
- Choice of Open-Collector, Open-Emitter, or Totem-Pole Outputs
- Single-Ended or Differential AND/NAND Outputs
- Single 5-V Supply
- Dual-Channel Operation
- TTL Compatible
- Short-Circuit Protection
- High-Current Outputs
- Triple inputs
- Clamp Diodes at Inputs and Outputs
- Designed for Use With SN55115 and SN75115 Differential Line Receivers
- Designed to Be Interchangeable With National DS9614 Line Driver

description

The SN55114 and SN75114 dual differential line drivers are designed to provide differential output signals with the high-current capability for driving balanced lines, such as twisted pair, at normal line impedances without high power dissipation. The output stages are similar to TTL totem-pole outputs, but with the sink outputs, YS and ZS, and the corresponding active pullup terminals, YP and ZP, available on adjacent package pins. Since the output stages provide TTL-compatible output levels, these devices can also be used as TTL expanders or phase splitters.

SN55114...J OR W PACKAGE SN75114...D OR N PACKAGE (TOP VIEW)

SN55114 . . . FK PACKAGE (TOP VIEW)

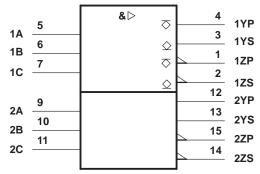
NC - No internal connection

The SN55114 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN75114 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE

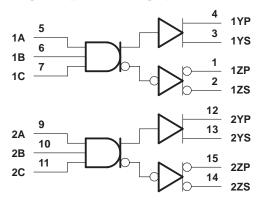
	INPUTS	OUTPUTS				
Α	В	Υ	Z			
Н	Н	Н	Н	L		
All other	input comb	L	Н			

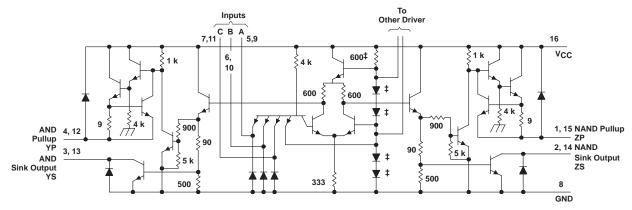
H = high level, L = low level



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS071C - SEPTEMBER 1973 - REVISED SEPTEMBER 1998


logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the D, J, N, and W packages.

logic diagram (positive logic)

schematic (each driver)

[‡] These components are common to both drivers. Resistor values shown are nominal and in ohms. Pin numbers shown are for the D, J, N, and W packages.

SLLS071C - SEPTEMBER 1973 - REVISED SEPTEMBER 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage, V _I	5.5 V
Off-state voltage applied to open-collector outputs	12 V
Continuous total power dissipation	See Dissipation Rating Table
Storage temperature range, T _{Stq}	65°C to 150°C
Case temperature for 60 seconds, T _c : FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or W package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package	ge 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	_
FK [‡]	1375 mW	11.0 mW/°C	880 mW	275 mW
J‡	1375 mW	11.0 mW/°C	880 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	_
w‡	1000 mW	8.0 mW/°C	640 mW	200 mW

[‡] In the FK, J, and W packages, SN55114 chips are either silver glass or alloy mounted.

recommended operating conditions (unless otherwise noted)

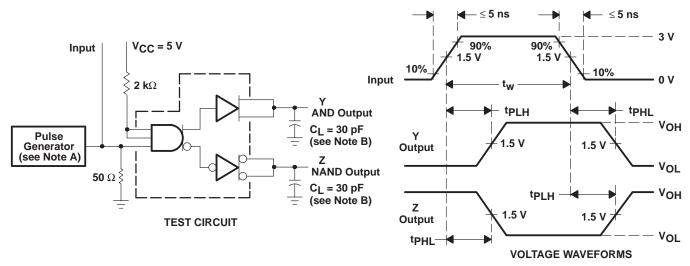
	SN55114			9	UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level input voltage, V _{IH}	2			2			V
Low-level input voltage, V _{IL}			0.8			0.8	V
High-level output current, IOH			-40			-40	mA
Low-level output current, IOL			40			40	mA
Operating free-air temperature, T _A	-55		125	0		70	°C

