
- **Members of the Texas Instruments** Widebus™ Family
- State-of-the-Art *EPIC-IIB™* BiCMOS Design Significantly Reduces Power Dissipation
- High-Impedance State During Power Up and Power Down
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Typical V_{OLP} (Output Ground Bounce) < 1 V at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$
- Distributed V_{CC} and GND Pin Configuration **Minimizes High-Speed Switching Noise**
- Flow-Through Architecture Optimizes **PCB Lavout**
- High-Drive Outputs (-32-mA IOH, 64-mA IOI)
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package **Using 25-mil Center-to-Center Spacings**

description

These 18-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

The 'ABT16823 can be used as two 9-bit flip-flops or one 18-bit flip-flop. With the clock-enable (CLKEN) input low, the D-type flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high disables the clock buffer, latching the outputs. Taking the clear (CLR) input low causes the Q outputs to go low independently of the clock.

SN54ABT16823 . . . WD PACKAGE SN74ABT16823...DGG OR DL PACKAGE (TOP VIEW)

A buffered output-enable (OE) input can be used to place the nine outputs in either a normal logic state (high or low logic level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

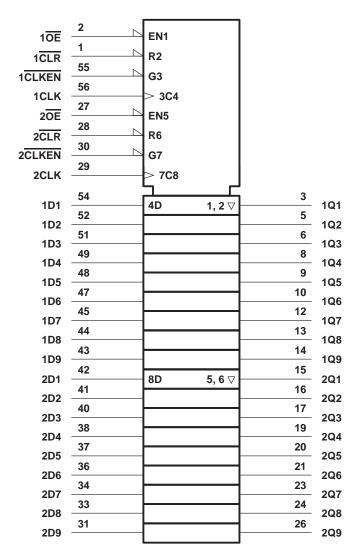
Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCBS217C - JUNE 1992 - REVISED JANUARY 1997

description (continued)

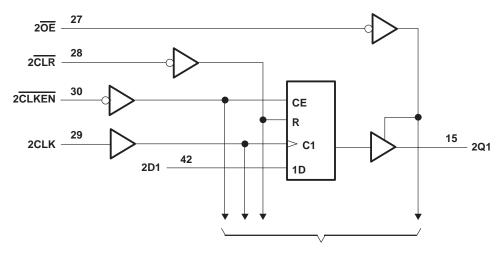
When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.


The SN54ABT16823 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT16823 is characterized for operation from -40° C to 85° C.

FUNCTION TABLE (each 9-bit flip-flop)

	INPUTS									
OE	CLR	CLKEN	CLK	D	Q					
L	L	Х	Χ	Χ	L					
L	Н	L	\uparrow	Н	Н					
L	Н	L	\uparrow	L	L					
L	Н	L	L	Χ	Q ₀					
L	Н	Н	Χ	Χ	Q ₀					
Н	Χ	Χ	Χ	Χ	Z					

logic symbol†



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Eight Other Channels

To Eight Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO	0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16823	96 mA
SN74ABT16823	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DL package	
Storage temperature range, T _{stq}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			SN54AB	Γ16823	SN74AB1	Г16823	UNIT
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V	
V _{IL}	Low-level input voltage		0.8		0.8	V	
VI	Input voltage	0	VCC	0	VCC	V	
ІОН	High-level output current			-24		-32	mA
loL	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature	-55	125	-40	85	°C	

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCBS217C - JUNE 1992 - REVISED JANUARY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	AD AMETED	TEST	CONDITIONS	Т	A = 25°C	;	SN54AB	Γ16823	SN74AB1	16823	UNIT
"	ARAMETER	lesic	ONDITIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNII
VIK		$V_{CC} = 4.5 V$,	I _I = -18 mA			-1.2		-1.2		-1.2	V
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5		
\ \/ .		$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3		V
VOH		V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$	2			2				V
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2		
VOL		VCC = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V
VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	٧
V _{hys}				100						mV	
lį		$V_{CC} = 0$ to 5.5 $V_I = V_{CC}$ or G			±1		±1		±1	μΑ	
l _{OZPU}		$V_{CC} = 0 \text{ to } 2.1$ $V_{O} = 0.5 \text{ V to } 2$			±50		±50		±50	μΑ	
lozpd		$V_{CC} = 2.1 \text{ V to } 2.0 \text{ V}_{O} = 0.5 \text{ V to } 2.0 \text{ V}_{O} = 0.0 $			±50		±50		±50	μΑ	
lozh			$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V},$ $V_{O} = 2.7 \text{ V}, \overline{OE} \ge 2 \text{ V}$			10**		50		10	μΑ
l _{OZL}		$V_{CC} = 2.1 \text{ V} \text{ to}$ $V_{O} = 0.5 \text{ V}, \text{ OE}$	5.5 V, ≥ 2 V			-10**		– 50		-10	μΑ
loff		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μΑ
ICEX	Outputs high	$V_{CC} = 5.5 V$,	V _O = 5.5 V			50		50		50	μΑ
IO [‡]		$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	-50	-100	-200	-50	-200	-50	-200	mA
	Outputs high	.,	0			0.5		0.5		0.5	
ICC	Outputs low	$V_{CC} = 5.5 \text{ V}, I_{O} = 0,$ $V_{I} = V_{CC} \text{ or GND}$				80		80		80	mA
	Outputs disabled	1 .00 3. 0			0.5		0.5		0.5		
ΔlCC§		V_{CC} = 5.5 V, One input at 3.4 V, Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
Ci		$V_{I} = 2.5 \text{ V or } 0.0$		3.5						pF	
Co		$V_0 = 2.5 \text{ V or } 0$	0.5 V		7.5						pF

