Signetics

Linear Products

DESCRIPTION

The NE5561/SE5561 is a control circuit for use in switched-mode power supplies. It contains an internal temperature-compensated supply, PWM, sawtooth oscillator, overcurrent sense latch, and output stage. The device is intended for low cost SMPS applications where extensive housekeeping functions are not required.

NE/SE5561 Switched-Mode Power Supply Control Circuit

Product Specification

FEATURES

- Micro-miniature (D) package
- Pulse-width modulator
- Current limiting (cycle-by-cycle)
- Sawtooth generator
- Stabilized power supply
- Double pulse protection
- Internal temperature-compensated reference

APPLICATIONS

- Switched-mode power supplies
- DC motor controller inverter
- DC/DC converter

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE		
8-Pin Plastic DIP	0 to +70°C	NE5561N		
8-Pin Plastic DIP	-55 to +125°C	SE5561N		
8-Pin Cerdip	0 to +70°C	NE5561FE		
8-Pin Cerdip	-55 to +125°C	SE5561FE		
8-Pin SO	0 to +70°C	NE5561D		

BLOCK DIAGRAM

NE/SE5561

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{cc}	Supply ¹ Voltage-forced mode Current-fed mode	+ 18 30	V mA
lout Vout	Output transistor (at 20-30V max) Output current Output voltage Output duty cycle	40 V _{CC} + 1.4V 98	mA V %
PD	Maximum total power dissipation	0.75	w
TA	Operating temperature range SE5561 NE5561	-55 to +125 0 to 70	°C °C

NOTE:

1. See Voltage-Current-fed supply characteristic curve.

DC ELECTRICAL CHARACTERISTICS $V_{CC} = 12V$, $T_A = 25^{\circ}C$, unless otherwise specified.

				SE5561			NE5561			
SYMBOL	(MBOL PARAMETER TEST CONDITIONS		Min	Тур	Max	Min	Тур	Max	UNIT	
Reference	e section			H	L		L	1		
V		T _A = 25°C		3.69	3.75	3.84	3.57	3.75	3. 96	v
VREF	Internal ref voltage	Over temperature		3.65		3.88	3.55		3.98	v
Vz	Internal zener ref	*I _L = 7mA		7.8	8.2	8.8	7.8	8.2	8.8	v
	Temp. coefficient of VREF				± 100			± 100		ppm°C
	Temp. coefficient of V_Z				± 200			± 200		ppm/°C
Oscillator	section									
	Frequency range	Over temperature		50		100k	50		100k	Hz
	Initial accuracy	R_T and C_T constant		}	5			5		%
	Duty cycle range	f _O = 20kHz		0		98	0		98	%
Current li	miting									
	Input current	Pin 6 = 250mV	T _A = 25°C		-2	-10		-2	-10	μA
[}] IN			Over temp.			~20			-20	μA
		Inhibit delay time for 20% overdrive at	I _{OUT} = 20mA		0.88	1.10		0.88	1.10	μs
	Single pulse inhibit delay		I _{OUT} = 40mA		0.7	0.8		0.7	0.8	μs
	Current limit trip level			.400	.500	.600	.400	.500	.600	v
Error am	plifier	<u></u> .								
	Open-loop gain				60			60		dB
	Feedback resistor			10k			10k			Ω
BW	Small-signal bandwidth				3			3		MHz
V _{OH}	Output voltage swing			6.2			6.2			v
VOL	Output voltage swing					0.7			0.7	v
Output st	age									
lout	Output current	Over temperature		20			20			mA
V _{CE}	Sat	I _C = 20mA, Over temp.		-		0.4			0.4	v

NE/SE5561

DC ELECTRICAL CHARACTERISTICS (Continued) $V_{CC} = 12V$, $T_A = 25^{\circ}C$, unless otherwise specified.

			TEST CONDITIONS		SE5561			NE5561		
SYMBOL	PARAMETER	TEST COM			Тур	Max	Min	Тур	Max	UNIT
Supply v	oltage/current								·	
lcc	Supply current	I _Z = 0, voltage- forced	T _A = 25°C			10.0			10.0	mA
			Over temp.			13.0			13.0	mA
v	V_{CC} Supply voltage $\frac{I_{CC} = 10 \text{mA, current}}{I_{CC} = 30 \text{mA current}}$	current-fed	20.0	21.0	22.0	19.0	21.0	24.0	V	
VCC		I _{CC} = 30mA current		20.0		30.0	20.0		30.0	V
Low supp	bly protection									
	Pin 1 threshold			8	9	10.5	8	9	10.5	v

TYPICAL PERFORMANCE CHARACTERISTICS

NE/SE5561

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

NE5561 Start-Up

The start-up, or initial turn-on, of this device requires some degree of external protective duty cycle limiting to prevent the duty cycle from initially going to the extreme maximum ($\delta > 90\%$). Either overcurrent limit or slow-start circuitry must be employed to limit duty cycle to a safe value during start-up. Both may be used, if desired.

To implement slow-start, the start-up circuit can be used. The divider R1 and R2 sets a voltage, buffered by Q1, such that the output of the error amplifier is clamped to a maximum output voltage, thereby limiting the maximum duty cycle. The addition of capacitor C will cause this voltage to ramp-up slowly when power is applied, causing the duty cycle to ramp-up simultaneously. Overcurrent limit may be used also. To limit duty cycle in this mode, the switch current is monitored at Pin 6 and the output of the 5561 is disabled on a cycle-by-cycle basis when current reaches the programmed limit. With current limit control of slow-start, the duty cycle is limited to that value, just allowing maximum switch current to flow. (Approximately 0.50V measured at Pin 6.)

APPLICATIONS

5V, 0.5A Buck Regulator Operates from 15V

The converter design shows how simple it is to derive a TTL supply from a system supply of 15V (see Figure 1). The NE5561 drives a

2N4920 PNP transistor directly to provide switching current to the inductor.

Overall line regulation is excellent and covers a range of 12V to 18V with minimal change (< 10mV) in the output operating at full load.

As with all NE5561 circuits, the auxiliary slow start and δ_{MAX} circuit is required, as evidenced by 01. The δ_{MAX} limit may be calculated by using the relationship:

$$\frac{R2}{R1 + R2} (8.2V) = V\delta_{MAX}$$

The maximum duty cycle is then determined from the pulse-width modulator transfer graph, with R1 and R2 being defined from the desired conditions.