SLLS071C - SEPTEMBER 1973 - REVISED SEPTEMBER 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†		vet.	SN55114			;	UNIT		
	PARAMETER			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNII	
VIK	Input clamp voltage	$V_{CC} = MIN,$	$I_{I} = -12 \text{ mA}$			-0.9	-1.5		-0.9	-1.5	V
High-level output $V_{CC} = MIN$,	V _{IH} = 2 V,	$I_{OH} = -10 \text{ mA}$	2.4	3.4		2.4	3.4		V		
VOH	voltage	V _{IL} = 0.8 V	V	$I_{OH} = -40 \text{ mA}$	2	3		2	3		V
V _{OL}	Low-level output voltage	$V_{CC} = MIN,$ $V_{IL} = 0.8 V,$	$V_{IH} = 2 V$, $I_{OL} = 40 \text{ mA}$			0.2	0.4		0.2	0.45	٧
Vou	Outrot de man colte de	V _{CC} = 5 V,	I _O = 40 mA,	T _A = 25°C		6.1	6.5		6.1	6.5	V
VOK	Output clamp voltage	$V_{CC} = MAX$,	$I_{O} = -40 \text{ mA},$	T _A = 25°C		-1.1	-1.5		-1.1	-1.5	V
	Off-state open collector output current	V _{CC} = MAX	V _{OH} = 12 V	T _A = 25°C		1	100				μΑ
lo (m				T _A = 125°C			200				
IO(off)			V _{OH} = 5.25 V	T _A = 25°C					1	100	
				T _A = 70°C						200	
łį	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
ΙΗ	High-level input current	$V_{CC} = MAX$,	V _I = 2.4 V				40			40	μΑ
I _I L	Low-level input current	$V_{CC} = MAX$,	V _I = 0.4 V			-1.1	-1.6		-1.1	-1.6	mA
los	Short-circuit output current§	V _{CC} = MAX,	V _O = 0,	T _A = 25°C	-40	-90	-120	-40	-90	-120	mA
loo	Supply current	All inputs at 0 V, No load,	$V_{CC} = MAX$		37	50		37	50	mA	
Icc	(both drivers)	T _A = 25°C		V _{CC} = 7 V		47	65		47	70	111/4

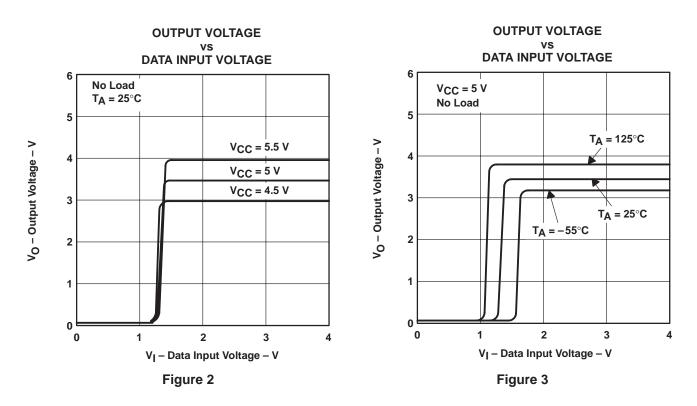
[†] All parameters, with the exception of off-state open-collector output current, are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.


switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST	SN55114			SN75114			UNIT
		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	$C_L = 30 pF$,		15	20		15	30	ns
tPHL	Propagation delay time, high- to low-level output	See Figure 1		11	20		11	30	ns

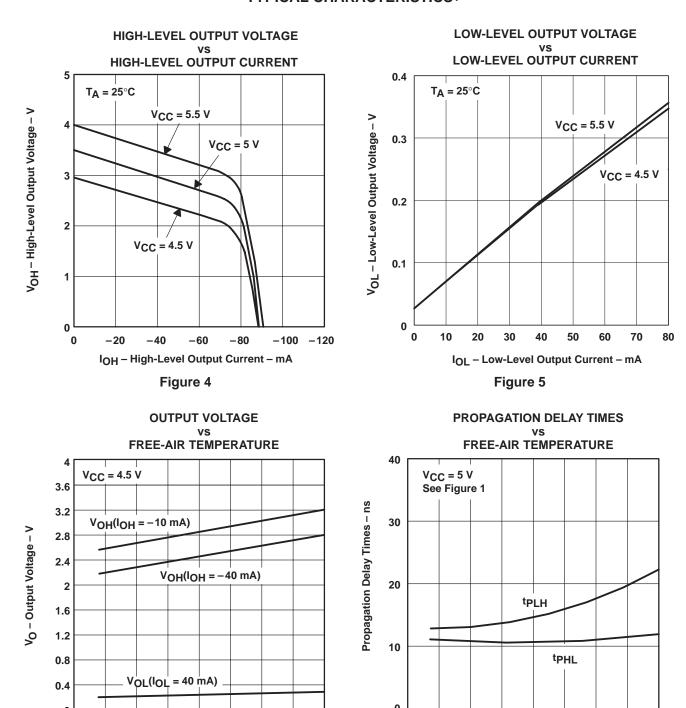
 $^{^{\}ddagger}$ All typical values are at T_A = 25°C and V_{CC} = 5 V, with the exception of I_{CC} at 7 V.

[§] Only one output should be shorted at a time, and duration of the short circuit should not exceed one second.


PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The pulse generator has the following characteristics: $Z_0 = 500 \Omega$, PRR $\leq 500 \text{ kHz}$, $t_W \leq 100 \text{ ns}$.
 - B. C_I includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms


TYPICAL CHARACTERISTICS†

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. These parameters were measured with the active pullup connected to the sink output.

TYPICAL CHARACTERISTICS[†]

-75 -50

0

-25

50

75

100

125

25

 T_A – Free-Air Temperature – $^{\circ}$ C

Figure 7

-75 -50

-25

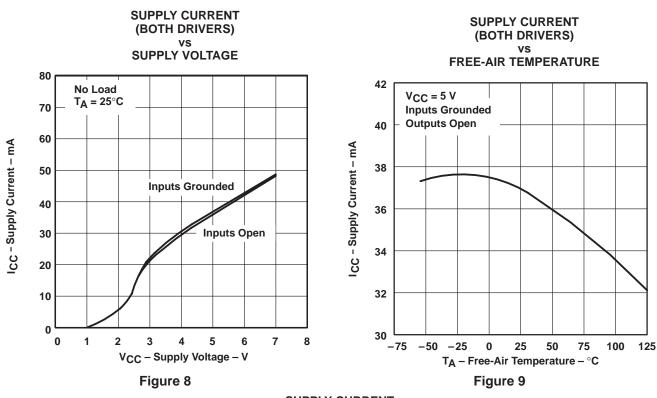
0

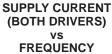
25

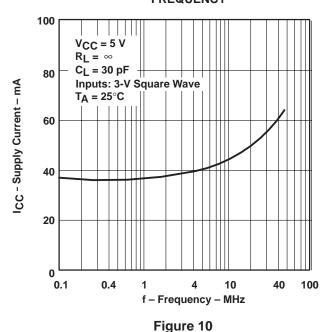
 T_A – Free-Air Temperature – $^{\circ}$ C

Figure 6

50

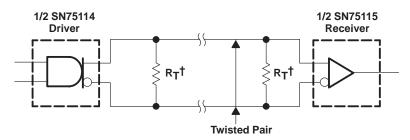

75


100


125

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. These parameters were measured with the active pullup connected to the sink output.

TYPICAL CHARACTERISTICS†



† Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. These parameters were measured with the active pullup connected to the sink output.

APPLICATION INFORMATION

 $^{^{\}dagger}$ R_T = Z_O. A capacitor can be connected in series with R_T to reduce power dissipation.

Figure 11. Basic Party-Line or Data-Bus Differential Data Transmission

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated