www.ti.com SLLSE29 A - APRIL 2010-REVISED FEBRUARY 2012 ## **Dual Channel USB3.0 Redriver/Equalizer** Check for Samples: SN65LVPE502 #### **FEATURES** - Single Lane USB 3.0 Equalizer/Redriver - Selectable Equalization, De-emphasis and Output Swing Control - Integrated Termination - Hot-Plug Capable - · Receiver Detect - · Low Power: - 315mW(TYP), $V_{CC} = 3.3V$ - Auto Low Power Modes: - 5mW (TYP) When no Connection Detected - 70mW (TYP) When in U2/U3 Mode - Excellent Jitter and Loss Compensation Capability: to 24" - 24" of 6 mil Stripline on FR4 - 12" on Input and 4m, 26AWG USB 3.0 Cable on Output - Small foot print 24 Pin (4mm × 4mm) QFN Package - High Protection Against ESD Transient HBM: 5,000 VCDM: 1,500 VMM: 200 V #### **APPLICATIONS** Notebooks, Desktops, Docking Stations, Backplane and Cabled Application #### **DESCRIPTION** The SN65LVPE502 is a dual channel, single lane USB 3.0 redriver and signal conditioner supporting data rates of 5.0Gbps. The device complies with USB 3.0 spec revision 1.0, supporting electrical idle condition and low frequency periodic signals (LFPS) for USB 3.0 power management modes. #### Programmable EQ, De-Emphasis and Amplitude Swing The SN65LVPE502 is designed to minimize signal degradation effects such as crosstalk and inter-symbol interference (ISI) that limits the interconnect distance between two devices. The input stage of each channel offers selectable equalization settings that can be programmed to match loss in the channel. The differential outputs provide selectable de-emphasis to compensate for the anticipated distortion USB 3.0 signal will experience. Level of de-emphasis will depend on the length of interconnect and its characteristics. The SN65LVPE502 provides a unique way to tailor output de-emphasis on a per channel basis with use of DE and OS pins. All Rx and Tx equalization settings supported by the device are programmed by six 3-state pins as shown in Table 2. #### **Low Power Modes** The device supports three low power modes as described below. 1. Sleep Mode Initiated anytime EN_RXD undergoes a high to low transition or when device powers up with EN_RXD set low. In sleep mode both input and output terminations are held at HiZ and device ceases operation to conserve power. Sleep mode max power consumption is 1mW, entry time is 2μ s, device exits sleep mode to Rx.Detect mode after EN_RXD is driven to V_{CC} , exit time is 100μ s max. 2. RX Detect Mode – When no remote device is connected Anytime SN65LVPE502 detects a break in link (i.e., when upstream device is disconnected) or after powerup fails to find a remote device, SN65LVPE502 goes to Rx Detect mode and conserves power by shutting down majority of the internal circuitry. In this mode, input termination for both channels are driven to Hi-Z. In Rx Detect mode device power is <10mW(TYP) or less than 5% of its normal operating power This feature is useful in saving system power in mobile applications like notebook PC where battery life is critical. Anytime an upstream device gets reconnected the redriver automatically senses the connection and goes to normal operating mode. This operation requires no setting to the device. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. #### 3. U2/U3 Mode With the help of internal timers the device tracks when link enters USB 3.0 low power modes U2 and U3, in these modes link is in electrical idle state. SN65LVPE502 will selectively turn-off internal circuitry to save on power. Typical power saving is about 75% lower than normal operating mode. The device will automatically revert to active mode when signaling activity (LFPS) is detected. These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. #### **DESCRIPTION CONTINUED** #### **Receiver Detection** RX.Detect cycle is performed by first setting Rx termination for each channel to Hi-Z, device then starts sensing for receiver termination that may be attached at the other end of each TX. If receiver is detected on both channel: The TX and RX terminations are switched to Z_{DIFF-TX}, Z_{DIFF-RX}, respectively If no receiver is detected on one or both channels: - · The transmitter is pulled to Hi-Z - · The channel is put in low power mode - Device attempts to detect Rx termination in 12 ms (TYP) interval until termination is found or the device is put in sleep mode. #### **USB Compliance Mode** The device enters USB compliance mode when both EN_RXD and CM pins are set H. This mode is used to test the transmitter for compliance to voltage and timing specifications per USB 3.0 compliance specs. In this mode each channel will maintain its low-impedance termination R_{DC-RX}, while auto Rx detect operation in the device is disabled. #### **Electrical Idle Support** The electrical idle support is needed for low frequency periodic signaling (LFPS) used in USB 3.0 side band communication. A link is in an electrical idle state when the TX \pm voltage is held at a steady constant value like the common mode voltage. SN65LVPE502 detects an electrical idle state when RX \pm voltage at the device pin falls below $V_{RX_IDLE_DIFFpp}$ min. After detection of an idle state in a given channel the device asserts electrical idle state in its corresponding TX. When RX \pm voltage exceeds $V_{RX_IDLE_DIFFpp}$ max normal operation is restored and output start passing input signal. The electrical idle exit and entry time is specified at ≤6 ns. Figure 1. Typical Application Figure 2. Data FLow Block Diagram Figure 3. Flow-Through Pin-Out **Table 1. Pin Description** | PIN | | | | | | | | |--------------|----------------|----------|--|--|--|--|--| | NUMBER | NAME | I/O TYPE | DESCRIPTION | | | | | | HIGH SPEED D | DIFFERENTIAL | I/O PINS | | | | | | | 8 | RX1- | I, CML | | | | | | | 9 | RX1+ | I, CML | Non-inverting and inverting CML differential input for CH 1 and CH 2. These pins are tied to | | | | | | 20 | 20 RX2– I, CML | | an internal voltage bias by dual termination resistor circuit | | | | | | 19 | RX2+ | I, CML | | | | | | | 23 | TX1- | O, VML | | | | | | | 22 | TX1+ | O, VML | Non-inverting and inverting VML differential output for CH 1 and CH 2. These pins are | | | | | | 11 | TX2- | O, VML | internally tied to voltage bias by termination resistors | | | | | | 12 | TX2+ | O, VML | | | | | | ## **Table 1. Pin Description (continued)** | PI | PIN | | | | | | | | |-------------------|---------------------|-----------|--|--|--|--|--|--| | DEVICE CONT | ROL PIN | | | | | | | | | 5 | EN_RXD | I, LVCMOS | Sets device operation modes per Table 2. Internally pulled to VCC | | | | | | | 14 | CM | I, LVCMOS | Sets device in compliance mode when pulled to VCC, internally pulled to GND | | | | | | | 7,24 | NC | | Pads not internally connected | | | | | | | EQ CONTROL | PINS ⁽¹⁾ | | | | | | | | | 3,16 | DE1, DE2 | I, LVCMOS | Selects de-emphasis settings for CH 1 and CH 2 per Table 2. Internally tied to V _{CC} /2 | | | | | | | 2,17 | EQ1, EQ2 | I, LVCMOS | Selects equalization settings for CH 1 and CH 2 per Table 2. Internally tied to V _{CC} /2 | | | | | | | 4, 15 | OS1, OS2 | I, LVCMOS | Selects output amplitude for CH 1 and CH 2 per Table 2. Internally tied to V _{CC} /2 | | | | | | | POWER PINS | POWER PINS | | | | | | | | | 1,13 | VCC | Power | Positive supply should be 3.3V ± 10% | | | | | | | 6,10,18,21 | GND | Power | Supply ground | | | | | | ⁽¹⁾ Internally biased to $V_{CC}/2$ with >200k Ω pull-up/pull-down. When pins are left as NC board leakage at this pin pad must be < 1 μ A otherwise drive to $V_{CC}/2$ to assert mid-level state. **Table 2. Signal Control Pin Setting** | | J | | J | | |--------------------|-------------------------|-------------------------------------|------------------------|--| | os | 5x ⁽¹⁾ | TRANSITION BIT AMPLITUDE (TYP mVpp) | | | | NC (d | lefault) | 1000 | | | | | 0 | 87 | 70 | | | | 1 | 10 | 85 | | | EQ | x ⁽¹⁾ | EQUALIZ | ATION dB | | | NC (d | lefault) | (|) | | | | 0 | - | 7 | | | | 1 | 15 | | | | DEx ⁽¹⁾ | OSx ⁽¹⁾ = NC | OSx ⁽¹⁾ = 0 | OSx ⁽¹⁾ = 1 | | | NC | -3.5 dB | -2.2 dB | -4.4 dB | | | 0 | -6.0 dB | -5.2 dB | -6.0 dB | | | 1 | -8.5 dB | -8.9 dB | -7.6 dB | | | EN_ | RXD | DEVICE FUNCTION | | | | 1 (de | efault) | Normal ope | rating mode | | | | 0 | Sleep mode | | | | C | M | DEVICE FUNCTION | | | | 0 (de | efault) | Normal Mode | | | | | 1 | Compliar | nce mode | | | | | | | | (1) Applies to Channel 1 and Channel 2 at 2.5 GHz. Figure 4. Redriver Placement Example #### ORDERING INFORMATION(1) | PART NUMBER | PART MARKING | PCAKAGE | |-----------------|--------------|-------------------------| | SN65LVPE502RGER | LVPE502 | 24-pin RGE Reel (large) | | SN65LVPE502RGET | LVPE502 | 24-pin RGE Reel (small) | (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. #### **ABSOLUTE MAXIMUM RATINGS** over operating free-air temperature range (unless otherwise noted) (1) | | | UNITS / VALUES | |------------------------------|------------------------------|----------------------------------| | Supply Voltage Range (2) | V _{CC} | -0.5 V to 4 V | | Valtana Danna | Differential I/O | -0.5 V to 4 V | | Voltage Range | Control I/O | -0.5 V to V _{CC} + 0.5V | | | Human Body Model (3) | ±5000V | | Electrostatic discharge | Charged Device Model (4) | ±1500V | | | Machine Model ⁽⁵⁾ | ±200V | | Continuous power dissipation | | See Dissipation Rating Table | - (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (2) All voltage values, except differential voltages, are with respect to network ground terminal. - (3) Tested in accordance with JEDEC Standard 22, Test Method A114-B. - (4) Tested in accordance with JEDEC Standard 22, Test Method C101-A. - (5) Tested in accordance with JEDEC Standard 22, Test Method A115-A. #### PACKAGE CHARACTERIZATION over operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------|---|---|-----|-----|-----|------| | P_D | Device power dissipation | CM, EN_RXD, EQ cntrl pins = NC, K28.5 pattern at 5 Gbps, V_{ID} = 1000 mVpp | | 330 | 450 | mW | | P _{SD} | Device power dissipation under low power mode | EN_RXD= GND | | 0.3 | 1 | mW | #### THERMAL INFORMATION | | | SN65LVPE502 | | |------------------------------|--|-------------|--------| | | THERMAL METRIC ⁽¹⁾ | RGE | UNITS | | | | 24 PINS | | | θ_{JA} | Junction-to-ambient thermal resistance | 46 | | | $\theta_{\text{JC(TOP)}}$ | Junction-to-case(top) thermal resistance | 42 | | | θ_{JB} | Junction-to-board thermal resistance | 13 | °C /// | | ΨЈТ | Junction-to-top characterization parameter | 0.5 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 9 | | | $\theta_{\text{JC(BOTTOM)}}$ | Junction-to-case(bottom) thermal resistance | 4 | | (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. ## RECOMMENDED OPERATING CONDITIONS over operating free-air temperature range (unless otherwise noted) | | | MIN | TYP | MAX | UNIT | |-----------------------|--------------------------------|-----|-----|-----|------| | V_{CC} | Supply Voltage | 3 | 3.3 | 3.6 | V | | C _{COUPLING} | AC Coupling Capacitor | 75 | | 200 | nF | | | Operating free-air temperature | 0 | | 85 | °C | #### **DEVICE POWER** The SN65LVPE502 is designed to operate from a single 3.3 V supply. ## **ELECTRICAL CHARACTERISTICS** | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | | | |----------------------------|---|---|--------|-----|----------|------|--|--|--| | DEVICE PARA | METERS | | | | | | | | | | I _{CC} | | EN_RXD, CM, EQ cntrl = NC,
K28.5 pattern at 5 Gbps, V _{ID} = 1000 mV _{pp} | 100 12 | | 120 | | | | | | ICC _{Rx.Detect} | Supply Current | In Rx.Detect mode | | 5 | mA | | | | | | ICC _{sleep} | | EN_RXD = GND | | | 0.1 | | | | | | ICC _{U2-U3} | | Link in USB low power state | | 21 | | | | | | | | Maximum Data Rate | | | | 5 | Gbps | | | | | t _{ENB} | Device Enable Time | Sleep mode exit time EN_RXD L→ H With Rx termination present | | | 100 | μs | | | | | t _{DIS} | Device Disable Time | Sleep mode entry time EN_RXD H→ L | | | 2 | μs | | | | | T _{RX.DETECT} | Rx.Detect Start Event | Power-up time | | | 100 | μs | | | | | CONTROL LOG | GIC (under recommended operating cond | litions) | | | | | | | | | V _{IH} | High level Input Voltage | | 1.4 | | V_{CC} | V | | | | | V _{IL} | Low Level Input Voltage | | -0.3 | | 0.5 | V | | | | | V _{HYS} | Input Hysteresis | | | 150 | | mV | | | | | | | OSx, EQx, DEx = V _{CC} | | | 30 | | | | | | I _{IH} | High Level Input Current | EN_RXD = V _{CC} | | μΑ | | | | | | | | | CM = V _{CC} | | | 30 | | | | | | | | OSx, EQx, DEx = GND | -30 | | | | | | | | I _{IL} | Low Level Input Current | EN_RXD = GND | -30 | | | | | | | | | | CM = GND | -1 | | | | | | | | RECEIVER AC/ | DC | | | | • | | | | | | Vin _{diff_pp} | RX1, RX2 Input Voltage Swing | AC coupled differential RX peak to peak signal | 100 | | 1200 | mVpp | | | | | V _{CM_RX} | RX1, RX2 Common Mode Voltage | | | 3.3 | | V | | | | | Vin _{COM_P} | RX1, RX2 AC Peak common mode voltage | Measured at Rx pins with termination enabled | | | 150 | mVP | | | | | Z _{DC_RX} | DC common mode impedance | | 18 | 26 | 30 | Ω | | | | | Z_{diff_RX} | DC differential input impedance | | 72 | 80 | 120 | Ω | | | | | Z _{RX_High_IMP+} | DC Input High Impedance | Device in sleep mode Rx termination not powered. Measured with respect to GND over 500mV max | 50 | 85 | | kΩ | | | | | V _{RX-LFPS-DETpp} | Low Voltage Periodic Signaling (LFPS)
Detect Threshold | Measured at receiver pin, below minimum output is squelched, above max input signal is passed to output | 100 | | 300 | mVpp | | | | | DI | Differential Detum Loss | 50 MHz – 1.25 GHz | 10 | 11 | | ٦D | | | | | RL _{RX-DIFF} | Differential Return Loss | 1.25 GHz – 2.5 GHz | 6 | 7 | | dB | | | | | RL _{RX-CM} | Common Mode Return Loss | 50 MHz – 2.5 GHz | 11 | 13 | | dB | | | | Copyright © 2010–2012, Texas Instruments Incorporated ## **ELECTRICAL CHARACTERISTICS (continued)** over operating free-air temperature range (unless otherwise noted) | | ee-air temperature range (unless oth
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------------------|---|--|------|------|------|---------------------| | TRANSMITTER A | | 1201 201121110110 | | | | | | | | R_L =100 Ω +1%, DEx, OSx = NC, Transition Bit | 800 | 1000 | 1200 | | | V _{TXDIFF_TB_PP} | | $R_L = 100\Omega + 1\%$, DEx, OSx = GND
Transition Bit | | 870 | | | | | Differential peak-to-peak Output Voltage | R_L =100 Ω +1%, DEx, OSx = VCC
Transition Bit | | 1085 | | mV | | | (VID = 800, 1200 mVpp, 5Gbps) | R_L =100 Ω +1%, DEx=NC, OSx = 0,1,NC Non-Transition Bit | | 665 | | IIIV | | V _{TXDIFF_NTB_PP} | | $R_L = 100\Omega + 1\%$, DEx=0, OSx = 0,1,NC Non-Transition Bit | | 510 | | | | | | $R_L = 100\Omega + 1\%$, DEx=1
OSx = 0,1,NC Non-Transition Bit | | 375 | | | | | | OS4 2 NO /fee OS4 2 4 and 2 and | -3.0 | -3.5 | -4.0 | | | | De-Emphasis Level | OS1,2 = NC (for OS1,2 = 1 and 0 see Table 2) | | -6.0 | | dB | | | | , | | -8.5 | | | | T _{DE} | De-Emphasis Width | | | 0.85 | | UI | | Z_{diff_TX} | DC Differential Impedance | | 72 | 90 | 120 | Ω | | Z_{CM_TX} | DC Common Mode Impedance | Measured w.r.t to AC ground over 0-500mV | 18 | 23 | 30 | Ω | | DI | Differential Potura Logo | f = 50 MHz – 1.25 GHz | 9 | 10 | | dB | | RL_{diff_TX} | Differential Return Loss | f = 1.25 GHz – 2.5 GHz | 6 | 7 | | uБ | | RL _{CM_TX} | Common Mode Return Loss | f = 50 MHz – 2.5 GHz | 11 | 12 | | dB | | I _{TX_SC} | TX short circuit current | TX± shorted to GND | | | 60 | mA | | V _{TX_CM_DC} | Transmitter DC common-mode voltage | | 2.0 | 2.6 | 3.0 | V | | V _{TX_CM_AC_Active} | TX AC common mode voltage active | | | 30 | 100 | mVpp | | V _{TX_idle_diff-AC-pp} | Electrical idle differential peak to peak output voltage | HPF to remove DC | 0 | | 10 | mV | | V _{TX_CM_DeltaU1-U0} | Absolute delta of DC CM voltage during active and idle states | | | 35 | 200 | mV | | $V_{TX_idle_diff\text{-}DC}$ | DC Electrical idle differential output voltage | Voltage must be low pass filtered to remove any AC component | 0 | | 10 | mV | | V _{detect} | Voltage change to allow receiver detect | Positive voltage to sense receiver termination | | | 600 | mV | | t_R, t_F | Output Rise/Fall time | 20%-80% of differential voltage measure 1" | 30 | 50 | | ps | | t _{RF_MM} | Output Rise/Fall time mismatch | from the output pin | | | 20 | ps | | T_{diff_LH},T_{diff_HL} | Differential Propagation Delay | De-Emphasis = -3.5dB (CH 0 and CH 1).
Propagation delay between 50% level at
input and output See Figure 5 | | 290 | 350 | ps | | tidleEntry tidleExit | Idle entry and exit times | See Figure 6 | | 4 | 6 | ns | | C _{TX} | Tx input capacitance to GND | At 2.5 GHz | | 1.25 | | pF | | EQUALIZATION | | | | | | | | T _{TX-EYE} (1)(2) | Total Jitter (Tj) at point A | | | 0.14 | 0.5 | | | DJ _{TX} ⁽²⁾ | Deterministic Jitter (Dj) | Device setting: OS1 = L, DE1 = H, EQ1 = L | | 0.06 | 0.3 | Ulpp (3) | | RJ _{TX} ⁽²⁾⁽⁴⁾ | Random Jitter (Rj) | | | 0.08 | 0.2 | - | | T _{TX-EYE} (1) (2) | Total Jitter (Tj) at point B | | | 0.14 | 0.5 | | | DJ _{TX} ⁽²⁾ | Deterministic Jitter (Dj) | Device setting: OS2 = H, DE2 = H, EQ2 = L | | 0.06 | 0.3 | UIpp ⁽³⁾ | | RJ _{TX} ⁽²⁾⁽⁴⁾ | Random Jitter (Rj) | | | 0.08 | 0.2 | • • | Includes Rj at 10^{-12} Measured at the end of reference channel in Figure 8 with K28.5 pattern, V_{ID} =1000mVpp, 5Gbps, -3.5dB DE from source. (2) ⁽³⁾ UI = 200ps Rj calculated as 14.069 times the RMS random jitter for $10^{-12}\,\mathrm{BER}$ Figure 5. Propagation Delay Figure 6. Electrical Idle Mode Exit and Entry Delay Figure 7. Output RIse and Fall Times Figure 8. Jitter Measurement Setup Figure 9. Output De-Emphasis Levels OSx = NC ## **Typical Eye Diagram and Performance Curves** Input Signal Characteristics: Data Rate = 5 Gbps, V_{ID} = 1000 mVpp, DE = -3.5 dB, Pattern = K28.5 Device Operating Conditions: VCC = 3.3 V, Temp = 25°C ## Input Trace Length Held Constant and Output Cable Length Varied Figure 10. Input Trace = 12 Inches, 6 mil and Output USB 3 Cable Length = 1 M Figure 11. Input Trace = 12 Inches, 6 mil and Output USB 3 Cable Length = 2 M Figure 12. Input Trace = 12 Inches, 6 mil and Output USB 3 Cable Length = 3 M Figure 13. Input Trace = 12 Inches, 6 mil and Output USB 3 Cable Length = 4 M Figure 14. Jitter Performance Over Different Cable Lengths ## Input Trace Length Held Constant and Output Trace Varied Figure 15. Input Trace = 4 Inches, 6 mil and Output Trace = 4 Inches, 6 mil Figure 16. Input Trace = 4 Inches, 6 mil and Output Trace = 8 Inches, 6 mil Figure 17. Input Trace = 4 Inches, 6 mil and Output Trace = 12 Inches, 6 mil Figure 18. Input Trace = 4 Inches, 6 mil and Output Trace = 16 Inches, 6 mil Figure 19. Input Trace = 4 Inches, 6 mil and Output Trace = 20 Inches, 6 mil Figure 20. Jitter Performance Over Different Output Trace Lengths ## **Output Trace Length Held Constant and Input Trace Length Varied** Figure 21. Input Trace = 4 Inches, 6 mil and Output Trace = 4 Inches, 6 mil Figure 22. Input Trace = 8 Inches, 6 mil and Output Trace = 4 Inches, 6 mil Figure 23. Input Trace = 12 Inches, 6 mil and Output Trace = 4 Inches, 6 mil Figure 24. Input Trace = 16 Inches, 6 mil and Output Trace = 4 Inches, 6 mil Figure 25. Input Trace = 20 Inches, 6 mil and Output Trace = 4 Inches, 6 mil Figure 26. Input Trace = 28 Inches, 6 mil and Output Trace = 4 Inches, 6 mil Figure 27. Input Trace = 32 Inches, 6 mil and Output Trace = 4 Inches, 6 mil Figure 28. Jitter Performance Over Different Input Trace Lengths ## **REVISION HISTORY** | C | hanges from Original (April 2010) to Revision A | Page | |---|--|------| | • | Changed in Table 1. Pin Description, signals: TX1+, TX1-, TX2+ and TX2-, I/O types changed from O, CML to O, | | | | VML also in Descripton, 'CML' to 'VML' | 4 | ww.ti.com 11-Feb-2012 #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|-----------------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | SN65LVPE502RGER | ACTIVE | VQFN | RGE | 24 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | SN65LVPE502RGET | ACTIVE | VQFN | RGE | 24 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 ## TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** #### **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### TAPE AND REEL INFORMATION ## *All dimensions are nominal | Device Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN65LVPE502RGER | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | SN65LVPE502RGET | VQFN | RGE | 24 | 250 | 180.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | www.ti.com 14-Jul-2012 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-----------------|--------------|-----------------|------|------|-------------|------------|-------------| | SN65LVPE502RGER | VQFN | RGE | 24 | 3000 | 367.0 | 367.0 | 35.0 | | SN65LVPE502RGET | VQFN | RGE | 24 | 250 | 210.0 | 185.0 | 35.0 | NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - C. Quad Flatpack, No-Leads (QFN) package configuration. - D. The package thermal pad must be soldered to the board for thermal and mechanical performance. - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. - F. Falls within JEDEC MO-220. ## RGE (S-PVQFN-N24) ## PLASTIC QUAD FLATPACK NO-LEAD ## THERMAL INFORMATION This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. Exposed Thermal Pad Dimensions 4206344-6/AA 04/12 NOTES: A. All linear dimensions are in millimeters # RGE (S-PVQFN-N24) # PLASTIC QUAD FLATPACK NO-LEAD NOTES: - S: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. - F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. | roducts | | Applications | |---------|--------------|--------------| | | ti aaaa/adia | A | Pr Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u> www.ti-rfid.com