siηnetics DUAL J-K EDGE-TRIGGERED FLIP-FLOP S54H106 554H1U6 N74H106 \$54H106-B.F.W • N54H106-B.F # DIGITAL 54/74 TTL SERIES #### DESCRIPTION These dual monolithic J-K flip-flops are negative edge-triggered. They feature individual J, K, clock, and asynchronous preset and clear inputs to each flip-flop. When the clock goes high, the inputs are enabled and data will be accepted. Logical state of J and K inputs may be allowed to change when the clock pulse is in a high state and bistable will perform according to the truth table as long as minimum set-up times are observed. Input data is transferred to the outputs on the negative edge of the clock pulse. #### TRUTH TABLE | | | Γ | |----------------|---|------------------| | t _n | | t _{n+1} | | J | к | a - | | 0 | 0 | a _n | | 0 | 1 | О | | 1 | 0 | 1 | | 1 | 1 | ā _n | #### NOTES: - 1. t_n = Bit time before clock pulse. - 2. t_{n+1} = Bit time after clock pulse. #### PIN CONFIGURATION #### **CLOCK WAVEFORM** # BLOCK DIAGRAM (each flip-flop) ## SCHEMATIC DIAGRAM (each flip-flop) ### RECOMMENDED OPERATING CONDITIONS | | MIN | NOM | MAX | UNIT | |---|------|-----|--------------------------------|------| | Supply Voltage V _{CC} : S54H106 Circuits | 4.5 | 5 | 5.5 | V | | N74H106 Circuits | 4.75 | 5 | 5.25 | v | | Operating Free-Air Temperature Range, TA: \$54H106 Circuits | -55 | 25 | 5.5
5.25
125
70
10 | °c | | N74H106 Circuits | 0 | 25 | | °c | | Normalized Fan-Out From Each Output, N | | | 10 | | | Width of Clock Pulse, tp(clock) | 10 | | | ns | | Width of Preset Pulse, tp(preset) | 16 | | | ns | | Width of Clear Pulse, tp(clear) | 16 | | | ns | | Input Setup Time, t _{Setup} (See Above): Logical 1 | 10 | | 1 | ns | | Logical O | 13 | | | ns | | Input Hold Time, thold | 0 | | 1 | ns | | Clock Pulse Transition Time, to | | | 150 | ns | ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted) | PARAMETER | | TEST CONDITIONS† | | MIN | TYP§ | MAX | UNIT | |---------------------|--|------------------------|----------------------------|-----|--|------|------| | Vin(1) | Input voltage required to ensure logical 1 at any input terminal | | | 2 | | | V | | V _{in(0)} | input voltage required to ensure logical 0 at any input terminal | | | | | 0.8 | v | | V _{out(1)} | Logical 1 output voltage | V _{CC} = MIN, | I _{load} = 500 μA | 2.4 | 3.2 | | v | | V _{out(0)} | Logical 0 output voltage | V _{CC} = MIN, | I _{sink} = 20 mA | | 0.25 | 0.4 | v | | l _{in(0)} | Logical 0 level input current at
J, K, preset, or clear | V _{CC} = MAX, | V _{in} = 0.4 V | | -1 | -2 | mA | | l _{in(0)} | Logical O level input current at clock | V _{CC} = MAX, | V _{in} = 0.4 V | | -3 | -4.8 | mA | | | Logical 1 level input current at | V _{CC} = MAX, | V _{in} = 2.4 V | | | 50 | μА | | lin(1) | J or K | V _{CC} = MAX, | V _{in} = 5.5 V | | 0.8 0.8 0.8 0.8 0.25 0.4 -1 -2 -3 -4.8 50 1 100 1 1 1 | mA | | | | Logical 1 level input current at | V _{CC} = MAX, | V _{in} = 2.4 V | | | 100 | μА | | lin(1) | present or clear | V _{CC} = MAX, | V _{in} = 5.5 V | | | 1 | mA | | | Logical 1 level input current at | V _{CC} = MAX, | V _{in} = 2.4 V | 0 | | -1 | , mA | | lin(1) | clock | V _{CC} = MAX, | V _{in} = 5.5 V | | | 1 | mA | | los | Short-circuit output current‡ | V _{CC} = MAX, | V _{in} = 0 | -40 | | -100 | mA | | Icc | Supply current | V _{CC} = MAX | | | 40 | 76 | mA | [†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable ## SWITCHING CHARACTERISTICS, V_{CC} = 5 V, T_A = 25°C, N = 10 | PARAMETER | | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |--------------------|---|-------------------------|------------------------|-----|-----|-----|------| | ¹ clock | Maximum input clock frequency | C _L = 25 pF, | R _L = 280 Ω | 40 | 50 | | MHz | | ^t pd1 | Propagation delay time to logical 1 level from preset or clear to output | C _L = 25 pF, | R _L = 280 Ω | | 8 | 12 | ns | | t _{pd} 0 | Propagation delay time to logical O
level from preset or clear to
output (clock low) | C _L = 25 pF, | R _L = 280 Ω | | 23 | 35 | ns | | t _{pd0} | Propagation delay time to logical 0
level from preset or clear to
output (clock high) | C _L = 25 pF, | R _L = 280 Ω | | 15 | 20 | ns | | ^t pd1 | Propagation delay time to logical 1 level from clock to output | CL = 25 pF, | R _L = 280 Ω | 5 | 10 | 15 | ns | | ^t pd0 | Propagation delay time to logical O level from clock to output | CL = 25 pF, | R _L = 280 Ω | 8 | 16 | 20 | ns | [‡]Not more than one output should be shorted at a time, and duration of short-circuit test should not exceed 1 second. $[\]S$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.