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

^{**} These limits apply only to the SN74ABT16823.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

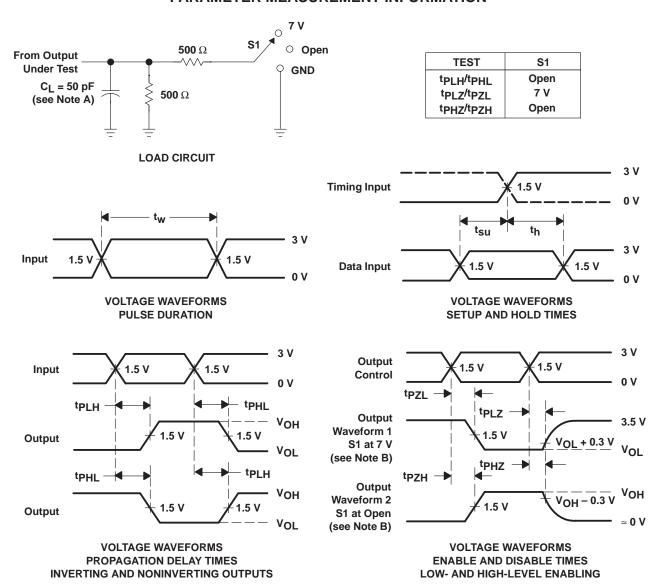
[‡] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[§] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

				$V_{CC} = 5 \text{ V},$ $T_A = 25^{\circ}\text{C}$		SN54ABT16823		Г16823	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
fclock	Clock frequency		0	150	0	150	0	150	MHz	
t _w Pulse duration		CLR low	3.3		3.3		3.3		no	
t _W	ruise duiation	CLK high or low	3.3		3.3		3.3		ns	
		CLR inactive	1.6		2		1.6			
t _{su}	Setup time before CLK↑	Data	1.7		1.7		1.7		ns	
		CLKEN low	2.8		2.8		2.8			
T.,	Hold time after CLK↑	Data	1.2		1.2		1.2		no	
t _h	HOID LITTE AILET CLNT	CLKEN low	0.6		0.6		0.6		ns	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V ₍	CC = 5 V 4 = 25°C	/, ;	MIN	MAX	UNIT
			MIN	TYP	MAX			
f _{max}			150			150		MHz
t _{PLH}	CLK	Q	1.6	3.9	5.5	1.6	7.7	ns
^t PHL	OLK	α	2.1	3.9	5.4	2.1	6.4	115
^t PHL	CLR	Q	1.9	4.1	5.3	1.9	6.3	ns
^t PZH	ŌĒ	Q	1	3.1	4.2	1	5.1	20
t _{PZL}	OE	ď	1.5	3.5	4.6	1.5	5.7	ns
^t PHZ	ŌĒ	Q	2.2	4.3	6	2.2	6.8	ne
^t PLZ	OL .		1.6	4.3	6.4	1.6	9.9	ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V ₍	CC = 5 V A = 25°C	<i>'</i> ,	MIN	MAX	UNIT
			MIN	TYP	MAX			
fmax			150			150		MHz
t _{PLH}	CLK	Q	1.6	3.9	5.5	1.6	6.8	ns
^t PHL		ď	2.1	3.9	5.4	2.1	6	113
t _{PHL}	CLR	Q	1.9	4.1	5.3	1.9	6.1	ns
^t PZH	ŌĒ	Q	1	3.1	4.2	1	4.9	ns
t _{PZL}	OE	ά	1.5	3.5	4.6	1.5	5.5	115
^t PHZ	ŌĒ	Q	2.2	4.3	5.6	2.2	6.1	ne
t _{PLZ}	OL .	ď	1.6	4.3	6.4	1.6	8.7	ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \ \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

