# Signetics

#### **Linear Products**

### DESCRIPTION

The 532/358/LM2904 consists of two independent, high gain, internally frequency-compensated operational amplifiers internally frequency-compensated operational amplifiers designed specifically to operate from a single power supply over a wide range of voltages. Operation from dual power supplies is also possible, and the low power supply current drain is independent of the magnitude of the power supply voltage.

### UNIQUE FEATURES

In the linear mode the input commonmode voltage range includes ground and the output voltage can also swing to includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. The unity gain cross frequency is temperature-compensated. The input bias current is also temperature-compensated.

# NE/SA/SE532/ LM158/258/358/A/2904 Low Power Dual Operational Amplifiers

**Product Specification** 

## FEATURES

- Internally frequency-compensated for unity gain
- Large DC voltage gain -- 100dB
- Wide bandwidth (unity gain) 1MHz (temperature-compensated)
- Wide power supply range single supply  $3V_{DC}$  to  $30V_{DC}$  or dual supplies  $\pm 1.5V_{DC}$  to  $\pm 15V_{DC}$
- Very low supply current drain (400μA) — essentially independent of supply voltage (1mW/op amp at +5V<sub>DC</sub>)
- Low input biasing current 45nA<sub>DC</sub> temperaturecompensated
- Low input offset voltage 2mV<sub>DC</sub> and offset current — 5nA<sub>DC</sub>
- Differential input voltage range equal to the power supply voltage
- Large output voltage 0V<sub>DC</sub> to V+ 1.5V<sub>DC</sub> swing

## PIN CONFIGURATIONS



#### EQUIVALENT CIRCUIT



# NE/SA/SE532/ LM158/258/358/A/2904

## ORDERING INFORMATION

| DESCRIPTION       | TEMPERATURE RANGE | ORDER CODE |
|-------------------|-------------------|------------|
| 8-Pin Plastic SO  | 0 to +70°C        | NE532D     |
| 8-Pin Plastic DIP | 0 to +70°C        | NE532N     |
| 8-Pin Ceramic DIP | 0 to +70°C        | NE532FE    |
| 8-Pin Plastic SO  | -40°C to +85°C    | SA532D     |
| 8-Pin Plastic DIP | -40°C to +85°C    | SA532N     |
| 8-Pin Ceramic DIP | -40°C to +85°C    | SA532FE    |
| 8-Pin Plastic SO  | -40°C to +85°C    | LM2904D    |
| 8-Pin Plastic DIP | -40°C to +85°C    | LM2904N    |
| 8-Pin Ceramic DIP | -55°C to +125°C   | LM158FE    |
| 8-Pin Plastic DIP | -25°C to +85°C    | LM258N     |
| 8-Pin Plastic SO  | -25°C to +85°C    | LM258D     |
| 8-Pin Plastic SO  | 0 to +70°C        | LM358D     |
| 8-Pin Plastic DIP | 0 to +70°C        | LM358N     |
| 8-Pin Plastic DIP | 0 to +70°C        | LM358AN    |
| 8-Pin Plastic SO  | 0 to +70°C        | LM358AD    |
| 8-Pin Plastic DIP | -55°C to +125°C   | SE532N     |
| 8-Pin Ceramic DIP | -55°C to +125°C   | SE532FE    |

## ABSOLUTE MAXIMUM RATINGS

| SYMBOL            | PARAMETER                                                                                                           | RATING                                              | UNIT               |
|-------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------|
| Vs                | Supply voltage, V+                                                                                                  | 32 or ±16                                           | V <sub>DC</sub>    |
|                   | Differential input voltage                                                                                          | 32                                                  | V <sub>DC</sub>    |
| VIN               | Input voltage                                                                                                       | -0.3 to +32                                         | V <sub>DC</sub>    |
| PD                | Maximum power dissipation<br>T <sub>A</sub> = 25°C (Still air) <sup>1</sup><br>FE package<br>N package<br>D package | 780<br>1160<br>780                                  | mW<br>mW<br>mW     |
|                   | Output short-circuit to $GND^5$<br>V+ < 15 V <sub>DC</sub> and T <sub>A</sub> = 25°C                                | Continuous                                          |                    |
| T <sub>A</sub>    | Operating ambient temperature range<br>NE532/LM358/LM358A<br>LM258<br>SA532/LM2904<br>SE532/LM158                   | 0 to +70<br>-25 to +85<br>-40 to +85<br>-55 to +125 | <b>ာံ</b> သံ<br>သံ |
| TSTG              | Storage temperature range                                                                                           | -65 to +150                                         | °C                 |
| T <sub>SOLD</sub> | Lead soldering temperature (10sec max)                                                                              | 300                                                 | °C                 |

NOTE:

1. Derate above 25°C, at the following rates:

FE package at 6.2mW/°C

N package at 9.3mW/°C

D package at 6.2mW/°C

....

