

REGULATING PULSE WIDTH MODULATORS

- 8 TO 35 V OPERATION
- 5.1 V REFERENCE TRIMMED TO ± 1 %
- 100 Hz TO 500 KHz OSCILLATOR RANGE
- SEPARATE OSCILLATOR SYNC TERMINAL
- ADJUSTABLE DEADTIME CONTROL
- INTERNAL SOFT-START
- PULSE-BY-PULSE SHUTDOWN
- INPUT UNDERVOLTAGE LOCKOUT WITH HYSTERESIS
- LATCHING PWM TO PREVENT MULTIPLE PULSES
- DUAL SOURCE/SINK OUTPUT DRIVERS

shutdown, as well as soft-start recycle with longer shutdown commands. These functions are also controlled by an undervoltage lockout which keeps the outputs off and the soft-start capacitor discharged for sub-normal input voltages. This lockout circuitry includes approximately 500 mV of hysteresis for jitter-free operation. Another feature of these PWM circuits is a latch following the comparator. Once a PWM pulses has been terminated for any reason, the outputs will remain off for the duration of the period. The latch is reset with each clock pulse. The output stages are totem-pole designs capable of sourcing or sinking in excess of 200 mA. The SG1525A output stage features NOR logic, giving a LOW output for an OFF state. The SG1527A utilizes OR logic which results in a HIGH output level when OFF

DESCRIPTION

The SG1525A/1527A series of pulse width modulator integrated circuits are designed to offer improved performance and lowered external parts count when used in designing all types of switching power supplies. The on-chip + 5.1 V reference is trimmed to ± 1 % and the input common-mode range of the error amplifier includes the reference voltage eliminating external resistors. A sync input to the oscillator allows multiple units to be slaved or a single unit to be synchronized to an external system clock. A single resistor between the CT and the discharge terminals provide a wide range of dead time adjustment. These devices also feature built-in softstart circuitry with only an external timing capacitor required. A shutdown terminal controls both the softstart circuity and the output stages, providing instantaneous turn off through the PWM latch with pulsed

CONNECTION DIAGRAM AND ORDERING NUMBERS (top view)

Туре	Plastic DIP	Ceramic DIP	SO16J
SG1525A	-	SG1525AJ	
SG1527A	-	SG1527AJ	1 ÷ 1
SG2525A	SG2525AN	SG2525AJ	SG2525AP
SG2527A	SG2527AN	SG2527AJ	SG2527AP
SG3525A	SG3525AN	SG3525AJ	SG3525AP
SG3527A	SG3527AN	SG3527AJ	SG3527AP

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vi	Supply Voltage	40	V
Vc	Collector Supply Voltage	40	V
losc	Oscillator Charging Current	5	mA
l _o	Output Current, Source or Sink	500	mA
l _R	Reference Output Current	50	mA
١ _T	Current through C _T Terminal Logic Inputs Analog Inputs	5 - 0.3 to + 5.5 - 0.3 to V _i	mA V V
P _{tot}	Total Power Dissipation at Tamb = 70 °C	1000	mW
τ,	Junction Temperature Range	- 55 to 150	°C
T _{stg}	Storage Temperature Range	- 65 to 150	°C
T _{op}	Operating Ambient Temperature : SG1525A/27A SG2525A/27A SG3525A/27A	- 55 to 125 - 25 to 85 0 to 70	သံသံ

THERMAL DATA (DIP-16)

			Ceramic	Plastic
R _{th j} -pins	Thermal Resistance Junction-pins	Max		50 °C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	150 °C/W	80 °C/W

THERMAL DATA (SO16J)

The fairmina The final resistance ounction-autilitia Max 50 0/W	Rth j-alumina*	Thermal Resistance Junction-alumina	Max	50	°C/W
---	----------------	-------------------------------------	-----	----	------

Thermal resistance junction-alumina with the device soldered on the middle of an alumina supporting substrate measuring 15 × 20 mm; 0.65 mm thickness with infinite heatsink.

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

 $(V_i = 20 V, and over operating temperature, unless otherwise specified)$

Symbol	Parameter	Test Conditions			2525A 2527A	-	G3525 G3527		Unit
			Min.	Typ.	Max.	Min.	Тур.	Max.	_

REFERENCE SECTION

VREF	Output Voltage	T _j = 25 °C	5.05	5.1	5.15	5	5.1	5.2	V
ΔV_{REF}	Line Regulation	V _i = 8 to 35 V		10	20		10	20	mV
ΔV_{REF}	Load Regulation	$I_L = 0$ to 20 mA		20	50		20	50	mV
$\Delta V_{REF} / \Delta T^{\star}$	Temp. Stability	Over Operating Range		20	50		20	50	mV
•	Total Output Variation	Line, Load and Temperature	5		5.2	4.95		5.25	v
	Short Circuit Current	$V_{REF} = 0 T_j = 25 \ ^{\circ}C$		80	100		80	100	mA
•	Output Noise Voltage	10 Hz \leq f \leq 10 kHz, T _j = 25 °C		40	200		40	200	μVrms
ΔV _{REF} *	Long Term Stability	T _j = 125 °C, 1000 hrs		20	50		20	50	mV

SG1525A/27A-SG2525A/27A-SG3525A/27A

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions			2525A 2527A		G3525 G3527		Unit
			Min.	Тур.	Max.	Min.	Тур.	Max.	

OSCILLATOR SECTION**

*, •	Initial Accuracy	T _j = 25 ℃		± 2	± 6		± 2	± 6	%
*, •	Voltage Stability	V _i = 8 to 35 V		± 0.3	± 1		± 1	± 2	%
$\Delta f / \Delta T^*$	Temperature Stability	Over Operating Range		± 3	± 6		± 3	± 6	%
f _{MIN}	Minimum Frequency	$R_T = 200 \text{ K}\Omega$ $C_T = 0.1 \mu\text{F}$			120			120	Hz
f _{MAX}	Maximum Frequency	$R_T = 2 K\Omega$ $C_T = 470 pF$	400			400			KHz
	Current Mirror	I _{RT} = 2 mA	1.7	2	2.2	1.7	2	2.2	mA
*, •	Clock Amplitude		3	3.5		3	3.5		V
*, •	Clock Width	T _j = 25 °C	0.3	0.5	1	0.3	0.5	1	μs
	Sync Threshold		1.2	2	2.8	1.2	2	2.8	V
	Sync Input Current	Sync Voltage = 3.5 V		1	2.5		1	2.5	mA

ERROR AMPLIFIER SECTION ($V_{CM} = 5.1 \text{ V}$)

					r		r	r	1
Vos	Input Offset Voltage			0.5	5		2	10	mV
۱ _b	Input Bias Current			1	10		1	10	μA
los	Input Offset Current				1			1	μA
	DC Open Loop Gain	$R_L \ge 10 M\Omega$	60	75		60	75		dB
*	Gain Bandwidth Product	$G_v = 0 \text{ dB}$ $T_j = 25 \text{ °C}$	1	2		1	2		MHz
*, z	DC Transconduct.	$\begin{array}{l} 30 \ \text{K}\Omega \leq \text{R}_{\text{L}} \leq 1 \ \text{M}\Omega \\ \text{T}_{\text{j}} = 25 \ ^{\circ}\text{C} \end{array}$	1.1	1.5		1.1	1.5		ms
	Output Low Level			0.2	0.5		0.2	0.5	V
	Output High Level		3.8	5.6		3.8	5.6		V
CMR	Comm. Mode Reject.	V _{CM} = 1.5 to 5.2 V	60	75		60	75		dB
PSR	Supply Voltage Rejection	V _i = 8 to 35 V	50	60		50	60		dB

PWM COMPARATOR

	Minimum Duty-cycle				0			0	%
	Maximum Duty-cycle		45	49		45	49		%
•	Input Threshold	Zero Duty-cycle	0.7	0.9		0.7	0.9		V
		Maximum Duty-cycle		3.3	3.6		3.3	3.6	V
•	Input Bias Current			0.05	1		0.05	1	μA

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter		25A/2		-	G3525 G3527		Unit
		 Min.	Тур.	Max.	Min.	Тур.	Max.	