5-Sep-2011

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
5962-9584201QXA	ACTIVE	CFP	WD	56	1	TBD	Call TI	Call TI	
74ABT16823DGGRE4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74ABT16823DGGRG4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16823DGGR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16823DGVR	ACTIVE	TVSOP	DGV	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16823DGVRE4	ACTIVE	TVSOP	DGV	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16823DGVRG4	ACTIVE	TVSOP	DGV	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16823DL	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16823DLG4	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16823DLR	ACTIVE	SSOP	DL	56	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16823DLRG4	ACTIVE	SSOP	DL	56	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SNJ54ABT16823WD	ACTIVE	CFP	WD	56	1	TBD	A42	N / A for Pkg Type	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

5-Sep-2011

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

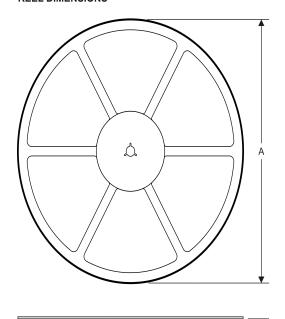
OTHER QUALIFIED VERSIONS OF SN54ABT16823, SN74ABT16823:

Catalog: SN74ABT16823

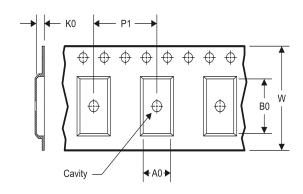
Military: SN54ABT16823

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product


Military - QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

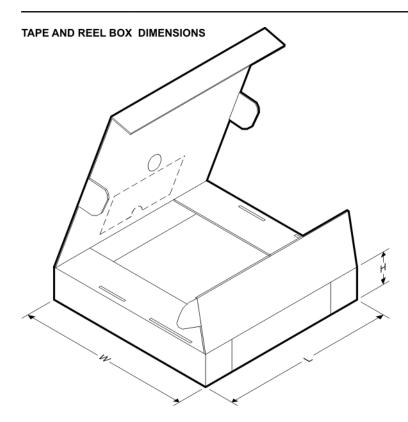

www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

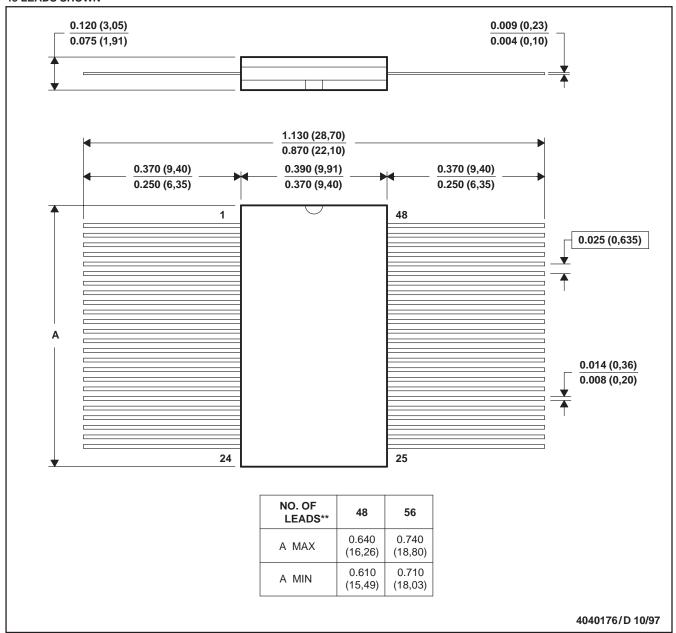

TAPE AND REEL INFORMATION

*All dimensions are nominal

All difficusions are nominal	in annotation and the time.											
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABT16823DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1
SN74ABT16823DGVR	TVSOP	DGV	56	2000	330.0	24.4	6.8	11.7	1.6	12.0	24.0	Q1
SN74ABT16823DLR	SSOP	DL	56	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012


