POSITIVE-NAND GATE S54S20 N74S20

S54S20-A,F,W • N74S20-A,F

PIN CONFIGURATIONS

DIGITAL 54/74 TTL SERIES

W PACKAGE

RECOMMENDED OPERATING CONDITIONS

V _{CC} 20 2C NC 28 2A 2V 14 13 12 11 10 9 8	
A,F PACKAGE	
v_{CC} 2D 2C NC 2B 2A 2Y 14 13 12 11 10 9 8 r	

			\$54\$20 N74\$20			S54S20			N74S20		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT			
Sup	oply Voltage V _{CC}	4.5	5	5.5	4.75	5	. 5.25	V			
	malized Fan-Out from each Output, N: High logic level			20			20				
	Low logic level			10			10	ļ			
Ор	erating Free-Air Temperature, T _A	-55		125	0		70	°C			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*				TYP**	MAX	UNIT
V _{IH}	High-level input voltage				2			v
V _{IL}	Low-level input voltage						0.8	v
v _i	Input clamp voltage	V _{CC} = MIN,	I _I = -18mA				-1.2	v
、 <i>/</i>	High-level output voltage	V _{CC} = MIN,	V _{IL} = 0.8V,	Series 54S	2.5	3.4		v
v _{он}		I _{OH} = -1mA		Series 74S	2.7	3.4		v
V _{OL}	Low-level output voltage	V _{CC} = MIN,	V _{IH} = 2V,					
		I _{OL} = 20mA					0.5	v
4	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5V				1	mA
ін	High-level input current (each input)	V _{CC} = MAX,	V _I = 2.7V				50	μΑ
1 _{IL}	Low-level input current (each input)	V _{CC} = MAX,	V ₁ = 0.5V				-2	mA
los	Short-circuit output current [†]	V _{CC} = MAX			-40		-100	mA
іссн	Supply current, high-level output	V _{CC} = MAX,	All inputs at OV			2.5	4	mA
	(average per gate)							
ICCL	Supply current, low-level output	V _{CC} = MAX,	All inputs at 5V			5	9	mA
	(average per gate)							

SCHEMATIC (each gate)

SWITCHING CHARACTERISTICS, $V_{CC} = 5V$, $T_A = 25^{\circ}C$, N = 10

PARAMETER		TEST CONDITIONS			ТҮР	МАХ	UNIT
	С _L = 15рF,	R _L = 280Ω	2	3	4.5		
^t PLH	Propagation delay time, low-to-high- level output	C _L = 50pF,	R _L = 280Ω		4.5		ns
		C _L = 15pF,	R _L = 280Ω	2	3	5	
^t PHL	Propagation delay time, high-to-low- level output	С _L = 50рF,	R _L = 280Ω		5		ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

** All typical values are at V_{CC} = 5V, T_A = 25°C.
† Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second.

NOTES:

A. The pulse generator has the following characteristics: $V_{in(1)} = 3V$, $V_{in(0)} = 0V$, $t_1 = t_0 = 2.5ns$, PRR = 1MHz, duty cycle = 50%, and $Z_{out} \approx 50\Omega$. B. Inputs not under test are at 2.7V.

C. C_{L} includes probe and jig capacitance.