
- Meets EIA Standards RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Bus Voltage Range . . . –7 V to 12 V
- Positive and Negative Current Limiting
- Driver Output Capability . . . 60 mA Max
- Driver Thermal Shutdown Protection
- Receiver Input Impedance . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ±200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates From Single 5-V Supply
- Low Power Requirements

SN75177B . . . D OR P PACKAGE (TOP VIEW)

SN75178B . . . P PACKAGE (TOP VIEW)

THE SN75177B IS NOT RECOMMENDED FOR NEW DESIGN

description

The SN75177B and SN75178B differential bus repeaters are monolithic integrated devices each designed for one-way data communication on multipoint bus transmission lines. These devices are designed for balanced transmission bus line applications and meet EIA Standard RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27. Each device is designed to improve the performance of the data communication over long bus lines. The SN75177B and SN75178B are identical except for the complementary enable inputs, which allow the devices to be used in pairs for bidirectional communication.

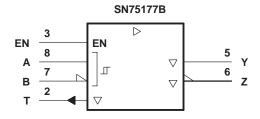
The SN75177B and SN75178B feature positive- and negative-current limiting 3-state outputs for the receiver and driver. The receiver features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 mV over a common-mode input voltage range of -7 V to 12 V. The driver features thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150°C. The driver is designed to drive current loads up to 60 mA maximum.

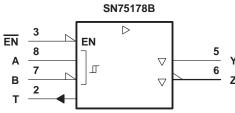
The SN75177B and SN75178B are designed for optimum performance when used on transmission buses employing the SN75172 and SN75174 differential line drivers, SN75173 and SN75175 differential line receivers, or SN75176B bus transceiver.

Function Tables

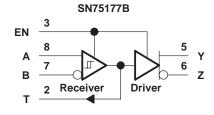
SN75177B

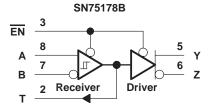
DIFFERENTIAL INPUTS	ENABLE			
A – B	EN	T	Υ	Z
V _{ID} ≥ 0.2 V	Н	Н	Н	L
$-0.2 \text{ V} < \text{V}_{\text{1D}} < 0.2 \text{ V}$	Н	?	?	?
V _{ID} ≤ 0.2 V	Н	L	L	Н
X	L	Z	Z	Z

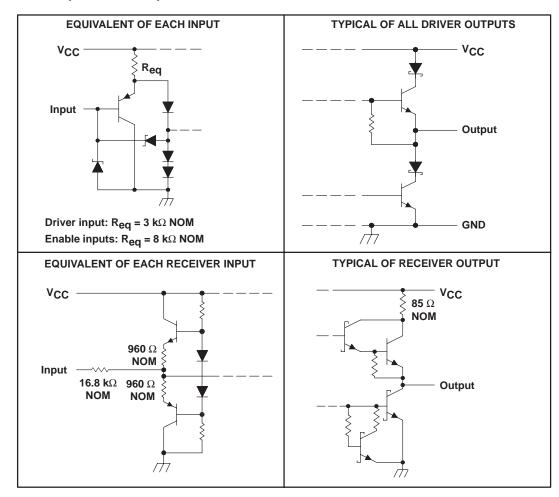

SN75178B


DIFFERENTIAL INPUTS	ENABLE			
A – B	EN	Т	Υ	Z
V _{ID} ≥ 0.2 V	L	Н	Н	L
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?	?	?
V _{ID} ≤ 0.2 V	L	L	L	Н
X	Н	Z	Z	Z

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = impedance (off)


logic symbols†




† These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagrams (positive logic)

schematics of inputs and outputs

SLLS002C - D2606, JULY 1985 - REVISED FEBRUARY 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

7 V
−10 V to 15 V
±25 V
See Dissipation Rating Table
0°C to 70°C
–65°C to 150°C
260°C

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
Р	1000 mW	8.0 mW/°C	640 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level input voltage, V _{IH}	EN or EN	2			V
low-level input voltage, V _{IL}	EN or EN			0.8	V
Common-mode input voltage, V _{IC}		_7 [†]		12	V
Differential input voltage, V _{ID}				±12	V
High level cutout current leve	Driver			-60	mA
High-level output current, IOH	Receiver			-400	μΑ
Low lovel output ourrent I	Driver			60	mΛ
Low-level output current, IOL	Receiver			8	mA
Operating free-air temperature, TA		C		70	°C

