
© MIPS Technologies, Inc. 1996
Printed in Japan

Document No. U12739EJ2V0UM00 (2nd edition)
Date Published January 1998 N CP(K)

VR4102™
64/32-bit Microprocessor

Preliminary User’s Manual

1997©

PPPPPD30102

2

[MEMO]

3

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

VR3000, VR4000, VR4100, VR4101, VR4102, VR4200, VR4400, and VR Series are trademarks of NEC
Corporation.
MIPS is a trademark of MIPS Technologies, Inc.
iAPX is a trademark of Intel Corp.
DEC VAX is a trademark of Digital Equipment Corp.
UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.

4

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.
 Standard: Computers, office equipment, communications equipment, test and measurement equipment,
 audio and visual equipment, home electronic appliances, machine tools, personal electronic
 equipment and industrial robots
 Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
 systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
 for life support)
 Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
 support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

M7 96. 5

Exporting this product or equipment that include this product may require a governmental license from
the U.S.A. for some countries because this product utilizes technologies limited by the export control
regulations of the U.S.A.

5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

J97. 8

6

[MEMO]

7

PREFACE

Readers This manual targets users who intends to understand the functions of the VR4102
and to design application systems using this microprocessor.

Purpose This manual introduces the architecture and hardware functions of the VR4102 to
users, following the organization described below.

Organization This manual consists of the following contents:

• Introduction
• Pipeline operation
• Cache organization and memory management system
• Exception processing
• Initialization interface
• Interrupts
• Peripheral units
• Instruction set details

How to read this manual It is assumed that the reader of this manual has general knowledge in the fields of
electric engineering, logic circuits, and microcomputers.

The VR4000TM in this manual includes the VR4400TM.

To learn in detail about the function of a specific instruction,
o Read Chapter 3 CPU Instruction Set Summary and Chapter 27 CPU

Instruction Set Details .

To learn about the overall functions of the VR4102,
o Read this manual in sequential order.

To learn about electrical specifications,
o Refer to Data Sheet which is separately available.

Legend Data significance: Higher on left and lower on right
Active low: XXX# (trailing # after pin and signal names)
Numeric representation: binary/decimal ... XXXX

hexadecimal ... 0xXXXX
Prefixes representing an exponent of 2 (for address space or memory capacity):

K (kilo) 210 = 1024
M (mega) 220 = 10242

G (giga) 230 = 10243

T (tera) 240 = 10244

P (peta) 250 = 10245

E (exa) 260 = 10246

8

Related Documents The related documents indicated here may include preliminary version. However,
preliminary versions are not marked as such.

• User’s manual
VR4102 User’s Manual This manual
VR4100TM User’s Manual U10050E

• Data sheet
VR4102 Data Sheet U12543E

• Application note
VR4102 Application Note To be prepared
VR Series™ Application Note programming guide U10710JNote

Note This document number is that of the Japanese version.

