DESCRIPTION The μ A723/SA723C is a Monolithic Precision Voltage Regulator capable of operation in positive or negative supplies as a series, shunt, switching or floating regulator. The 723 contains a temperature compensated reference amplifier, error amplifier, series pass transistor, and current limiter, with access to remote shutdown. #### **FEATURES** - Positive or negative supply operation - Series, shunt, switching or floating operation - .01% line and load regulation - Output voltage adjustable from 2 to 37 volts - Output current to 150mA without external pass transistor - μA723 MIL STD 88 3A, B, C available ### **ABSOLUTE MAXIMUM RATINGS** | PARAMETER | RATING | UNIT | | | |---|-------------|------|--|--| | Pulse voltage from V+ to V- (50 ms) | 50 | V | | | | Continous voltage from V+ to V- | 40 | v | | | | Input-output voltage differential | 40 | V | | | | Maximum output current | 150 | mA | | | | Current from VREF | 15 | mA | | | | Current from Vz | 25 | mA | | | | Internal power dissipation ¹ | 800 | mw | | | | Operating temperature range | | | | | | μA723 | -55 to +125 | °C | | | | μA723C | 0 to 70 | °C | | | | SA723C | -40 to +85 | °C | | | | Storage temperature range | -65 to +150 | °C | | | | Lead temperature | 300 | °C | | | #### PIN CONFIGURATIONS #### **EQUIVALENT CIRCUIT** ### DC ELECTRICAL CHARACTERISTICS T_A = 25°C unless otherwise specified.1 | PARAMETER TE | 7707 001171710117 | μ Α723 | | | μA723C/SA723C | | | | |---|--|---------------|------------------|------------|---------------|------------------|------------|-------------------| | | TEST CONDITIONS | Min | Тур | Max | Min | Тур | Max | UNIT | | Line regulation ² | V _{IN} = 12V to V _{IN} = 15V
V _{IN} = 12V to V _{IN} = 40V | | 0.01
0.02 | 0.1
0.2 | | 0.01
0.1 | 0.1
0.5 | %Vout
%Vout | | Load regulation ² | IL = 1mA to IL = 50mA
f = 50Hz to 10kHz, CREF = 0
f = 50Hz to 10kHz, CREF = 5µF | | 0.03
74
86 | 0.15 | | 0.03
74
86 | 0.2 | %Vout
dB
dB | | Short circuit current limit | Rsc = 10Ω, V _{OUT} = 0 | | 65 | | | 65 | | mA | | Reference voltage | | 6.95 | 7.15 | 7.35 | 6.80 | 7.15 | 7.50 | V | | Output noise voltage | BW = 100Hz to 10kHz, CREF = 0
BW = 100Hz to 10kHz, CREF = 5µF | | 20
2.5 | | | 20
2.5 | | μVrms
μVrms | | Long term stability | | | 0.1 | | | 1 | 0.1 | %/1000hrs | | Standby current drain | IL = 0, VIN = 30V | | 2.3 | 3.5 | | 2.3 | 4.0 | mA | | Input voltage range | | 9.5 | | 40 | 9.5 | | 40 | V | | Output voltage range | | 2.0 | | 37 | 2.0 | | 37 | V | | Input-output voltage differential | | 3.0 | | 38 | 3.0 | | 38 | V | | The following specifications apply
over the operating temperature
ranges
Line regulation | | | | 0.3 | | | 0.3 | %Vout | | Load regulation | | | | 0.6 | | | 0.6 | %Vout | | Average temperature coefficient of output voltage | V _{IN} = 12V to V _{IN} = 15V
I _L = 1mA to I _L = 50mA | | 0.002 | 0.015 | | 0.003 | 0.015 | %/°C | #### NOTES - 1. V_{IN} = V+ = V_C = 12V, V-= 0V, V_{OUT} = 5V, I_L = 1mA, R_{SC} = 0, C_1 = 100pF, C_{REF} = 0 and divider impedance as seen by error amplifier $\le 10k\Omega$ when connected as shown in Figure 3. - The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation. #### TYPICAL PERFORMANCE CHARACTERISTICS #### TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd) ## PRECISION VOLTAGE REGULATOR #### TYPICAL APPLICATIONS # PRECISION VOLTAGE REGULATOR #### TYPICAL APPLICATIONS (Cont'd)