[†] The algebraic convention, where the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CO	TEST CONDITIONS		TYP†	MAX	UNIT	
VIK	Input clamp voltage	I _I = -18 mA				-1.5	V	
٧o	Output voltage	IO = 0		0		6	V	
V _{OD1}	Differential output voltage	I _O = 0		1.5		6	V	
VOD2	Differential output voltage	$R_L = 100 \Omega$,	See Figure 1	1/2 V _{OD1} or 2§			V	
		$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5		
VOD3	Differential output voltage	See Note 3		1.5		5	V	
$\Delta V_{OD} $	Change in magnitude of diferential output voltage‡	B 54.0 × 400.0	0 5			±0.2	V	
Voc	Common-mode output voltage	$R_L = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1			3 -1	V	
Δ V _{OC}	Change in magnitude of common-mode output voltage‡					±0.2	٧	
lo	Output current	$V_{CC} = 0$,	$V_0 = -7 \text{ V to } 12 \text{ V}$			±100	μΑ	
loz	High-impedance-state output current	$V_0 = -7 \text{ V to } 12 \text{ V}$				±100	μΑ	
l _{IH}	High-level input current	V _I = 2.4 V				20	μΑ	
I _I L	Low-level input current	V _I = 0.4 V				-400	μΑ	
		V _O = -7 V	V _O = -7 V			-250		
los	Short-circuit output current	$V_{O} = V_{CC}$				250	mA	
		V _O = 12 V	V _O = 12 V			250		
loo	Supply surrent (total package)	No load	Outputs enabled		57		4	
ICC	Supply current (total package)	INUIUAU	Outputs disabled		26	35	mA	

[†] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

NOTE 3: See Figure 3.5 of EIA Standard RS-485.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST C	MIN	TYP	MAX	UNIT	
t _{dD}	Differential-output delay time	$R_1 = 54 \Omega$	See Figure 3		15	20	ns
t _{tD}	Differential-output transition time	KL = 54 12,	See rigule 3		20	30	ns
tPZH	Output enable time to high level	$R_L = 110 \Omega$,	See Figure 4		85	120	ns
tPZL	Output enable time to low level	$R_L = 110 \Omega$,	See Figure 5		40	60	ns
^t PHZ	Output disable time from high level	$R_L = 110 \Omega$,	See Figure 4		150	250	ns
tPLZ	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 5		20	30	ns

[‡]Δ|V_{OD}| and Δ|V_{OC}| are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level

[§] The minimum V_{OD2} with a 100- Ω load is either 1/2 V_{OD1} or 2, whichever is greater.

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-422-A	RS-485
Vo	V _{oa,} V _{ob}	V _{oa} , V _{ob}
IVOD1I	Vo	V _O
IV _{OD2} I	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
V _{OD3}		V _t (Test Termination) Measurement 2)
Δ V _{OD}	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	V _{OS}	V _{OS}
Δ VOC	V _{OS} − V _{OS}	V _{OS} − V _{OS}
los	I _{sa} , I _{sb}	
lo	l _{xa} , l _{xb}	l _{ia} ,l _{ib}

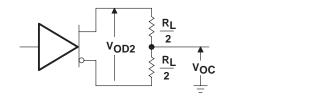
RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP†	MAX	UNIT
V _{T+}	Positive-going input threshold voltage	V _O = 2.7 V,	$I_0 = -0.4 \text{ mA}$			0.2	V
V _T _	Negative-going input threshold voltage	$V_0 = 0.5 V$,	IO = 8 mA	-0.2‡			V
V _{hys}	Input hysteresis (V _{T+} - V _{T-})				50		mV
VIK	Input clamp voltage at EN	$I_{I} = -18 \text{ mA}$				-1.5	V
Vон	High-level output voltage	V _{ID} = 200 mV, See Figure 2	$I_{OH} = -400 \mu A,$	2.7			V
VOL	Low-level output voltage	V _{ID} = -200 mV, See Figure 2	I _{OL} = 8 mA,			0.45	V
	High impedance state output ourrent	V _O = 0.4 V to 2.4 V				20	
loz	High-impedance-state output current					-400	μΑ
Ī	Line input ourrent	Other input at 0 V,	V _I = 12 V			1	m A
l II	Line input current	See Note 4	V _I = −7 V			-0.8	mA
lіН	High-level enable-input current	V _{IH} = 2.7 V				20	μΑ
I _I L	Low-level enable-input current	V _{IL} = 0.4 V				-200	μΑ
rį	Input resistance			12			kΩ
Ios	Short-circuit output current			-15		-85	mA
loo	Supply current (total package)	No load	Outputs enabled		57	70	mA
Icc	Supply surrent (total package)	TVOTOGG	Outputs disabled		26	35	111/4

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high level output	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$		19	35	20
tPHL	Propagation delay time, high-to-low level output	C _L = 15 pF, See Figure 6		30	40	ns
^t PZH	Output enable time to high level	C. 45 pF Coo Figure 7		10	20	
tPZL	Output enable time to high level	C _L = 15 pF, See Figure 7		12	20	ns
^t PHZ	Output disable time from high level	C. – 15 pF Soo Figure 9		25	35	20
tPLZ	Output disable time from low level	C _L = 15 pF, See Figure 8		17	25	ns

[‡] The algebraic convention, where the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

NOTE 4: Refer to EIA Standard RS-422 for exact conditions.

