

2.5V/3.3V/5V 1:2 DIFFERENTIAL PECL/LVPECL/ECL FANOUT BUFFER

FEATURES

- 2.5V, 3.3V and 5V power supply options
- Guaranteed AC parameters over temperature:
 - f_{MAX} > 3.0GHz
 - < 20ps output-to-output skew
 - < 200ps t_r / t_f
 - < 300ps propagation delay
- Wide temperature range: -40°C to +85°C
- Available in 8-pin (3mm) MSOP and SOIC packages

DESCRIPTION

The SY10/100EP11U is a precision, high-speed 1:2 differential fanout buffer. Having within-device skews and output transition times significantly improved over the EL11V, the EP11U is ideally suited for those applications which require the ultimate in AC performance.

The differential inputs of the EP11U employ clamping circuitry to maintain stability under open input conditions. If the inputs are left open, the Q outputs will go LOW.

PIN CONFIGURATION/BLOCK DIAGRAM

8-pin MSOP and SOIC Packages

PIN NAMES

Pin	Function
D	PECL, LVPECL, ECL, LVECL Clock or Data Input: Internal 75k Ω pulldown resistor. If left floating, pin defaults LOW, Q _{OUT} goes LOW.
/D	PECL, LVPECL, ECL, LVECL complementary Clock or Data Input: Internal $75k\Omega$ pull-up and down resistors. If left open, default is V _{CC} /2. When the input is not used, it can be left open.
Q0, /Q0 Q1, /Q1	PECL, LVPECL, ECL, LVECL Outputs: Terminates to V _{CC} -2V.
V _{CC}	Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors.
V _{EE}	Negative Power Supply: For PECL operation, connect to GND.

CROSS REFERENCE TABLE

Micrel Semiconductor	ON Semiconductor
SY10EP11UZI/KI	MC10EP11D/DT
SY10EP11UZI/KI	MC10LVEP11D/DT
SY100EP11UZI/KI	MC100EP11D/DT
SY100EP11UZI/KI	MC100LVEP11D/DT

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating			Value	Unit
$V_{CC} - V_{EE}$	Power Supply Voltage			6V	V
V _{IN}	Input Voltage ($V_{CC} = 0V$, V_{IN} not more Input Voltage ($V_{EE} = 0V$, V_{IN} not more	negative than V_{EE}) positive than V_{CC})		-6.0 to 0 +6.0 to 0	V V
I _{OUT}	Output Current	–Continuou –Surge	IS	50 100	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{store}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Package Thermal Resistance (Junction-to-Ambient)	–Still-Air –500lfpm	(SOIC) (SOIC)	160 109	°C/W
		–Still-Air –500lfpm	(MSOP) (MSOP)	206 155	°C/W
θ^{JC}	Package Thermal Resistance (Junction-to-Case)		(SOIC) (MSOP)	39 39	°C/W

NOTE:

1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

		Г	A = -40	°C	٦	Γ _A = +25	°C	٦	Γ _A = +85	°C		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{CC}	Power Supply Voltage (PECL) (LVPECL) (ECL) (LVECL)	4.5 2.37 -5.5 -3.8	5.0 — —5.0 —3.3	5.5 3.8 -4.5 -2.37	4.5 2.37 -5.5 -3.8	5.0 — —5.0 —3.3	5.5 3.8 4.5 2.37	4.5 2.37 -5.5 -3.8	5.0 — —5.0 —3.3	5.5 3.8 4.5 2.37	V	
I _{EE}	Power Supply Current SY10EP11U SY100EP11U			37 44		25 30	39 44		_	40 44	mA mA	
I _{IH}	Input HIGH Current	_	_	150	_	_	150	_	_	150	μA	$V_{IN} = V_{IH}$
I _{IL}	Input LOW Current D /D	0.5 -150	_	_	0.5 -150	_	_	0.5 -150	_	_	μΑ μΑ	$V_{IN} = V_{IL}$ $V_{IN} = V_{IL}$
C _{IN}	Input Capacitance (MSOP) (SOIC)					1.0 1.35	_				pF pF	

NOTES:

1. 10/100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.

(10KEP) LVPECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = 2.5V \pm 5\%, V_{EE} = 0V$

		T _A = -40°C			T _A = +25°C			T	_A = +85°			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{OL}	Output LOW Voltage	565	690	815	630	755	880	690	815	940	mV	50 Ω to V _{CC} –2V
V _{OH}	Output HIGH Voltage	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV	50 Ω to V _{CC} –2V
V _{IHCMR}	Input HIGH Voltage ⁽²⁾ Common Mode Range	1.2	—	V _{CC}	1.2		V _{CC}	1.2		V _{CC}	V	

NOTES:

 10KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters are at V_{CC} = 2.5V. They vary 1:1 with V_{CC}.

2. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. See "Input Waveform" section. Single-ended input CLK pin operation is limited to V_{CC} ≥ 3.0V in PECL mode.

(10KEP) LVPECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = 3.3V \pm 10\%, V_{FF} = 0V$

		T	_A = -40°	С	Г	Γ _A = +25	°C	T,	_A = +85°	С		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{IL}	Input LOW Voltage (Single-Ended)	1365	_	1690	1430	-	1755	1490	_	1815	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	2090	_	2415	2155	_	2480	2215	_	2540	mV	
V _{OL}	Output LOW Voltage	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV	50 Ω to V_CC-2V
V _{OH}	Output HIGH Voltage	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV	50 Ω to V_CC-2V
V _{IHCMR}	Input HIGH Voltage ⁽²⁾ Common Mode Range	1.2	_	V _{CC}	1.2	_	V _{CC}	1.2	_	V _{CC}	V	

NOTES:

 10KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters are at V_{CC} = 3.3V. They vary 1:1 with V_{CC}.

2. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. See "Input Waveform" section. Single-ended input CLK pin operation is limited to V_{CC} ≥ 3.0V in PECL mode.

(10KEP) PECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = 5.0V \pm 10\%, V_{EE} = 0V$

		Т	_A = −40°	C	٦	Γ _A = +25	°C	Т	_A = +85°	С		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{IL}	Input LOW Voltage (Single-Ended)	3065	—	3390	3130	_	3455	3190		3515	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	3790	—	4115	3855	-	4180	3915		4240	mV	
V _{OL}	Outuput LOW Voltage	3065	3190	3315	3130	3255	3380	3190	3315	3440	mV	50 Ω to V _{CC} –2V
V _{OH}	Output HIGH Voltage	3865	3990	4115	3930	4055	4180	3990	4115	4240	mV	50 Ω to V _{CC} –2V
V _{IHCMR}	Input HIGH Voltage ⁽²⁾ Common Mode Range	1.2	_	V _{CC}	1.2	_	V _{CC}	1.2	_	V _{CC}	V	

NOTES:

 10KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters are at V_{CC} = 5.0V. They vary 1:1 with V_{CC}.

 The V_{IHCMR} range is referenced to the most positive side of the differential input signal. See "Input Waveform" section. Single-ended input CLK pin operation is limited to V_{CC} ≥ 3.0V in PECL mode.

(10KEP) ECL/LVECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = 0V, V_{EE} = -5.5V \text{ to } -2.375V$

		T	T _A = -40°C		T,	_A = +25°	С	T	T _A = +85°C			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{IL}	Input LOW Voltage (Single-Ended)	-1935		-1610	-1870		-1545	-1810	_	-1485	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	-1210	_	-885	-1145	_	-820	-1085	_	-760	mV	
V _{OL}	Outuput LOW Voltage	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV	50 Ω to V_{CC}–2V
V _{OH}	Output HIGH Voltage	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV	50 Ω to V_CC-2V
V _{IHCMR}	Input HIGH Voltage ⁽²⁾ Common Mode Range	V _{EE} ·	+1.2	0.0	V_{EE}	+1.2	0.0	V_{EE}	+1.2	0.0	V	

NOTES:

1. 10KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.

2. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. See "Input Waveform" section. Single-ended input CLK pin operation is limited to $V_{EE} \le -3.0V$ in ECL/LVECL mode.

(100KEP) LVPECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = 2.5V \pm 5\%$

		T	$T_A = -40^{\circ}C$			T _A = +25°C			_A = +85°	C		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{OL}	Outuput LOW Voltage	555	680	805	555	680	805	555	680	805	mV	50 Ω to V _{CC} –2V
V _{OH}	Output HIGH Voltage	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV	50 Ω to V _{CC} –2V
V _{IHCMR}	Input HIGH Voltage ⁽²⁾ Common Mode Range	1.2	—	V _{CC}	1.2	-	V _{CC}	1.2		V _{CC}	V	

NOTES:

100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a
test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters are at V_{CC} = 2.5V.
They vary 1:1 with V_{CC}.

 The V_{IHCMR} range is referenced to the most positive side of the differential input signal. See "Input Waveform" section. Single-ended input CLK pin operation is limited to V_{CC} ≥ 3.0V in PECL mode.

(100KEP) LVPECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

$V_{CC} = 3.3V \pm 10\%, V_{EE} = 0V$

		T	_A = -40°	С	T	_A = +25°	C	T	_A = +85°	С		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{IL}	Input LOW Voltage (Single-Ended)	1355		1675	1355		1675	1355		1675	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	2075	_	2420	2075	-	2420	2075	_	2420	mV	
V _{OL}	Output LOW Voltage	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV	50 Ω to V_CC-2V
V _{OH}	Output HIGH Voltage	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV	50 Ω to V_CC-2V
V _{IHCMR}	Input HIGH Voltage ⁽²⁾ Common Mode Range	1.2		V _{CC}	1.2		V _{CC}	1.2		V _{CC}	V	

NOTES:

100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a
test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters are at V_{CC} = 3.3V.
They vary 1:1 with V_{CC}.

 The V_{IHCMR} range is referenced to the most positive side of the differential input signal. See "Input Waveform" section. Single-ended input CLK pin operation is limited to V_{CC} ≥ 3.0V in PECL mode.

(100KEP) PECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = 5.0V \pm 10\%, V_{EE} = 0V$

		T	_A = −40°	C	٦	_A = +25	°C	T	_A = +85°	C		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{IL}	Input LOW Voltage (Single-Ended)	3055	_	3375	3055		3375	3055	_	3375	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	3775	_	4120	3775	_	4120	3775	_	4120	mV	
V _{OL}	Outuput LOW Voltage	3055	3180	3305	3055	3180	3305	3055	3180	3305	mV	50 Ω to V_CC-2V
V _{OH}	Output HIGH Voltage	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV	50 Ω to V_CC-2V
V _{IHCMR}	Input HIGH Voltage ⁽²⁾ Common Mode Range	2.0	_	V _{CC}	2.0		V _{CC}	2.0	_	V _{CC}	V	

NOTES:

100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a
test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters are at V_{CC} = 5.0V.
They vary 1:1 with V_{CC}.

2. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. See "Input Waveform" section. Single-ended input CLK pin operation is limited to $V_{CC} \ge 3.0V$ in PECL mode.

(100KEP) ECL/LVECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

		T	T _A = -40°C		٦	Γ _A = +25	°C	T	_A = +85°	С		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{IL}	Input LOW Voltage (Single-Ended)	-1945	_	-1625	-1945		-1625	-1945		-1625	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	-1225	—	-880	-1225	—	-880	-1225	_	-880	mV	
V _{OL}	Outuput LOW Voltage	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV	50 Ω to V_CC-2V
V _{OH}	Output HIGH Voltage	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV	50 Ω to V_CC-2V
V _{IHCMR}	Input HIGH Voltage ⁽²⁾ Common Mode Range	V _{EE} ·	+1.2	0.0	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V	

 $V_{CC} = 0V, V_{EE} = -5.5V \text{ to } -2.375V$

NOTES:

1. 100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.

 The V_{IHCMR} range is referenced to the most positive side of the differential input signal. See "Input Waveform" section. Single-ended input CLK pin operation is limited to V_{EE} ≤ −3.0V in ECL/LVECL mode.

AC ELECTRICAL CHARACTERISTICS

 V_{CC} = 0V; V_{EE} = –5.5V to –2.375V or V_{CC} = 2.375V to 5.5V, V_{EE} = 0V

00		00										
		T _A = -40°C		T _A = +25°C		T _A = +85°C						
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
f _{MAX}	Max. Toggle Frequency ⁽¹⁾	3	_	_	3	_	—	3	_	-	GHz	
t _{PLH} t _{PHL}	Propagation Delay (Differential) D to Q, /Q D to Q, /Q	140 170	200 230	250 300	160 180	220 240	270 310	180 210	240 270	300 360	ps ps	V _{CC} = 3.3V/5V V _{CC} = 2.5V
t _{SKEW}	Within-Device Skew ⁽²⁾ Q, /Q	_	5	20	_	5	20	_	5	20	ps	
	Part-to-Part Skew ⁽²⁾		_	130 110		_	130 110	_	_	150 120	ps ps	V _{CC} = 3.3V/5V V _{CC} = 2.5V
t _{JITTER}	Cycle-to-Cycle Jitter (rms)	_	0.2	< 1	_	0.2	< 1	_	0.2	< 1	ps _{rms}	
V _{DIFF}	Input Swing ⁽³⁾	150	800	1200	150	800	1200	150	800	1200	mV	
t _{r,} t _f	Output Rise/Fall Time (20% to 80%)	70	110	170	80	120	180	100	140	200	ps	

NOTES:

1. Measured with 750mV input signal, 50% duty cycle. All loading with a 50 Ω to V $_{CC}$ –2.0V.

2. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

3. See "Input Waveform."

INPUT WAVEFORM

TERMINATION RECOMMENDATIONS

Figure 1. Parallel Termination-Thevenin Equivalent

Notes:

- 1. For +2.5V systems: $R1 = 250\Omega$ $R2 = 62.5\Omega$
- 2. For +5.0V systems: $R1 = 82\Omega$ $R2 = 130\Omega$

Figure 2. Three-Resistor "Y-Termination"

Notes:

- 1. Power-saving alternative to Thevenin termination.
- 2. Place termination resistors as close to destination inputs as possible.
- 3. R_b resistor sets the DC bias voltage equal to V_t. For +3.3V systems R_b = 46 Ω to 50 Ω . For +5V systems, R_b = 110 Ω .

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range	Package Marking	
SY10EP11UKI	K8-1	Industrial	HP11	
SY10EP11UKITR*	K8-1	Industrial	HP11	
SY10EP11UZI	Z8-1	Industrial	HEP11U	
SY10EP11UZITR*	Z8-1	Industrial	HEP11U	

Ordering Code	Package Type	Operating Range	Package Marking	
SY100EP11UKI	K8-1	Industrial	XP11	
SY100EP11UKITR*	K8-1	Industrial	XP11	
SY100EP11UZI	Z8-1	Industrial	XEP11U	
SY100EP11UZITR*	Z8-1	Industrial	XEP11U	

*Tape and Reel

8 LEAD MSOP (K8-1)

8 LEAD SOIC .150" WIDE (Z8-1)

9

MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA

TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 2002 Micrel Incorporated