SLDS031A - APRIL 1985 - REVISED APRIL 1993

- Each Device Drives 32 Electrodes
- 90-V Output Voltage Swing Capability Using Ramped Supply
- 15-mA Output Source and Sink Current Capability
- High-Speed Serially-Shifted Data Input
- Totem-Pole Outputs
- Latches on All Driver Outputs

description

The SN65555, SN75555, SN65556, and SN75556 are monolithic BIDFET[†] integrated circuits designed to drive the column electrodes of an electroluminescent display. The SN65556 and SN75556 output sequence is reversed from the SN65555 and SN75555 for ease in printed-circuit-board layout.

The devices consist of a 32-bit shift register, 32 latches, and 32 output AND gates. Serial data is entered into the shift register on the low-to-high transition of CLOCK. When high, LATCH ENABLE transfers the shift register contents to the outputs of the 32 latches. When OUTPUT ENABLE is high, all Q outputs are enabled. Data must be loaded into the latches and OUTPUT ENABLE must be high before supply voltage V_{CC2} is ramped up.

Serial data output from the shift register can be used to cascade shift registers. This output is not affected by LATCH ENABLE or OUTPUT ENABLE.

The SN65555 and SN65556 are characterized for operation from -40° C to 85° C. The SN75555 and SN75556 are characterized for operation from 0° C to 70° C.

SN75555 N PACKAGE (TOP VIEW)				
Q17 [Q16] Q15] Q14] Q13] Q12] Q11] Q10] Q9] Q8] Q7] Q8] Q7] Q6] Q5] Q4] Q2] Q1] SERIAL OUT] CLOCK [GND]	1 40 Q18 2 39 Q19 3 38 Q20 4 37 Q21 5 36 Q22 6 35 Q23 7 34 Q24 8 33 Q25 9 32 Q26 10 31 Q27 11 30 Q28 12 29 Q29 13 28 Q30 14 27 Q31 15 26 Q32 16 25 OUTPUT ENABLE 17 24 DATA IN 18 23 LATCH ENABLE 19 22 V _{CC1} 20 21 V _{CC2}			
	I75555 FN PACKAGE (TOP VIEW)			
Q11 7 Q10 8 Q9 9 Q8 10 Q7 11 Q6 12 Q5 13 Q4 14 Q3 15 Q2 16 Q1 17 18 19 20 2				

NC - No internal connection

†BIDFET – Bipolar, double-diffused, N-channel and P-channel MOS transistors on same chip. This is a patented process.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443

Copyright $\ensuremath{\textcircled{}}$ 1993, Texas Instruments Incorporated

SLDS031A - APRIL 1985 - REVISED APRIL 1993

SN65556, SN7 N PACKAO (TOP VIEV	GE	SN65556, SN75556 FN PACKAGE (TOP VIEW)				
	Q15 Q14	021 021 015 014 015 014 015 014 015 014	012 012 012			
3	3 0 013	Q22 7 7 4 3 2 1 44 43 42	41 40 39 🛛 Q10			
Q19[] 4 37	7 🛿 Q12	Q23 8	39 Q9			
	5 🛛 Q11	Q24] 9	37 🗍 Q8			
	5 [Q10	Q25 10	36 🛛 Q7			
	4 [] Q9	Q26 11	35 🗍 Q6			
	3 [Q8	Q27 12	34 🗍 Q5			
	2] Q7	Q28 1 13	33 🚺 Q4			
	1 [Q6	Q29 🛛 14	32 🚺 Q3			
		Q30 🛛 15	31 🚺 Q2			
	P Q Q4	Q31 🛛 16	30 🚺 Q1			
	³ Q3	Q32 1 ¹⁷	29 🚺 NC			
Q29 4 27			27 28			
Q30 [15 26			щщ			
Q31 16 25		IAL OUT NC NC CLOCK GND VCC2 VCC2 VCC1	ENABLE ENABLE			
~~-4			Ž Ž			
SERIAL OUT 18 23						
	. Ľ ^v CC1	SEF	DATA TPUT			
GND 20 21		LA. L				

NC – No internal connection

logic symbols[†]

 † These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for N packages.

SLDS031A - APRIL 1985 - REVISED APRIL 1993

logic diagram (positive logic)

FUNCTION TABLE

	CO	CONTROL INPUTS		SHIFT REGISTER	LATCHES	OUTPUTS		
FUNCTION	CLOCK	LATCH ENABLE	OUTPUT ENABLE	R1 THRU R32	LC1 THRU LC32	SERIAL	Q1 THRU Q32	
Load	↑ No↑	X X	X X	Load and shift [†] No change	Determined by LATCH ENABLE [‡]	R32 R32	Determined by OUTPUT ENABLE	
Latch	X X	L H	X X	As determined above	Stored data New data	R32	Determined by OUTPUT ENABLE	
Output Enable	X X	X X	L H	As determined above	Determined by LATCH ENABLE [‡]	R32 R32	All L LC1 thru LC21, respectively	

H = high level, L = low level, X = irrelevant, \uparrow = low-to-high-level transition.

⁺ R32 and the serial output take on the state of R31, R31 takes on the state of R30,...R2 takes on the state of R1, and R1 takes on the state of the data input.

⁺ New data enter the latches while LATCH ENABLE is high. These data are stored while LATCH ENABLE is low.

SLDS031A – APRIL 1985 – REVISED APRIL 1993

typical operating s	equence	
- CLOCK		
DATA IN	Valid	Irrelevant
SR Contents	Invalid	Valid
LATCH ENABLE		7
Latch Contents	Previously Stored Data	New Data Valid
OUTPUT ENABLE		
V _{CC2}		
Q Outputs		Valid

schematic of inputs and outputs

SLDS031A - APRIL 1985 - REVISED APRIL 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC2} (see Note 2) Input voltage, V _I		
		- 40°C to 85°C 0°C to 70°C
Storage temperature range, T _{stg} Case temperature for 10 seconds: FN pacl	kage	

NOTES: 1. Voltage values are with respect to network GND.

2. These devices have been designed to be used in applications in which the high-voltage supply, V_{CC2}, is switched to GND before changing the state of the outputs.

DISSIPATION RATING TABLE						
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING		
FN	1700 mW	13.6 mW/°C	1088 mW	884 mW		
N	1250 mW	10.0 mW/°C	800 mW	650 mW		

recommended operating conditions

			MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC1}			10.8	12	15	V	
Supply voltage, V _{CC2}			0		80	V	
Liberto La contractiona de la contractione de la co	(V _{CC1} = 10.8 V	8.1		11.1		
High-level input voltage, V_{IH}	(see Figure 1)	V _{CC1} = 15 V	11.25		15.3	V	
Level and free development of		V _{CC1} = 10.8 V	-0.3†		2.7	~	
Low-level input voltage, VIL (see Figure 1)	V _{CC1} = 15 V	-0.3†		3.75	V	
High-level output current, IOF	1				-15	mA	
Low-level output current, IOL					15	mA	
Output clamp current, IOK					20	mA	
Clock frequency, f _{clock}			0		6.25	MHz	
Pulse duration, CLOCK high or low, tw(CLK) (see Figure 2)			80			ns	
Pulse duration, LATCH ENA	BLE, t _{w(LE)}		80			ns	
	DATA IN be	fore CLOCK ↑ (see Figure 2)	20				
Setup time, t _{su}	OUTPUT EI	OUTPUT ENABLE before V _{CC2} ↑ (see Figure 4)				ns	
	DATA IN aft	er CLOCK ↑ (see Figure 2)	80				
Hold time, t _h OUTPUT ENABLE after V _{CC2} ↑ (see Figure 4)		100			ns		
Rate of rise for V _{CC2} , dv/dt					80	V/µs	
Operating free air town and	ю. Т.	SN65555, SN65556	-40		85		
Operating free-air temperature, T _A		SN75555, SN75556	0		85	°C	

[†] The algebraic convention, in which the least positive (most negative) value is designated as minimum, is used in this data sheet for logic voltage levels.

SLDS031A - APRIL 1985 - REVISED APRIL 1993

electrical characteristics over recommended operating free-air temperature range, V_{CC1} = 12 V, V_{CC2} = 80 V

	PARAMETE	TEST CONDITIONS	MIN	MAX	UNIT	
		Q outputs	I _O = -15 mA	77		
VOH	High-level output voltage	SERIAL OUT	I _O = −100 μA	10.5		V
V _{OL} Low-level output voltage	Law law day to share	Q outputs	I _{OL} = 15 mA		8	
	Low-level output voltage	SERIAL OUT	I _{OL} = 100 μA		1	V
Iн	High-level input current		V _I = 12 V		1	μΑ
١L	Low-level input current		$V_{I} = 0$		-1	μΑ
ICC1	Supply current from V _{CC1}				2	mA
ICC2	Supply current from V _{CC2}				5	mA

switching characteristics, V_{CC1} = 12 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
^t PHL	Propagation delay time, high-to-low-level, SERIAL OUT from CLOCK	$C_{I} = 20 \text{ pF to GND},$	V _{CC2} = 0,		140	ns
^t PLH	Propagation delay time, low-to-high level, SERIAL OUT from CLOCK	See Figure 3			140	ns
td	Delay time, V _{CC2} to Q outputs	$dv/dt = 80 V/\mu s$,	See Figure 4		100	ns

RECOMMENDED OPERATING CONDITIONS

Figure 1

SLDS031A - APRIL 1985 - REVISED APRIL 1993

PARAMETER MEASUREMENT INFORMATION

Figure 2. Input Timing Voltage Waveforms

Figure 4. Voltage Waveforms for Delay Times, V_{CC2} to Q Outputs

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated