inhibit count inputs and return all outputs to a logical "0" or to a binary coded decimal (BCD) count of 9. As the output from flip-flop A is not internally connected to the succeeding stages, the count may be separated in three independent count modes:

- 1. When used as a binary coded decimal decade counter, the BD input must be externally connected to the A output. The A input receives the incoming count, and a count sequence is obtained in accordance with the BCD count sequence truth table shown above. In addition to a conventional "0" reset, inputs are provided to reset a BCD 9 count for nine's complement decimal applications.
- 2. If a symmetrical divide-by-ten count is desired for frequency synthesizers or other applications requiring division of a binary count by a power of ten, the D output must be externally connected to the A input. The input count is then applied at the BD input and a divide-by-ten square wave is obtained at output Α.
- 3. For operation as a divide-by-two counter and divide-by-five counter, no external interconnections are required. Flip-flop A is used as a binary element for the divide-by-two function. The BD input is used to obtain binary divide-by-five operation at the B, C, and D outputs. In this mode, the two counters operate independently; however, all four flip-flops are reset simultaneously.

The 5490/7490 is completely compatible with Series 54 and Series 74 logic familes. Average power dissipation is 160mW.

LOGIC TRUTH TABLES

BCD COUNT SEQUENCE (See Note 1) **RESET/COUNT (See Note 2)** RESET INPUTS OUTPUT OUTPUT NOTES: Ro(1) R₀₍₂₎ R₉₍₁₎ R₉₍₂₎ DCBA COUNT D С в Α 1. Output A connected to input 0 0 0 1 1 0 х 0 0 0 0 BD for BCD count. 0 0 O 0 0 1 1 x 0 0 1 0 0 0 23 0 0 1 0 х х 1 0 0 1 n 0 1 1 sent. 4 0 1 0 0 х 0 COUNT 3. Fanout from output A to in-0 x 5 0 1 0 1 n 6 n 1 0 x 0 х COUNT 1 0 7 1 1 0 х х ٥ COUNT 8 n ٥ 0 n x o COUNT q n 0 х

- 2. X indicates that either a logi-
- cal 1 of a logical 0 may be pre-
- put BD and to 10 additional Series 54/74 loads is permitted

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	МАХ	UNIT
Supply Voltage V _{CC} : S5490 Circuits	4.5	5	5.5	V
N7490 Circuits	4.75	5	5.25	(v '
Normalized Fan-Out from each Output, N			10	
Width of Input Count Pulse, tp(in)	50	1		ns
Width of Reset Pulse, tp(reset)	50			ns
Operating Free-Air Temperature Range, TA: S5490 Circuits	-55	25	125	°c
N7490 Circuits	0	25	70	°c

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT	
Vin(1)	Input voltage required to ensure logical 1 at any input terminal	V _{CC} = MIN			2			v
Vin(0)	Input voltage required to ensure logical 0 at any input terminal	V _{CC} = MIN					0.8	V
V _{out(1)}	Logical 1 output voltage	V _{CC} = MIN,	$I_{load} = -400 \mu A$		2.4			V
V _{out(0)}	Logical O output voltage	V _{CC} = MIN,	I _{sink} = 16mA				0.4	v
¹ in(1)	Logical 1 level input current at R ₀ (1), R ₀ (2), R ₉ (1), or R ₉ (2)	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V	· .			40 1	μA mA
¹ in(1)	Logical 1 level input current at input A	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V				80 1	μA mA
lin(1)	Logical 1 level input current at input BD	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V				160 1	μA mA
lin(0)	Logical O level input current at R ₀₍₁₎ , R ₀₍₂₎ , R ₉₍₁₎ , or R ₉₍₂₎	V _{CC} = MAX,	V _{in} = 0.4V				-1.6	mA
lin(0)	Logical 0 level input current at input A	V _{CC} = MAX,	V _{in} = 0.4V				-3.2	mA
lin(0)	Logical 0 level input current at input BD	V _{CC} = MAX,	V _{in} = 0.4V		ļ		-6.4	mA
los	Short circuit output current [†]	V _{CC} = MAX,	V _{out} = 0V	S5490 N7490	-20 -18		-57 -57	mA mA
۱cc	Supply current	V _{CC} = MAX,	V _{in} = 4.5V	S5490 N7490		32 32	46 53	mA mA

SWITCHING CHARACTERISTICS, V_{CC} = 5V, $T_A = 25^{\circ}C$, N = 10

.

	PARAMETER	TEST CONDITIONS		MIN	түр	MAX	UNIT
f _{max}	Maximum frequency of input count pulses	C _L = 15pF,	R _L = 400Ω	10	18		MHz
^t pd1	Propagation delay time to logical 1 level from input count pulse to output C	C _L = 15pF,	RL = 400Ω		60	100	ns
^t pd0	Propagation delay time to logical 0 level from input count pulse to output C	С _L = 15рF,	RL = 400Ω		60	100	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type. • All typical values are at $V_{CC}=5V$, $T_A=25^{\circ}C$. † Not more than one output should be shorted at a time.