PARAMETER MEASUREMENT INFORMATION

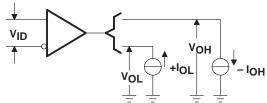


Figure 1. Driver V_{OD} and V_{OC}

Figure 2. Receiver VOH and VOL

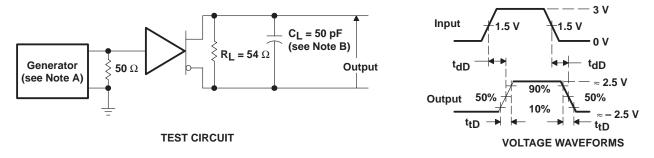


Figure 3. Driver Differential-Output Test Circuit and Voltage Waveforms

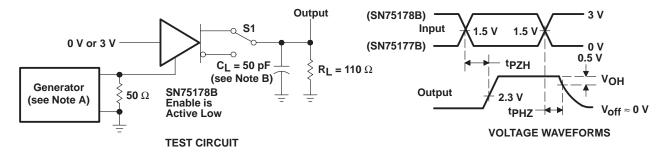


Figure 4. Driver Enable and Disable Times

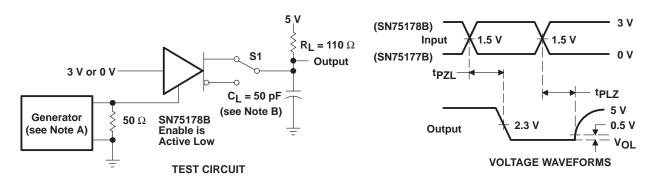


Figure 5. Driver Enable and Disable Times

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{f} \leq$ 6 ns, $t_{f} \leq$ 7 ns, $t_{f} \leq$ 8 ns, $t_{f} \leq$ 9 ns, $t_$

B. CL includes probe and jig capacitance.

PARAMETER MEASUREMENT INFORMATION

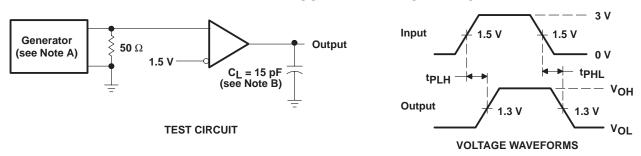


Figure 6. Receiver Propagation Delay Times

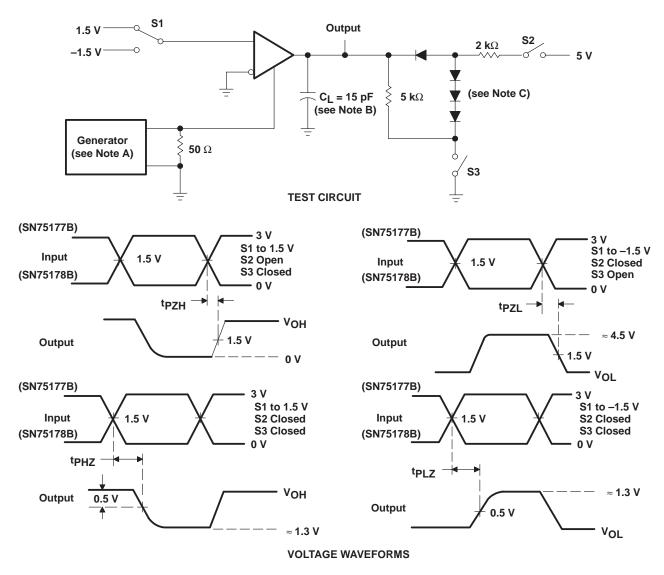


Figure 7. Receiver Output Enable and Disable Times

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{\Gamma} \leq$ 7 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 9 ns, $t_$

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N916 or equivalent.

