4-BIT RIGHT-SHIFT | S5495 **LEFT-SHIFT REGISTER** S5495-A,F • N7495-A,F ## DIGITAL 54/74 TTL SERIES #### DESCRIPTION The 54/7495 is a monolithic universal 4-Bit Shift Register designed with standard TTL techniques. The circuit layout consists of 4 R-S master-slave flip-flops, 4 AND-OR-INVERT gates, and 6 inverters configured to form a versatile register which will perform right-shift, left-shift, or parallel-in, parallel-out operations depending on the logical input level to the mode control. Right-shift operations are performed when a logical 0 level is applied to the mode control. Serial data is entered at the serial input D_S and shifted one position right on each clock 1 pulse. In this mode, clock 2 and parallel inputs D_A thru D_D are inhibited. Parallel-in, parallel-out operations are performed when a logical 1 level is applied to the mode control. Parallel data is entered at parallel inputs D_A thru D_D and is transferred to the data outputs Ao thru Do on each clock 2 pulse. In this mode, shift-left operations may be implemented by externally tying the output of each flipflop to the parallel input of the previous flip-flop (D $_0$ to D $_C$ and etc.), with serial data entry at input D_D. Information must be present at the R-S inputs prior to clocking and transfer of data occurs on the falling edge of the clock pulse. #### **PIN CONFIGURATIONS** #### **LOGIC DIAGRAM** ### RECOMMENDED OPERATING CONDITIONS | | | MIN | NOM | MAX | UNIT | |--|------------------|------|-----|------|------| | Supply Voltage V _{CC} (See Note 1): | S5495 Circuits | 4.5 | 5 | 5.5 | V | | 3 CC | N7495 Circuits | 4.75 | 5 | 5.25 | l v | | Normalized Fan-Out From Each Output | | 1 | | 10 | | | Width of Clock Pulse tp(clock) | S5495 Circuits | 20 | 10 | | ns | | | N7495 Circuits | 15 | 10 | 1 | ns | | Setup Time Required at Serial, A, B, C, or D Inputs t _{setup} | | 10 | 10 | | ns | | Hold Time Required at Serial, A, B, C, o | r D Inputs thold | 0 | 10 | ì | ns | | Logical 0 Level Setup Time Required at | | | | | | | (With Respect to Clock 1 inputs) | | 15 | | ì | ns | | Logical 1 level Setup Time Required at M | Node Control | | | l | | | (With Respect to Clock 2 input) | | 15 | | 1 | ns | | Logical 0 Level Setup Time Required at | Mode Control | 1 | | | | | (With Respect to Clock 2 input) | | 5 | | 1 | ns | | Logical 1 Level Setup Time Required at | Mode Control | | | | | | (With Respect to Clock 1 input) | | 5 | | | ns | #### NOTES: - 1. Voltage values are with respect to network ground terminal. - 2. Input voltages must be zero or positive with respect to network ground terminal. ## SIGNETICS DIGITAL 54/74 TTL SERIES - \$5495 ● N7495 ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted) | PARAMETER | | TEST CONDITIONS* | MIN | TYP** | MAX | UNIT | |--|---|--|-----|-------|---------|------------| | V _{in(1)} | Input voltage required to ensure logical 1 at any input terminal | V _{CC} = MIN | 2 | | | ٧ | | V _{in(0)} | Input voltage required to ensure logical 0 at any input terminal | V _{CC} = MIN | | | 0.8 | v | | V _{out(1)}
V _{out(0)} | Logical 1 output voltage Logical 0 output voltage Logical 0 level input current | $V_{CC} = MIN$, $I_{load} = -400\mu A$
$V_{CC} = MIN$, $I_{sink} = 16mA$ | 2.4 | | 0.4 | , v | | ¹ in (0) | at any input except mode control | $V_{CC} = MAX$, $V_{in} = 0.4V$ | | | -1.6 | mA | | in(0) | Logical 0 level input current at mode control | V _{CC} = MAX, V _{in} = 0.4V | | | -3.2 | mA | | [[] in(1) | Logical 1 level input current at any input except mode control | V _{CC} = MAX, V _{in} = 2.4V
V _{CC} = MAX, V _{in} = 5.5V | | | 40
1 | μA
mA | | l _{in(1)} | Logical 1 level input current at mode control | V _{CC} = MAX, V _{in} = 2.4V
V _{CC} = MAX, V _{in} = 5.5V | | | 80
1 | μA
mA | | os | Short-circuit output current [†] | V _{CC} = MAX | -18 | | -57 | mA | | Icc | Supply current | V _{CC} = MAX N7495 | 39 | 50 | 63 | mA | # SWITCHING CHARACTERISTICS, V_{CC} = 5V, T_A = 25°C, N = 10 | PARAMETER | | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |------------------|--|------------------------|------------------------------|-----|-----|-----|------| | f _{max} | Maximum shift frequency Propagation delay time to | C _L = 15pF, | R _L = 400Ω | 25 | 36 | | MHz | | ^t pd1 | logical 1 level from clock 1 or clock 2 to outputs | C _L = 15pF, | R _L = 400Ω | | 18 | 27 | ns | | [†] pd0 | Propagation delay time to logical 0 level from clock 1 or clock 2 to outputs | C _L = 15pF, | R _L = 400Ω | | 21 | 32 | ns | ^{*} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable ^{**}All typical values are at V_{CC} = 5V, T_A = 25°C. †Not more than one output should be shorted at a time.