SHUTDOWN SECTION

Soft Start Current	$V_{SD} = 0 V,$	$V_{SS} = 0 V$	25	50	80	25	50	80	μA
Soft Start Low Level	V _{SD} = 2.5 V			0.4	0.7		0.4	0.7	V
Shutdown Threshold	To outputs, V ₅ T ₁ = 25 °C	_{SS} = 5.1 V	0.6	0.8	1	0.6	0.8	1	V
Shutdown Input Current	V _{SD} = 2.5 V			0.4	1		0.4	1	mA
 Shutdown Delay	$V_{SD} = 2.5 V$	T _j = 25 ℃		0.2	0.5		0.2	0.5	μs

OUTPUT DRIVERS (each output) (V_C = 20 V)

	Output Low Level	I _{sink} = 20 mA		0.2	0.4		0.2	0.4	V
		I _{sink} = 100 mA		1	2		1	2	V
	Output High Level	I _{source} = 20 mA	18	19		18	19		V
		I _{source} = 100 mA	17	18		17	18		v
	Under-Voltage Lockout	V_{comp} and V_{ss} = High	6	7	8	6	7	8	V
Ic	Collector Leakage	V _C = 35 V			200			200	μA
t _r *	Rise Time	$C_{L} = 1 \text{ nF}, \qquad T_{J} = 25 \text{ °C}$		100	600		100	600	ns
t _f *	Fall Time	$C_{L} = 1 \text{ nF}, T_{j} = 25 \text{ °C}$		50	300		50	300	ns

TOTAL STANDBY CURRENT .

	Is	Supply Current	V _i = 35 V		14	20		14	20	mA
--	----	----------------	-----------------------	--	----	----	--	----	----	----

These parameters, although guaranteed over the recommended operating conditions, are not 100 % tested in production.

Tested at f_{osc} = 40 KHz (R_T = 3.6 K Ω , C_T = 0.1 μ F, R_D = 0 Ω). Approximate oscillator frequency is defined by :

 $f = \frac{1}{C_T (0.7 R_T + 3 R_D)}$

DC transconductance (g_M) relates to DC open-loop voltage gain (G_v) according to the following equation : G_v = g_M R_L where R_L is the resistance from pin 9 to ground. The minimum g_M specification is used to calculate minimum G_v when the error amplifier output is loaded.

TEST CIRCUIT

RECOMMENDED OPERATING CONDITIONS (.)

Parameter	Value			
Input Voltage (Vi)	8 to 35 V			
Collector Supply Voltage (V _C)	4.5 to 35 V			
Sink/Source Load Current (steady state)	0 to 100 mA			
Sink/Source Load Current (peak)	0 to 400 mA			
Reference Load Current	0 to 20 mA			
Oscillator Frequency Range	100 Hz to 400 KHz			
Oscillator Timing Resistor	2 KΩ to 150 KΩ			
Oscillator Timing Capacitor	0.001 μF to 0.1 μF			
Dead Time Resistor Range	0 to 500 Ω			

(.) Range over which the device is functional and parameter limits are guaranteed.

Figure 1 : Oscillator Charge Time vs. RT and CT.

Figure 3 : SG1525A Output Saturation Characteristics.

Figure 2 : Oscillator Discharge Time vs. R_D and C_T .

Figure 4 : Error Amplifier Voltage Gain and Phase vs. Frequency.

Figure 5 : SG1525A Error Amplifier.

PRINCIPLES OF OPERATION

SHUTDOWN OPTIONS (see Block Diagram)

Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of 100 μ A to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.

An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions : the PWM latch is immedia-

tely set providing the fastest turn-off signal to the outputs ; and a 150 μA current sink begins to discharge the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release.

Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation.

Figure 7 : SG1525A Output Circuit (1/2 circuit shown).

SGS-THOMSON

5

...

Figure 8.

For single-ended supplies, the driver outputs are grounded. The V_C terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycles.

Figure 10.

The low source impedance of the output drivers provides rapid charging of Power Mos input capacitance while minimizing external components. Figure 9.

In conventional push-pull bipolar designs, forward base drive is controlled by $R_1 - R_3$. Rapid turn-off times for the power devices are achieved with speed-up capacitors C_1 and C_2 .

Low power transformers can be driven directly by the SG1525A. Automatic reset occurs during dead time, when both ends of the primary winding are switched to ground.