*All dimensions are nominal

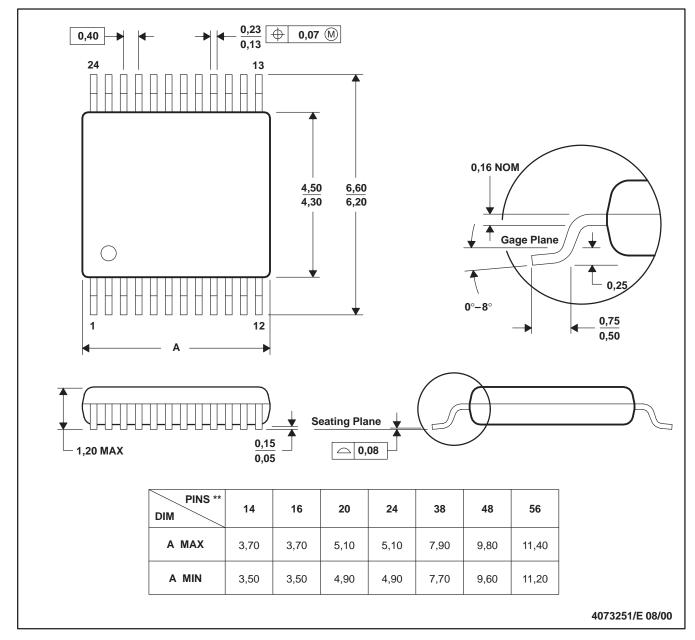
7 III GITTIOTIOTOTIO GITO TIOTITICA							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ABT16823DGGR	TSSOP	DGG	56	2000	367.0	367.0	45.0
SN74ABT16823DGVR	TVSOP	DGV	56	2000	367.0	367.0	45.0
SN74ABT16823DLR	SSOP	DL	56	1000	367.0	367.0	55.0

WD (R-GDFP-F**)

CERAMIC DUAL FLATPACK

48 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only
- E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA

GDFP1-F56 and JEDEC MO-146AB

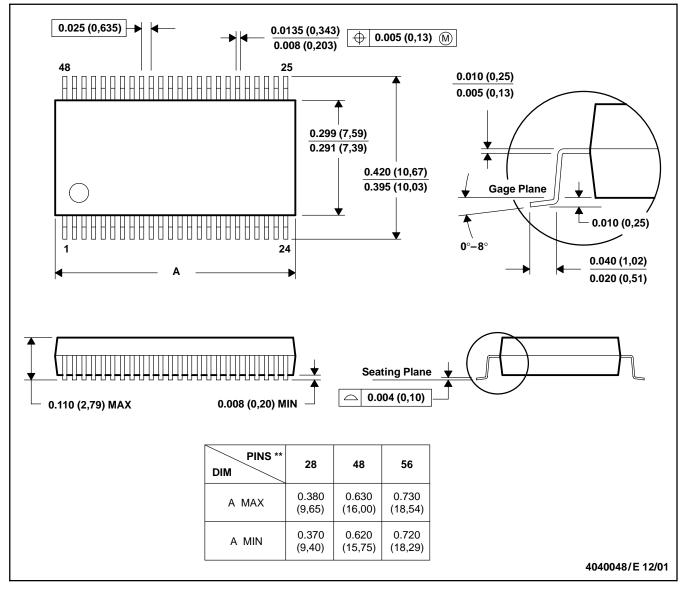
DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

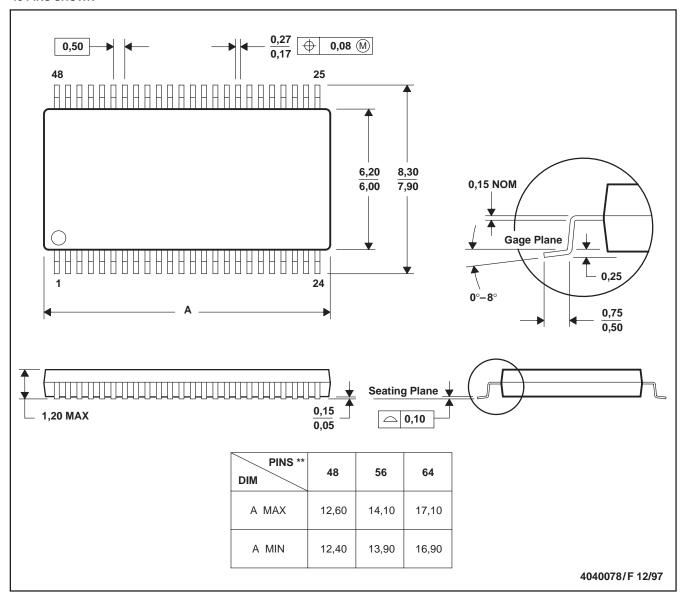
DL (R-PDSO-G**)

48 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Applications

Products Audio www.ti.com/audio **Amplifiers** amplifier.ti.com **Data Converters** dataconverter.ti.com **DLP® Products** www.dlp.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com

www.ti-rfid.com **OMAP Mobile Processors** www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity Automotive and Transportation www.ti.com/automotive www.ti.com/communications Communications and Telecom Computers and Peripherals www.ti.com/computers Consumer Electronics www.ti.com/consumer-apps **Energy and Lighting** www.ti.com/energy Industrial www.ti.com/industrial Medical www.ti.com/medical Security www.ti.com/security

Space, Avionics and Defense www.ti.com/space-avionics-defense Video and Imaging www.ti.com/video

e2e.ti.com

TI E2E Community