S5490-A.F.W • N7490-A.F

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The S5490/N7490 is a high-speed, monolithic decade counter consisting of four dual-rank, master-slave flip-flops internally interconnected to provide a divide-by-two counter and a divide-by-five counter. Gated direct reset lines are provided to inhibit count inputs and return all outputs to a logical "O" or to a binary coded decimal (BCD) count of 9. As the output from flip-flop A is not internally connected to the succeeding stages, the count may be separated in three independent count modes:

- 1. When used as a binary coded decimal decade counter, the BD input must be externally connected to the A output. The A input receives the incoming count, and a count sequence is obtained in accordance with the BCD count sequence truth table shown above. In addition to a conventional "0" reset, inputs are provided to reset a BCD 9 count for nine's complement decimal applications.
- 2. If a symmetrical divide-by-ten count is desired for frequency synthesizers or other applications requiring division of a binary count by a power of ten, the D output must be externally connected to the A input. The input count is then applied at the BD input and a divide-by-ten square wave is obtained at output
- 3. For operation as a divide-by-two counter and divide-by-five counter, no external interconnections are required. Flip-flop A is used as a binary element for the divide-by-two function. The BD input is used to obtain binary divide-by-five operation at the B, C, and D outputs. In this mode, the two counters operate independently; however, all four flip-flops are reset simultaneously.

The 5490/7490 is completely compatible with Series 54 and Series 74 logic familes. Average power dissipation is 160mW.

PIN CONFIGURATIONS

LOGIC TRUTH TABLES

BCD COUNT SEQUENCE (See Note 1)

	ОИТРИТ					
COUNT	D	O	В	Α		
0	0	0	0	0		
1 1	0	0	0	0		
2 3	0	0	1	0		
3	0	0	1	1		
4 5 6	0	1	0	0		
5	0	1	0	1		
	0	1	1	0		
7 [0	1	1 .	1		
8	1	0	0	0		
9	1	0	0	1		

RESET/COUNT (See Note 2)

RESET INPUTS					OUTPUT				
R ₀₍₂₎	R ₀₍₂₎	R ₉₍₁₎	R ₉₍₂₎	۵	С	В	Α		
1	1	0	×	0	0	0	0		
1	1	×	0	0	0	0	0		
×	×	1	1	1	0	0	1		
×	0	×	0	COUNT					
0	×	0	×	COUNT					
o	×	×	0	COUNT			•		
×	0	0	×	COUNT					

NOTES:

- 1. Output A connected to input BD for BCD count.
- 2. X indicates that either a logical 1 of a logical 0 may be present.
- 3. Fanout from output A to input BD and to 10 additional Series 54/74 loads is permitted

SCHEMATIC DIAGRAM

SIGNETICS DIGITAL 54/74 TTL SERIES - S5490 ● N7490

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage V _{CC} : S5490 Circuits	4.5	5	5.5	V
N7490 Circuits	4.75	5	5.25	\
Normalized Fan-Out from each Output, N			10	
Width of Input Count Pulse, tp(in)	50			ns
Width of Reset Pulse, tp(reset)	50			ns
Operating Free-Air Temperature Range, T _A : S5490 Circuits	-55	25	125	°c
N7490 Circuits	0	25	70	°c

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TE	ST CONDITIONS*		MIN	TYP**	MAX	UNIT
Vin(1)	Input voltage required to ensure logical 1 at any input terminal	V _{CC} = MIN			2			٧
V _{in(0)}	Input voltage required to ensure logical 0 at any input terminal	V _{CC} = MIN					0.8	\ \ \
V _{out(1)}	Logical 1 output voltage	V _{CC} = MIN,	$I_{load} = -400\mu A$		2.4			V .
V _{out(0)}	Logical 0 output voltage	V _{CC} = MIN,	I _{sink} = 16mA				0.4	V
lin(1)	Logical 1 level input current at $R_{O(1)}$, $R_{O(2)}$, $R_{9(1)}$, or $R_{9(2)}$	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V				40 1	μA mA
¹ in(1)	Logical 1 level input current at input A	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V				80 1	μA mA
lin(1)	Logical 1 level input current at input BD	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V				160 1	μA mA
lin(0)	Logical O level input current at $R_{O(1)}$, $R_{O(2)}$, $R_{9(1)}$, or $R_{9(2)}$	V _{CC} = MAX,	V _{in} = 0.4V				-1.6	mA
l _{in(0)}	Logical 0 level input current at input A	V _{CC} = MAX,	$V_{in} = 0.4V$				-3.2	mA
lin(0)	Logical O level input current at input BD	V _{CC} = MAX,	$V_{in} = 0.4V$	+			-6.4	mA
los	Short circuit output current †	V _{CC} = MAX,	V _{out} = 0V	S5490 N7490	-20 -18		-57 -57	mA mA
¹ CC	Supply current	V _{CC} = MAX,	V _{in} = 4.5V	S5490 N7490		32 32	46 53	mA mA

SWITCHING CHARACTERISTICS, V_{CC}= 5V, T_A = 25°C, N = 10

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
f _{max}	Maximum frequency of input count pulses	C _L = 15pF,	R _L = 400Ω	10	18		MHz
^t pd1	Propagation delay time to logical 1 level from input count pulse to output C	C _L = 15pF,	R _L = 400Ω		60	100	ns
^t pd0	Propagation delay time to logical O level from input count pulse to output C	C _L = 15pF,	R _L = 400Ω		60	100	ns

^{*} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

** All typical values are at V_{CC} = 5V, T_A = 25° C.

† Not more than one output should be shorted at a time.