# Low Power Dual Operational Amplifiers

# NE/SA/SE532/ LM158/258/358/A/2904

## DC ELECTRICAL CHARACTERISTICS $T_A \approx 25^{\circ}$ C, V+ = +5V, unless otherwise specified.

| SYMBOL          | PARAMETER                                       | TEST CONDITIONS                                                                                           | SE532, LM158/258 |            | NE/SA532/LM358/<br>LM2904 |          |            | UNIT                 |              |
|-----------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------|------------|---------------------------|----------|------------|----------------------|--------------|
|                 |                                                 |                                                                                                           | Min              | Тур        | Max                       | Min      | Тур        | Max                  |              |
| Vos             | Offset voltage1                                 | $R_S = 0\Omega$<br>$R_S = 0\Omega$ , over temp.                                                           |                  | ±2         | ±5<br>±7                  |          | ±2         | ±7<br>±9             | mV<br>mV     |
| Vos             | Drift                                           | $R_{S} = 0\Omega$ , over temp.                                                                            |                  | 7          |                           |          | 7          | 1                    | μV/°C        |
| los             | Offset current                                  | l <sub>IN</sub> (+ ) – l <sub>IN</sub> (– )<br>Over temp.                                                 |                  | ± 3        | ± 30<br>± 100             |          | ± 5        | ± 50<br>± 150        | nA<br>nA     |
| los             | Drift                                           | Over temp.                                                                                                |                  | 10         |                           |          | 10         |                      | pA/°C        |
| IBIAS           | Input current <sup>2</sup>                      | $I_{IN}$ (+) or $I_{IN}$ (-)<br>Over temp., $I_{IN}$ (+) or $I_{IN}$ (-)                                  |                  | 45<br>40   | 150<br>300                |          | 45<br>40   | 250<br>500           | nA<br>nA     |
| 1 <sub>B</sub>  | Drift                                           | Over temp.                                                                                                |                  | 50         |                           |          | 50         |                      | pA/°C        |
| V <sub>CM</sub> | Common-mode voltage range <sup>3</sup>          | V+ = 30V<br>Over temp., V+ = 30V                                                                          | 0<br>0           |            | V+ - 1.5<br>V+ - 2.0      | 0<br>0   |            | V+ ~ 1.5<br>V+ ~ 2.0 | v<br>v       |
| CMRR            | Common-mode rejection ratio                     | V+ = 30V                                                                                                  | 70               | 85         |                           | 65       | 70         |                      | dB           |
| V <sub>OH</sub> | Output voltage swing                            | $R_L \ge 2k\Omega$ , V+ = 30V,<br>over temp.<br>$R_L \ge 10k\Omega$ , V+ = 30V,                           | 26<br>27         | 29         |                           | 26<br>27 | 28         |                      | v            |
|                 |                                                 | over temp.                                                                                                | 21               | 28         |                           |          | 20         |                      | • • • • •    |
| VOL             | Output voltage swing                            | $R_L \ge 10k\Omega$ , over temp.                                                                          |                  | 5          | 20                        |          | 5          | 20                   | mV           |
| Icc             | Supply current                                  | $R_L = \infty$ , $V+ = 30V$<br>$R_L = \infty$ on all amplifiers,<br>over temp., $V+ = 30V$                |                  | 0.5<br>0.6 | 1.0<br>1.2                |          | 0.5<br>0.6 | 1.0<br>1.2           | mA<br>mA     |
| Avol            | Large-signal voltage gain                       | R <sub>L</sub> ≥2kΩ, V <sub>OUT</sub> ±10V,<br>V+ = 15V<br>(for large V <sub>O</sub> swing)<br>over temp. | 50<br>25         | 100        |                           | 25<br>15 | 100        |                      | V/mV<br>V/mV |
| PSRR            | Supply voltage rejection ratio                  | R <sub>S</sub> = 0Ω                                                                                       | 65               | 100        |                           | 65       | 100        |                      | dB           |
|                 | Amplifier-to-amplifier<br>coupling <sup>4</sup> | f = 1kHz to 20kHz<br>(input referred)                                                                     |                  | -120       |                           |          | -120       |                      | dB           |
| lout            | Output current<br>Source                        | $V_{IN+} = + 1V_{DC}, V_{IN-} = 0V_{DC},$<br>$V+ = 15V_{DC}$                                              | 20               | 40         |                           | 20       | 40         |                      | mA           |
|                 |                                                 | $V_{IN+} = + 1V_{DC}, V_{IN-} = 0V_{DC},$<br>V+ = 15V <sub>DC</sub> , over temp.                          | 10               | 20         |                           | 10       | 20         |                      | mA           |
|                 | Sink                                            | $V_{IN-} = + 1V_{DC}, V_{IN+} = 0V_{DC}, V_{+} = 15V_{DC}$                                                | 10               | 20         |                           | 10       | 20         |                      | mA           |
|                 |                                                 | $V_{IN-} = + 1V_{DC}, V_{IN+} = 0V_{DC},$<br>V+ = 15V <sub>DC</sub> , over temp.                          | 5                | 8          |                           | 5        | 8          |                      | mA           |
|                 |                                                 | $V_{iN+} = 0V, V_{iN-} = +1V_{DC}, V_0 = 200mV$                                                           | 12               | 50         |                           | 12       | 50         |                      | μA           |
| Isc             | Short circuit current5                          |                                                                                                           |                  | 40         | 60                        |          | 40         | 60                   | mA           |
|                 | Differential input voltage <sup>6</sup>         |                                                                                                           |                  |            | V+                        |          |            | V+                   | v            |
| GBW             | Unity gain bandwidth                            | T <sub>A</sub> = 25°C                                                                                     |                  | 1          |                           |          | 1          |                      | MHz          |
| SR              | Slew rate                                       | T <sub>A</sub> = 25°C                                                                                     |                  | 0.3        |                           |          | 0.3        |                      | V/µs         |
| VNOISE          | Input noise voltage                             | T <sub>A</sub> = 25°C, f = 1kHz                                                                           |                  | 40         |                           |          | 40         |                      | nV/VH        |

# NE/SA/SE532/ LM158/258/358/A/2904

## DC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ , V+ = +5V, unless otherwise specified.

|                  | PARAMETER                                    | TEST CONDITIONS                                                                                                                                                  |          |            |                      |              |
|------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------------------|--------------|
| SYMBOL           |                                              |                                                                                                                                                                  | Min      | Тур        | Max                  | UNIT         |
| V <sub>OS</sub>  | Offset voltage <sup>1</sup>                  | $R_S = 0\Omega$<br>$R_S = 0\Omega$ , over temp.                                                                                                                  |          | ±2         | ±3<br>±5             | mV<br>mV     |
| Vos              | Drift                                        | $R_S = 0\Omega$ , over temp.                                                                                                                                     |          | 7          | 20                   | µV/°C        |
| los              | Offset current                               | l <sub>iN</sub> (+ ) – l <sub>iN</sub> (–)<br>Over temp.                                                                                                         |          | 5          | ± 30<br>± 75         | nA<br>nA     |
| los              | Drift                                        | Over temp.                                                                                                                                                       |          | 10         | 300                  | pA/°C        |
| BIAS             | Input current <sup>2</sup>                   | l <sub>IN</sub> (+) or l <sub>IN</sub> (-)<br>Over temp., l <sub>IN</sub> (+) or l <sub>IN</sub> (-)                                                             |          | 45<br>40   | 100<br>200           | nA<br>nA     |
| IB               | Drift                                        | Over temp.                                                                                                                                                       |          | 50         |                      | pA/°C        |
| V <sub>CM</sub>  | Common-mode voltage range <sup>3</sup>       | V+ = 30V<br>Over temp., V+ = 30V                                                                                                                                 | 0        |            | V+ - 1.5<br>V+ - 2.0 | v<br>v       |
| CMRR             | Common-mode rejection ratio                  | V+ = 30V                                                                                                                                                         | 65       | 85         |                      | dB           |
| V <sub>OH</sub>  | Output voltage swing                         | $\begin{aligned} R_{L} \geq 2k\Omega, \ V+=30V,\\ \text{over temp.}\\ R_{L} \geq 10k\Omega, \ V+=30V, \end{aligned}$                                             | 26       |            |                      | v            |
|                  |                                              | over temp.                                                                                                                                                       | 27       | 28         |                      | v            |
| V <sub>OL</sub>  | Output voltage swing                         | $R_L \ge 10 k\Omega$ , over temp.                                                                                                                                |          | 5          | 20                   | mV           |
| lcc              | Supply current                               | $R_L = \infty$ , $V + = 30V$<br>$R_L = \infty$ on all amplifiers,<br>over temp., $V + = 30V$                                                                     |          | 0.5<br>0.6 | 1.0<br>1.2           | mA<br>mA     |
| A <sub>VOL</sub> | Large-signal voltage gain                    | $\label{eq:RL} \begin{array}{l} R_{L} \geq 2k\Omega, \ V_{OUT} \pm 10V, \\ V+ = 15V \\ (\text{for large } V_{O} \text{ swing}) \\ \text{over temp.} \end{array}$ | 25<br>15 | 100        |                      | V/mV<br>V/mV |
| PSRR             | Supply voltage rejection ratio               | $R_{S} = 0\Omega$                                                                                                                                                | 65       | 100        |                      | dB           |
|                  | Amplifier-to-amplifier coupling <sup>4</sup> | f = 1kHz to 20kHz<br>(input referred)                                                                                                                            |          | -120       |                      | dB           |
| lout             | Output current<br>Source                     | $V_{IN+} = +1V_{DC}, V_{IN-} = 0V_{DC},$<br>$V+ = 15V_{DC}$                                                                                                      | 20       | 40         |                      | mA           |
|                  |                                              | $V_{IN+} = + 1V_{DC}, V_{IN-} = 0V_{DC},$<br>$V + = 15V_{DC}, \text{ over temp.}$<br>$V_{IN-} = + 1V_{DC}, V_{IN+} = 0V_{DC},$                                   | 10       | 20         |                      | mA           |
|                  | Sink                                         | $V + = 15V_{DC}$                                                                                                                                                 | 10       | 20         |                      | mA           |
|                  |                                              | $V_{IN-} = + 1V_{DC}, V_{IN+} = 0V_{DC},$<br>$V + = 15V_{DC}, \text{ over temp.}$<br>$V_{IN+} = 0V, V_{IN-} = + 1V_{DC},$                                        | 5        | 8          |                      | mA           |
|                  |                                              | $v_{iN+} = 0v, v_{iN-} = +1v_{DC},$<br>$v_{O} = 200mV$                                                                                                           | 12       | 50         |                      | μA           |

# NE/SA/SE532/ LM158/258/358/A/2904

## DC ELECTRICAL CHARACTERISTICS (Continued) $T_A = 25^{\circ}C$ , V+ = + 5V, unless otherwise specified.

| SYMBOL | PARAMETER                               | TEST CONDITIONS                |     |     |     |        |
|--------|-----------------------------------------|--------------------------------|-----|-----|-----|--------|
|        |                                         |                                | Min | Тур | Max | UNIT   |
| Isc    | Short circuit current <sup>5</sup>      |                                |     | 40  | 60  | mA     |
|        | Differential input voltage <sup>6</sup> |                                |     |     | V+  | v      |
| GBW    | Unity gain bandwidth                    | T <sub>A</sub> = 25°C          |     | 1   |     | MHz    |
| SR     | Slew rate                               | T <sub>A</sub> = 25°C          |     | 0.3 |     | V/µs   |
| VNOISE | Input noise voltage                     | $T_A = 25^{\circ}C$ , f = 1kHz |     | 40  |     | nV/VH: |

NOTES:

1.  $V_O \cong$  1.4V,  $R_S = 0\Omega$  with V+ from 5V to 30V; and over the full input common-mode range (0V to V+ -1.5V).

2. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

3. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+ -1.5V, but either or both inputs can go to +32V without damage.

4. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance coupling increases at higher frequencies.

5. Short-circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 40mA independent of the magnitude of V+. At values of supply voltage in excess of + 15V<sub>DC</sub>, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.

6. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+ -1.5V, but either or both inputs can go to +32V<sub>DC</sub> without damage.

NE/SA/SE532/

LM158/258/358/A/2904

# Low Power Dual Operational Amplifiers

### TYPICAL PERFORMANCE CHARACTERISTICS



# NE/SA/SE532/ LM158/258/358/A/2904





## TYPICAL APPLICATIONS

