PULSE WIDTH MODULATION AMPLIFIER # **SA55** HTTP://WWW.APEXMICROTECH.COM (800) 546-APEX (800) 546-2739 #### **PRELIMINARY** ### **FEATURES** - DELIVERS UP TO 5A CONTINUOUS OUTPUT - OPERATES AT SUPPLY VOLTAGES TO 55V - TTL AND CMOS COMPATIBLE INPUTS - NO "SHOOT-THROUGH" CURRENT - THERMAL WARNING FLAG OUTPUT AT 145° C - THERMAL SHUTDOWN (OUTPUTS OFF) AT 160°C - INTERNAL CLAMP DIODES - SHORTED LOAD PROTECTION - INTERNAL CHARGE PUMP WITH EXTERNAL BOOTSTRAP CAPABILITY #### **APPLICATIONS** - DC AND STEPPER MOTOR DRIVES - POSITION AND VELOCITY SERVOMECHANISMS - FACTORY AUTOMATION ROBOTS - NUMERICALLY CONTROLLED MACHINERY - COMPUTER PRINTERS AND PLOTTERS #### **DESCRIPTION** The SA55 is a 5A H-Bridge designed for motion control applications. The device is built using a multi-technology process which combines bipolar and CMOS control circuitry with DMOS power devices on the same monolithic structure. Ideal for driving DC and stepper motors; the SA55 accomodates peak output currents up to 10A. An innovative circuit which facilitates low-loss sensing of the output current has been implemented. # **SA55** | ABSOLUTE MAXIMUM RATINGS | SUPPLY VOLTAGE, V _s , Pin 6 VOLTAGE at Pins 3, 4, 5, 8 and 9 VOLTAGE at Bootstrap Pins (Pins 1 and 11) PEAK OUTPUT CURRENT (200mS) CONTINUOUS OUTPUT CURRENT (Note 2) POWER DISSIPATION (Note 3) POWER DISSIPATION (T _A = 25°C, Free Air) JUNCTION TEMPERATURE, T _{J(MAX)} ESD SUSCEPTIBILITY (Note 4) STORAGE TEMPERATURE, T _{STG} LEAD TEMPERATURE (Soldering, 10 sec.) JUNCTION TERMPERATURE, T _J | 60V
12V
V _{OUT} ±16V
10A
5A
25W
3W
150°C
1500V
-40°C to +150°C
300°C
-40°C to +125°C | |--------------------------|---|--| | | JUNCTION TERMPERATURE, I_J V_S SUPPLY VOLTAGE | -40°C to +125°C
+12V to +55V | ## **SPECIFICATIONS** | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |---|--|-----|---------------------------------|----------------------------|---| | SWITCH ON RESISTANCE, R _{DS} (ON)
CLAMP DIODE FORWARD DROP, V _{CLAMP}
LOGIC LOW INPUT VOLTAGE, V _{IL} | Output Current = 5A
Clamp Current = 5A
Pins 3, 4, 5 | | 0.33
1.2 | 0.6
1.5
-0.1
0.8 | Ω
V
V | | LOGIC LOW INPUT CURRENT, $I_{\rm IL}$ LOGIC HIGH INPUT VOLTAGE, $V_{\rm IH}$ | V _{IN} = -0.1V, Pins = 3, 4, 5
Pins 3, 4, 5 | | | -10
2
12 | μA
V
V | | LOGIC HIGH INPUT CURRENT, I _{IH}
CURRENT SENSE OUTPUT | V _{IN} = 12V, Pins = 3, 4, 5
I _{OUT} = 1A | | 485 | 10
560 | μA
μA | | CURRENT SENSE LINEARITY UNDERVOLTAGE LOCKOUT UNDERVOLTAGE LOCKOUT WARNING FLAG TEMPERATURE, T _{JW} FLAG OUTPUT SATURATION VOLTAGE, V _F (ON) FLAG OUTPUT LEAKAGE, I _F (OFF) SHUTDOWN TEMPERATURE, T _{JSD} QUIESCENT SUPPLY CURRENT, I _S OUTPUT TURN-ON DELAY TIME, t _{Don} | $1A \le I_{OUT} \le 5A$ Outputs Turn OFF Outputs Turn OFF Pin $9 \le 0.8V$, $I_L = 2$ mA $T_J = T_{Jw}$, $I_L = 2$ mA $V_F = 12V$ Outputs Turn OFF All Logic Inputs Low Sourcing Outputs, $I_{OUT} = 5A$ Binking Outputs, $I_{OUT} = 5A$ Bootstrap Capacitor = 10 nF | | ±6 145 0.15 0.2 160 13 300 300 | ±9
9
10
175
25 | %
V
11 V
°C
V
μA
°C
mA
ns
ns | | OUTPUT TURN-OFF DELAY TIMES, t _{Doff} | Sourcing Outputs, I _{OUT} = 5A
Sinking Outputs, I _{OUT} = 5A
Sourcing Outputs, I _{OUT} = 5A
Sinking Outputs, I _{OUT} = 5A | | 100
80
200
200 | | ns
ns
ns | | OUTPUT TURN-OFF SWITCHING TIME, $\boldsymbol{t}_{\text{off}}$ | Bootstrap Capacitor = 10 nF
Sourcing Outputs, I _{OUT} = 5A
Sinking Outputs, I _{OUT} = 5A | | 75
70 | | ns
ns | | MINIMUM INPUT PULSE WIDTH, t_{pw} CHARGE PUMP RISE TIME, t_{cpr} | Pins 3, 4, 5
No Bootstrap Capacitor | | 1
20 | | μs
μs | NOTE: These specifications apply for V_S = 42V, unless otherwise specified.