TYPICAL CHARACTERISTICS

DRIVER HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

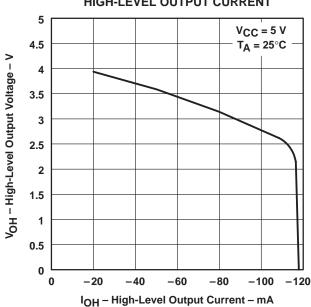


Figure 8

5 $V_{CC} = 5 V$ 4.5 T_A = 25°C VOH - High-Level Output Voltage - V 3.5 3 2.5 2 1.5 1 0.5 0 0 20 40 60 80 100 120 IOH - Low-Level Output Current - mA

DRIVER LOW-LEVEL OUTPUT VOLTAGE

LOW-LEVEL OUTPUT CURRENT

Figure 9

DRIVER DIFFERENTIAL OUTPUT VOLTAGE

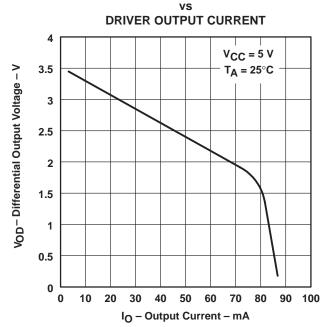


Figure 10

RECEIVER OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE

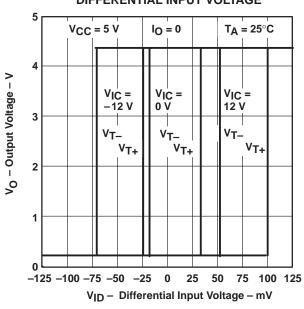


Figure 11

TYPICAL CHARACTERISTICS

RECEIVER HIGH-LEVEL OUTPUT VOLTAGE

HIGH-LEVEL OUTPUT CURRENT

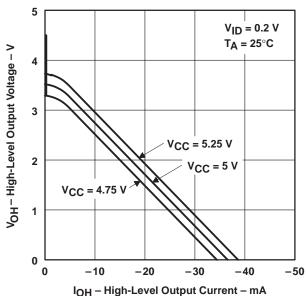


Figure 12

RECEIVER LOW-LEVEL OUTPUT VOLTAGE

LOW-LEVEL OUTPUT CURRENT

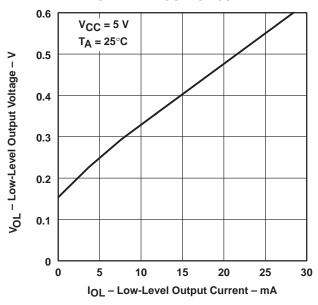


Figure 14

RECEIVER HIGH-LEVEL OUTPUT VOLTAGE vs

FREE-AIR TEMPERATURE

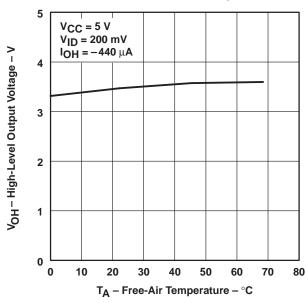


Figure 13

RECEIVER LOW-LEVEL OUTPUT VOLTAGE vs

FREE-AIR TEMPERATURE

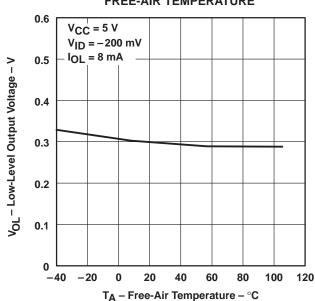
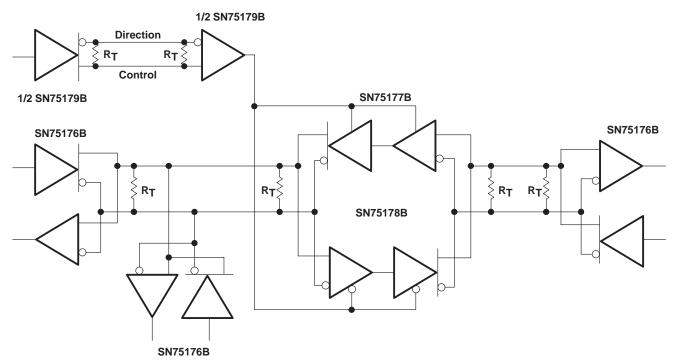



Figure 15

APPLICATION INFORMATION

NOTE: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

Figure 16. Typical Application Circuit

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN75177BD	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	Samples Not Available
SN75177BP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI	Samples Not Available
SN75178BD	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	Samples Not Available
SN75178BDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	Samples Not Available
SN75178BP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Contact TI Distributor or Sales Office
SN75178BPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Contact TI Distributor or Sales Office

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps