

Gates, Series 54/74

DM7450 (SN7450) expandable dual 2-wide 2-input AND-OR-INVERT gate DM7451 (SN7451) dual 2-wide 2-input AND-OR-INVERT gate DM7453 (SN7453) expandable 4-wide 2-input AND-OR-INVERT gate DM7454 (SN7454) 4-wide 2-input AND-OR-INVERT gate DM7460 (SN7460) dual 4-input expander

general description

The devices described in this data sheet employ TTL to achieve high speed at moderate power dissipation. They are consolidated onto one sheet since they perform the AND-OR-INVERT function with only differing numbers of AND inputs and OR terms. Characteristics include high noise immunity, low output impedance, good capacitance drive capability, and minimal variation in switching time with temperature. The gates are compatible with and interchangeable with Series 74 devices. Key features include:

Input Clamping Diodes					
Typical Noise Immunity	1 Volt				
Guaranteed Noise Immunity	400 mV				
Fan-out	10				
Allowable Power Supply Vari	ation				
4.75V to 5.25V					
Average Propagation Delay	13 ns				
Average Power Dissipation	14 mW/ gate				

absolute maximum ratings

V _{cc}	7V
Input Voltage	5.5V
Operating Temperature Range	0°C to 70°C
Storage Temperature Range	–65°C to +150°C
Fan-Out	10
Lead Temperature (Soldering, 10 sec.)	300°C

electrical characteristics (Notes 1, 3) (DM7450, DM7451, DM7453, DM7454)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Diode Clamp Voltage	V _{CC} = 5.0V, T _A = 25°C I _{IN} = -12 mA			-1.5	v
Logical "1" Input Voltage	V _{CC} = 4.75V	2.0			v
Logical "O" Input Voltage	V _{CC} = 4.75V			0.8	v
Logical "1" Output Voltage	V _{CC} = 4.75V, V _{IN} = 0.8V Ι _{ΟUT} = ~400 μΑ	2.4			v
Logical "0" Output Voltage	V _{CC} = 4.75V, V _{IN} = 2.0V I _{OUT} = 16 mA			0.4	v
Logical "1" Input Current	V _{CC} = 5.25V, V _{IN} = 2.4V			40	μΑ
Logical "1" Input Current	V _{CC} = 5.25V, V _{IN} = 5.5V			1	mA
Logical "0" Input Current	$V_{CC} = 5.25V, V_{IN} = 0.4V$			- 1.6	mA
Output Short Circuit Current (Note 2)	V _{CC} = 5.25V, V _{IN} = 0V	-18		-55	mA
Supply Current — Logical "0" (Each Gate)	V _{CC} = 5.25V, V _{IN} = 5.0V		3.7	6.5	mA
Supply Current – Logical "1" (Each Gate)	V _{CC} = 5.25V, V _{IN} = 0V		2.0	3.6	mA
Propagation Delay Time to a Logical "0", t _{pd0}	V _{CC} = 5.0V, T _A = 25°C C = 50 pF, N = 10			15	ns
Propagation Delay Time to a Logical "1", t _{pd1}	$V_{CC} = 5.0V, T_A = 25^{\circ}C$ C = 50 pF, N = 10			25	ns
Propagation Delay Time to Logical "0" Level (through DM7450 or DM7453)	V _{CC} = 5.0V, T _A = 25°C C = 50 pF, N = 10			20	ns
Propagation Delay Time to Logical "1" Level (through DM7450 or DM7453)	V _{CC} = 5.0V, T _A = 25°C C = 50 pF, N = 10			34	ns

Note 1: Min/Max units apply across the guaranteed temperature range of 0°C to 70°C unless otherwise specified. All typicals are given for V_{CC} = 5.0V and $T_{A'}$ = 25°C.

Note 2: Not more than 1 output should be shorted at a time.

Note 3: Measurements made with expandable inputs open.

PARAMETER	TEST CONDITIONS		MIN	түр	MAX	UN
Input Diode Clamp Voltage	V _{CC} = 5.0V I _{IN} = -12 mA	T _A = 25°C			-1.5	v
Logical "1" Input Voltage	$V_{CC} = 4.75V,$ $R_{V_{CC}} \approx \text{collector} = 1.1 \text{ k}\Omega,$	V _{EMITTER} = 1V, T _A = 0°C	2			v
Logical "O" Input Voltage	V_{CC} = 4.75V, R _{EMITTER to GRD} = 1.2 k Ω , T _A = 0°C	V _{COLLECTOR} = 4.5V, I _{COLLECTOR} = 0.27 mA,			0.8	v
Logical "O" Output Voltage (With Respect to Emitter)	V _{CC} = 4.75V, V _{EMITTER} = 1V, T _A = 0°C	$V_{IN} = 2V$, $R_{V_{CC} to COLLECTOR} = 1.1 k\Omega$,			0.4	v
Logical "1" Output Current	V _{CC} = 4.75V, V _{COLLECTOR} = 4.5V, T _A = 0°C	$V_{IN} = 0.8V$, R _{EMITTER to GRD} = 1.2 k Ω ,			270	μA
Logical "0" Output Current	V _{CC} = 4.75V, V _{EMITTER} = 1V	V _{IN} = 2V,	-0.43			mA
Logical "0" Input Current	V _{CC} = 5.25V,	V _{IN} = 0.4V			-1.6	mΑ
Logical "1" Input Current	V _{CC} = 5.25V, V _{CC} = 5.25V,	V _{IN} = 2.4V V _{IN} = 5.5V			40 1	μA mA
Logical "O" Supply Current (Each Gate)	V _{CC} = 5V, V _{EMITTER} = 0.85V	V _{IN} = 5V,		0.6	1.25	mΑ
Logical "1" Supply Current (Each Gate)	V _{CC} = 5V, V _{EMITTER} = 0.85V	V _{IN} = 0	8	1.0	1.8	mΑ
(DM7450, DM7453 or	nly) using expander inputs, T _A =	= 0°C				
PARAMETER	TEST CONDITIONS		MIN	түр	MAX	UNIT
Expander Current	V _{CC} = 4.75V, I _{SINK} = 16 mA	V _{PIN 11 to PIN 12} = 0.4V			3.1	mA
Base-Emitter Voltage of Output Transistor (Q)	V _{CC} = 4.75V, I _{PIN 11} = 0.62 mA,	I _{SINK} = 16 mA, R _{PIN 11 to PIN 12} = 0			1	V
Logical "1" Output Voltage	V _{CC} = 4.75V, I _{PIN 11} = 0.27 mA,	I _{LOAD} = -400 μA, I _{PIN 12} = -0.27 mA	2.4			v
Logical "0" Output Voltage	V _{CC} = 4.75V, I _{PIN 11} = 0.43 mA,	I _{SINK} = 16 mA, R _{PIN 11 to 12} = 130Ω			0.4	v

DM7460

DM7450, DM7451, DM7453, DM7454, DM7460