9

CONTENTS

CHAPTER 1 INTRODUCTION.. 29

1.1 FEATURES.. 29
1.2 ORDERING INFORMATION .. 30
1.3 64-BIT ARCHITECTURE.. 30
1.4 VR4102 PROCESSOR.. 30

1.4.1 Internal Block Structure.. 31

1.4.2 I/O Registers 33

1.5 VR4100 CPU CORE... 43
1.5.1 VR4100 CPU Core ... 43

1.5.2 CPU Registers 45

1.5.3 CPU Instruction Set Overview.. 46

1.5.4 Data Formats and Addressing 47

1.5.5 Coprocessors (CP0-CP3).. 49

1.5.6 Floating-Point Unit (FPU)... 51

1.5.7 Cache .. 51

1.6 CPU CORE MEMORY MANAGEMENT SYSTEM (MMU)... 52
1.6.1 Translation Lookaside Buffer (TLB) 52

1.6.2 Operating Modes... 52

1.7 INSTRUCTION PIPELINE .. 53
1.8 CLOCK INTERFACE.. .. 53

CHAPTER 2 PIN FUNCTIONS.. 57

2.1 PIN CONFIGURATION.. . 57
2.2 PIN FUNCTION DESCRIPTION.. 62

2.2.1 System Bus Interface Signals 63

2.2.2 Clock Interface Signals... 65

2.2.3 Battery Monitor Interface Signals 65

2.2.4 Initialization Interface Signals.. 66

2.2.5 RS-232-C Interface Signals.. 67

2.2.6 IrDA Interface Signals 68

2.2.7 Debug Serial Interface Signals.. 68

2.2.8 Keyboard Interface Signals 69

2.2.9 Audio Interface Signals 69

2.2.10 Touch Panel/General Purpose A/D Interface Signals ... 69

2.2.11 General-purpose I/O Signals 70

2.2.12 HSP MODEM Interface Signals 71

2.2.13 LED Interface Signal 71

2.2.14 Dedicated V DD and GND Signals ... 72

2.3 PIN STATUS UPON SPECIFIC STATES ... 73
2.3.1 Pin Status upon Reset 73

2.3.2 Connection of Unused Pins and Pin I/O Circuits .. 76

2.3.3 Pin I/O Circuits 79

10

CHAPTER 3 CPU INSTRUCTION SET SUMMARY .. 81

3.1 CPU INSTRUCTION FORMATS ... 81
3.2 INSTRUCTION CLASSES.. 82

3.2.1 Load and Store Instructions... 82

3.2.2 Computational Instructions.. 86

3.2.3 Jump and Branch Instructions.. 92

3.2.4 Special Instructions 96

3.2.5 System Control Coprocessor (CP0) Instructions .. 97

CHAPTER 4 VR4102 PIPELINE ... 99

4.1 PIPELINE STAGES 99
4.1.1 Pipeline Activities... 100

4.2 BRANCH DELAY... 102
4.3 LOAD DELAY... 102
4.4 PIPELINE OPERATION... . 102
4.5 INTERLOCK AND EXCEPTION HANDLING... 109

4.5.1 Exception Conditions.. 112

4.5.2 Stall Conditions 113

4.5.3 Slip Conditions 114

4.5.4 Bypassing 115

4.6 CODE COMPATIBILITY... 115

CHAPTER 5 MEMORY MANAGEMENT SYSTEM... 117

5.1 TRANSLATION LOOKASIDE BUFFER (TLB) .. 117
5.2 VIRTUAL ADDRESS SPACE.. 117

5.2.1 Virtual-to-Physical Address Translation 118

5.2.2 32-bit Mode Address Translation... 119

5.2.3 64-bit Mode Address Translation... 120

5.2.4 Operating Modes 121

5.2.5 User Mode Virtual Addressing 121

5.2.6 Supervisor-mode Virtual Addressing .. . 124

5.2.7 Kernel-mode Virtual Addressing.. 127

5.3 PHYSICAL ADDRESS SPACE ... 135
5.3.1 ROM Space... 137

5.3.2 System Bus Space 138

5.3.3 Internal I/O Space 139

5.3.4 LCD Space 140

5.3.5 DRAM Space 140

5.4 SYSTEM CONTROL COPROCESSOR .. 141
5.4.1 Format of a TLB Entry... 142

5.5 CP0 REGISTERS.. 146
5.5.1 Index Register (0) 146

5.5.2 Random Register (1) 146

5.5.3 EntryHi (10), EntryLo0 (2), EntryLo1 (3), and PageMask (5) Registers.................................. 147

5.5.4 Wired Register (6).. 148

11

5.5.5 Processor Revision Identifier (PRId) Register (15) ... 149

5.5.6 Config Register (16) 150

5.5.7 Load Linked Address (LLAddr) Register (17).. 151

5.5.8 Cache Tag Registers (TagLo (28) and TagHi (29)) .. 152

5.5.9 Virtual-to-Physical Address Translation 153

5.5.10 TLB Misses 155

5.5.11 TLB Instructions... 155

CHAPTER 6 EXCEPTION PROCESSING... 157

6.1 HOW EXCEPTION PROCESSING WORKS.. 157
6.2 PRECISION OF EXCEPTIONS ... 158
6.3 EXCEPTION PROCESSING REGISTERS ... 159

6.3.1 Context Register (4) 160

6.3.2 BadVAddr Register (8) 161

6.3.3 Count Register (9) 161

6.3.4 Compare Register (11) 162

6.3.5 Status Register (12) 162

6.3.6 Cause Register (13)... 165

6.3.7 Exception Program Counter (EPC) Register (14) .. 167

6.3.8 WatchLo (18) and WatchHi (19) Registers ... 16 8

6.3.9 XContext Register (20).. 169

6.3.10 Parity Error Register (26)... 170

6.3.11 Cache Error Register (27) 171

6.3.12 ErrorEPC Register (30) 171

6.4 DETAILS OF EXCEPTIONS ... 173
6.4.1 Exception Types... 173

6.4.2 Exception Vector Locations.. 173

6.4.3 Priority of Exceptions 176

6.4.4 Cold Reset Exception 177

6.4.5 Soft Reset Exception 178

6.4.6 NMI Exception 179

6.4.7 Address Error Exception 180

6.4.8 TLB Exceptions 181

6.4.9 Cache Error Exception... 184

6.4.10 Bus Error Exception.. 185

6.4.11 System Call Exception.. 186

6.4.12 Breakpoint Exception 186

6.4.13 Coprocessor Unusable Exception... . 187

6.4.14 Reserved Instruction Exception 188

6.4.15 Trap Exception 188

6.4.16 Integer Overflow Exception... 189

6.4.17 Watch Exception 189

6.4.18 Interrupt Exception 190

6.5 EXCEPTION PROCESSING AND SERVICING FLOWCHARTS....................................... 191

12

CHAPTER 7 INITIALIZATION INTERFACE .. 1 99

7.1 RESET FUNCTION... 199
7.1.1 RTC Reset 199

7.1.2 RSTSW .. 201

7.1.3 Deadman’s Switch.. 202

7.1.4 Software Shutdown 203

7.1.5 HALTimer Shutdown 204

7.2 POWERON SEQUENCE .. 205
7.3 RESET OF THE CPU CORE ... 207

7.3.1 Cold Reset.. 207

7.3.2 Soft Reset.. 208

7.4 VR4102 PROCESSOR MODES... 210
7.4.1 Power Modes 210

7.4.2 Privilege Mode 211

7.4.3 Reverse Endian 211

7.4.4 Bootstrap Exception Vector (BEV) 211

7.4.5 Cache Error Check 212

7.4.6 Parity Error Prohibit 212

7.4.7 Interrupt Enable (IE) 212

CHAPTER 8 CACHE MEMORY... 213

8.1 MEMORY ORGANIZATION ... 213
8.2 CACHE ORGANIZATION... 21 4

8.2.1 Organization of the Instruction Cache (I-Cache) ... 214

8.2.2 Organization of the Data Cache (D-Cache) .. 21 5

8.2.3 Accessing the Caches 216

8.3 CACHE OPERATIONS... 217
8.3.1 Cache Write Policy 217

8.4 CACHE STATES 218
8.5 CACHE STATE TRANSITION DIAGRAMS ... 219

8.5.1 Data Cache State Transition... 219

8.5.2 Instruction Cache State Transition 219

8.6 CACHE DATA INTEGRITY ... 220
8.7 MANIPULATION OF THE CACHES BY AN EXTERNAL AGENT.................................. 230

CHAPTER 9 CPU CORE INTERRUPTS... 231

9.1 NON-MASKABLE INTERRUPT (NMI) .. 231
9.2 ORDINARY INTERRUPTS ... 231
9.3 SOFTWARE INTERRUPTS GENERATED IN CPU CORE ... 232
9.4 TIMER INTERRUPT.. 232
9.5 ASSERTING INTERRUPTS ... 232

9.5.1 Detecting Hardware Interrupts 232

9.5.2 Masking Interrupt Signals... 234

13

CHAPTER 10 BCU (BUS CONTROL UNIT) ... 235

10.1 GENERAL.. 235
10.2 REGISTER SET.. 235

10.2.1 BCUCNTREG 1 (0x0B00 0000) 236

10.2.2 BCUCNTREG 2 (0x0B00 0002) 238

10.2.3 BCUSPEEDREG (0x0B00 000A) .. 239

10.2.4 BCUERRSTREG (0x0B00 000C) .. 241

10.2.5 BCURFCNTREG (0x0B00 000E) .. 242

10.2.6 REVIDREG (0x0B00 0010)... 243

10.2.7 BCURFCOUNTREG (0x0B00 0012) ... 244

10.2.8 CLKSPEEDREG (0x0B00 0014) .. . 245

10.3 CONNECTION OF ADDRESS PINS.. 246
10.4 NOTES ON USING BCU .. 247

10.4.1 CPU Core Bus Modes 247

10.4.2 Access Data Size... 247

10.4.3 ROM Interface.. 248

10.4.4 Flash Memory Interface 249

10.4.5 LCD Control Interface 250

10.4.6 Illegal Access Notification.. 251

10.5 BUS OPERATIONS.. 252
10.5.1 ROM Access 252

10.5.2 System Bus Access 256

10.5.3 LCD Interface.. 263

10.5.4 DRAM Access (EDO Type) 264

10.5.5 Refresh.. 267

10.5.6 Bus Hold 268

CHAPTER 11 DMAAU (DMA ADDRESS UNIT).. 271

11.1 GENERAL.. 271
11.2 REGISTER SET.. 272

11.2.1 AIU IN DMA Base Address Registers ... 2 73

11.2.2 AIU IN DMA Address Registers... 275

11.2.3 AIU OUT DMA Base Address Registers ... 276

11.2.4 AIU OUT DMA Address Registers.. . 278

11.2.5 FIR DMA Base Address Registers 279

11.2.6 FIR DMA Address Registers.. 280

CHAPTER 12 DCU (DMA CONTROL UNIT)... 281

12.1 GENERAL.. 281
12.2 DMA PRIORITY CONTROL.. 281
12.3 REGISTER SET.. 281

12.3.1 DMARSTREG (0x0B00 0040) 282

12.3.2 DMAIDLEREG (0x0B00 0042) 283

12.3.3 DMASENREG (0x0B00 0044) 284

12.3.4 DMAMSKREG (0x0B00 0046) 285

14

12.3.5 DMAREQREG (0x0B00 0048) 286

12.3.6 TDREG (0x0B00 004A) 287

CHAPTER 13 CMU (CLOCK MASK UNIT) ... 28 9

13.1 GENERAL.. 289
13.2 REGISTER SET .. 289

13.2.1 CMUCLKMSK (0x0B00 0060) 290

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT) .. 291

14.1 GENERAL.. 291
14.2 REGISTER SET .. 294

14.2.1 SYSINT1REG (0x0B00 0080)... 295

14.2.2 PIUINTREG (0x0B00 0082) 297

14.2.3 AIUINTREG (0x0B00 0084).. 298

14.2.4 KIUINTREG (0x0B00 0086).. 299

14.2.5 GIUINTLREG (0x0B00 0088) 300

14.2.6 DSIUINTREG (0x0B00 008A)... 301

14.2.7 MSYSINT1REG (0x0B00 008C) 302

14.2.8 MPIUINTREG (0x0B00 008E)... 304

14.2.9 MAIUINTREG (0x0B00 0090)... 305

14.2.10 MKIUINTREG (0x0B00 0092).. 306

14.2.11 MGIUINTLREG (0x0B00 0094) 307

14.2.12 MDSIUINTREG (0x0B00 0096) 308

14.2.13 NMIREG (0x0B00 0098) 309

14.2.14 SOFTINTREG (0x0B00 009A).. ... 310

14.2.15 SYSINT2REG (0x0B00 0200).. 311

14.2.16 GIUINTHREG (0x0B00 0202) 312

14.2.17 FIRINTREG (0x0B00 0204) 313

14.2.18 MSYSINT2REG (0x0B00 0206)... .. 314

14.2.19 MGIUINTHREG (0x0B00 0208) 315

14.2.20 MFIRINTREG (0x0B00 020A).. 316

14.3 NOTES FOR REGISTER SETTING ... 317

CHAPTER 15 PMU (POWER MANAGEMENT UNIT) ... 319

15.1 GENERAL.. 319
15.1.1 Reset Control 319

15.1.2 Shutdown Control 320

15.1.3 Power-on Control 321

15.1.4 Power Mode 324

15.2 REGISTER SET .. 327
15.2.1 PMUINTREG (0x0B00 00A0) 328

15.2.2 PMUCNTREG (0x0B00 00A2).. ... 330

15.2.3 PMUINT2REG (0x0B00 00A4) 332

15.2.4 PMUCNT2REG (0x0B00 00A6)... .. 333

15

CHAPTER 16 RTC (REALTIME CLOCK UNIT) .. 335

16.1 GENERAL.. 335
16.2 REGISTER SET.. 336

16.2.1 Elapsed Time Registers... 337

16.2.2 Elapsed Time Compare Registers 339

16.2.3 RTC Long 1 Registers... 341

16.2.4 RTC Long 1 Count Registers 343

16.2.5 RTC Long 2 Registers... 345

16.2.6 RTC Long 2 Count Registers 347

16.2.7 TClock Counter Registers 349

16.2.8 TClock Counter Count Registers... ... 351

16.2.9 RTC Interrupt Register... 353

CHAPTER 17 DSU (DEADMAN’S SWITCH UNIT) ... 355

17.1 GENERAL.. 355
17.2 REGISTER SET.. 355

17.2.1 DSUCNTREG (0x0B00 00E0) 356

17.2.2 DSUSETREG (0x0B00 00E2).. 357

17.2.3 DSUCLRREG (0x0B00 00E4) 358

17.2.4 DSUTIMREG (0x0B00 00E6) 359

17.3 REGISTER SETTING FLOW .. 360

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT) .. 361

18.1 GENERAL.. 361
18.2 REGISTER SET.. 362

18.2.1 GIUIOSELL (0x0B00 0100) 363

18.2.2 GIUIOSELH (0x0B00 0102).. 364

18.2.3 GIUPIODL (0x0B00 0104) 365

18.2.4 GIUPIODH (0x0B00 0106)... 366

18.2.5 GIUINTSTATL (0x0B00 0108).. 367

18.2.6 GIUINTSTATH (0x0B00 010A).. 368

18.2.7 GIUINTENL (0x0B00 010C) 369

18.2.8 GIUINTENH (0x0B00 010E) 370

18.2.9 GIUINTTYPL (0x0B00 0110) 371

18.2.10 GIUINTTYPH (0x0B00 0112).. 372

18.2.11 GIUINTALSELL (0x0B00 0114) 373

18.2.12 GIUINTALSELH (0x0B00 0116).. .. 374

18.2.13 GIUINTHTSELL (0x0B00 0118) 375

18.2.14 GIUINTHTSELH (0x0B00 011A) .. . 376

18.2.15 GIUPODATL (0x0B00 011C)... 378

18.2.16 GIUPODATH (0x0B00 011E) 380

16

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT) ... 381

19.1 GENERAL.. 381
19.1.1 Block Diagrams 382

19.2 SCAN SEQUENCER STATE TRANSITION .. 384
19.3 REGISTER SET .. 386

19.3.1 PIUCNTREG (0x0B00 0122) 387

19.3.2 PIUINTREG (0x0B00 0124) 390

19.3.3 PIUSIVLREG (0x0B00 0126)... 391

19.3.4 PIUSTBLREG (0x0B00 0128) 392

19.3.5 PIUCMDREG (0x0B00 012A) 393

19.3.6 PIUASCNREG (0x0B00 0130)... 395

19.3.7 PIUAMSKREG (0x0B00 0132) 397

19.3.8 PIUCIVLREG (0x0B00 013E) 398

19.3.9 PIUPBnmREG (0x0B00 02A0 to 0x0B00 02AE, 0x0B00 02BC to 0x0B00 02BE) 399

19.3.10 PIUABnREG (0x0B00 02B0 to 0x0B00 02B6) ... 400

19.4 REGISTER SETTING FLOW... 401
19.5 RELATIONSHIPS AMONG TPX, TPY, AND ADIN PINS AND STATES 403
19.6 TIMING... 404

19.6.1 Touch/Release Detection Timing 404

19.6.2 A/D Port Scan Timing... 404

19.7 DATA LOSS INTERRUPT CONDITIONS .. 405
19.8 COMPARISON OF VR4102 AND VR4101TM ... 407

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)... 409

20.1 GENERAL.. 409
20.2 REGISTER SET .. 409

20.2.1 MDMADATREG (0x0B00 0160) 410

20.2.2 SDMADATREG (0x0B00 0162) 411

20.2.3 SODATREG (0x0B00 0166) 412

20.2.4 SCNTREG (0x0B00 0168) 413

20.2.5 SCNVRREG (0x0B00 016A)... 414

20.2.6 MIDATREG (0x0B00 0170) 415

20.2.7 MCNTREG (0x0B00 0172) 416

20.2.8 MCNVRREG (0x0B00 0174)... 417

20.2.9 DVALIDREG (0x0B00 0178).. 418

20.2.10 SEQREG (0x0B00 017A).. 419

20.2.11 INTREG (0x0B00 017C) 420

20.3 OPERATION SEQUENCE.. 421
20.3.1 Output (Speaker) 421

20.3.2 Input (MIC).. 422

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT).. 423

21.1 GENERAL.. 423
21.2 REGISTER SET .. 423

21.2.1 KIUDATn (0x0B00 0180 to 0x0B00 018A) ... 424

17

21.2.2 KIUSCANREP (0x0B00 0190)... 425

21.2.3 KIUSCANS (0x0B00 0192)... 427

21.2.4 KIUWKS (0x0B00 0194)... 429

21.2.5 KIUWKI (0x0B00 0196) 430

21.2.6 KIUINT (0x0B00 0198) 431

21.2.7 KIURST (0x0B00 019A) 432

21.2.8 KIUGPEN (0x0B00 019C) 433

21.2.9 SCANLINE (0x0B00 019E)... 434

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT) ... 435

22.1 GENERAL.. 435
22.2 REGISTER SET.. 435

22.2.1 PORTREG (0x0B00 01A0) 436

22.2.2 MODEMREG (0x0B00 01A2) 437

22.2.3 ASIM00REG (0x0B00 01A4) 438

22.2.4 ASIM01REG (0x0B00 01A6) 439

22.2.5 RXB0RREG (0x0B00 01A8)... 440

22.2.6 RXB0LREG (0x0B00 01AA)... 441

22.2.7 TXS0RREG (0x0B00 01AC)... 442

22.2.8 TXS0LREG (0x0B00 01AE) 443

22.2.9 ASIS0REG (0x0B00 01B0)... 444

22.2.10 INTR0REG (0x0B00 01B2).. 445

22.2.11 BPRM0REG (0x0B00 01B6) 446

22.2.12 DSIURESETREG (0x0B00 01B8) ... 4 47

22.3 DESCRIPTION OF OPERATIONS.. 448
22.3.1 Data Format 448

22.3.2 Transmission... 449

22.3.3 Reception.. 451

CHAPTER 23 LED (LED CONTROL UNIT) .. 45 3

23.1 GENERAL.. 453
23.2 REGISTER SET.. 453

23.2.1 LEDHTSREG (0x0B00 0240) 454

23.2.2 LEDLTSREG (0x0B00 0242).. 455

23.2.3 LEDCNTREG (0x0B00 0248) 456

23.2.4 LEDASTCREG (0x0B00 024A) 457

23.2.5 LEDINTREG (0x0B00 024C) 458

23.3 OPERATION FLOW 459

CHAPTER 24 SIU (SERIAL INTERFACE UNIT) ... 461

24.1 GENERAL.. 461
24.2 REGISTER SET.. 461

24.2.1 SIURB (0x0C00 0000: LCR[7] = 0, Read) .. 46 2

24.2.2 SIUTH (0x0C00 0000: LCR[7] = 0, Write)... 462

24.2.3 SIUDLL (0x0C00 0000: LCR[7] = 1) 463

18

24.2.4 SIUIE (0x0C00 0001: LCR[7] = 0) 464

24.2.5 SIUDLM (0x0C00 0001: LCR[7] = 1)... .. 465

24.2.6 SIUIID (0x0C00 0002: Read) 467

24.2.7 SIUFC (0x0C00 0002: Write)... 469

24.2.8 SIULC (0x0C00 0003).. 472

24.2.9 SIUMC (0x0C00 0004) ... 473

24.2.10 SIULS (0x0C00 0005) 474

24.2.11 SIUMS (0x0C00 0006) 476

24.2.12 SIUSC (0x0C00 0007).. 477

24.2.13 SIUIRSEL (0x0C00 0008) 478

CHAPTER 25 HSP (MODEM INTERFACE UNIT) ... 481

25.1 GENERAL.. 481
25.2 REGISTER SET .. 483

25.2.1 HSP Initialize Register.. 484

25.2.2 HSP Data Register, HSP Index Register ... 4 85

25.2.3 HSP ID Register, HSP I/O Address Program Confirmation Register 493

25.2.4 HSP Signature Checking Port 493

25.3 POWER CONTROL... ... 494

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT).. 497

26.1 GENERAL.. 497
26.2 REGISTER SET .. 498

26.2.1 FRSTR (0x0C00 0040)... 499

26.2.2 DPINTR (0x0C00 0042) ... 500

26.2.3 DPCNTR (0x0C00 0044).. 501

26.2.4 TDR (0x0C00 0050) 502

26.2.5 RDR (0x0C00 0052)... 503

26.2.6 IMR (0x0C00 0054).. 504

26.2.7 FSR (0x0C00 0056) 505

26.2.8 IRSR1 (0x0C00 0058).. 507

26.2.9 CRCSR (0x0C00 005C) ... 508

26.2.10 FIRCR (0x0C00 005E) ... 509

26.2.11 MIRCR (0x0C00 0060)... 511

26.2.12 DMACR (0x0C00 0062) 512

26.2.13 DMAER (0x0C00 0064) 513

26.2.14 TXIR (0x0C00 0066) 514

26.2.15 RXIR (0x0C00 0068) 515

26.2.16 IFR (0x0C00 006A) 517

26.2.17 RXSTS (0x0C00 006C) .. 519

26.2.18 TXFL (0x0C00 006E) 521

26.2.19 MRXF (0x0C00 0070) 522

26.2.20 RXFL (0x0C00 0074) 523

19

CHAPTER 27 CPU INSTRUCTION SET DETAILS... 525

27.1 INSTRUCTION NOTATION CONVENTIONS ... 525
27.2 LOAD AND STORE INSTRUCTIONS.. 527
27.3 JUMP AND BRANCH INSTRUCTIONS... 528
27.4 SYSTEM CONTROL COPROCESSOR (CP0) INSTRUCTIONS 528
27.5 CPU INSTRUCTION... 529
27.6 CPU INSTRUCTION OPCODE BIT ENCODING.. 674

CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS ... 677

CHAPTER 29 PLL PASSIVE COMPONENTS ... 683

APPENDIX A DIFFERENCES BETWEEN V R4102 AND VR4101 .. 685

A.1 SUMMARY OF DIFFERENCES .. 685
A.2 DETAILS OF DIFFERENCES ... 686

A.2.1 CPU Core.. 686

A.2.2 Address Mapping... 686

A.2.3 BCU... 687

A.2.4 DMA 688

A.2.5 ICU .. 688

A.2.6 PMU... 688

A.2.7 RTC ... 688

A.2.8 GIU .. 689

A.2.9 PIU... 690

A.2.10 AIU 691

A.2.11 KIU 691

A.2.12 DSIU .. 692

A.2.13 SIU... 692

A.2.14 Newly Added Units 693

APPENDIX B INDEX 695

20

LIST OF FIGURES (1/4)

Fig. No. Title Page

1-1 VR4102 Internal Block Diagram and Example of Connection to External Blocks................................... 30

1-2 VR4100 CPU Core Internal Block Diagram .. 43

1-3 VR4102 CPU Registers .. 45

1-4 CPU Instruction Formats.. 46

1-5 Little-Endian Byte Ordering in Word Data.. 47

1-6 Little-Endian Byte Ordering in Double Word Data ... 48

1-7 Misaligned Word Accessing (Little-Endian) 48

1-8 CP0 Registers.. 49

1-9 External Circuit of Clock Oscillator... 54

1-10 Examples of Oscillator with Bad Connection 55

2-1 VR4102 Signal Classification.. 62

3-1 CPU Instruction Formats.. 81

3-2 Byte Specification Related to Load and Store Instructions... . 83

4-1 Pipeline Stages.. 99

4-2 Instruction Execution in the Pipeline.. 100

4-3 Pipeline Activities... 100

4-4 Branch Delay ... 102

4-5 Add Instruction Pipeline Activities.. 103

4-6 JALR Instruction Pipeline Activities ... 104

4-7 BEQ Instruction Pipeline Activities... 105

4-8 TLT Instruction Pipeline Activities.. 106

4-9 LW Instruction Pipeline Activities... 107

4-10 SW Instruction Pipeline Activities .. 108

4-11 Interlocks, Exceptions, and Faults ... 109

4-12 Exception Detection... 112

4-13 Data Cache Miss Stall.. 113

4-14 CACHE Instruction Stall ... 113

4-15 Load Data Interlock.. 114

4-16 MD Busy Interlock.. 114

5-1 Virtual-to-Physical Address Translation... 118

5-2 32-bit Mode Virtual Address Translation.. 119

5-3 64-bit Mode Virtual Address Translation.. 120

5-4 User Mode Address Space .. 122

5-5 Supervisor Mode Address Space .. 125

5-6 Kernel Mode Address Space ... 128

5-7 xkphys Area Address Space.. 129

5-8 VR4102 Physical Address Space ... 135

5-9 CP0 Registers and the TLB ... 141

5-10 Format of a TLB Entry.. 142

5-11 Format of a TLB Entry.. 143

21

LIST OF FIGURES (2/4)

Fig. No. Title Page

5-12 Index Register .. 146

5-13 Random Register.. 146

5-14 Positions Indicated by the Wired Register.. 148

5-15 Wired Register .. 148

5-16 PRId Register ... 149

5-17 Config Register Format... 150

5-18 LLAddr Register.. 151

5-19 TagLo and TagHi Registers.. 152

5-20 TLB Address Translation .. 154

6-1 Context Register Format... 160

6-2 BadVAddr Register Format... 161

6-3 Count Register Format ... 161

6-4 Compare Register Format .. 162

6-5 Status Register Format... 162

6-6 Status Register Diagnostic Status Field ... 163

6-7 Cause Register Format... 165

6-8 EPC Register Format.. 167

6-9 WatchLo and WatchHi Register Format ... 168

6-10 XContext Register Format .. 169

6-11 Parity Error Register Format... 170

6-12 CacheErr Register Format.. 171

6-13 The ErrorEPC Register Format .. 172

6-14 Common Exception Handler... 192

6-15 TLB/XTLB Refill Exception Handler.. 194

6-16 Cache Error Exception Handler .. 196

6-17 Cold Reset, Soft Reset, and NMI Exception Handler ... 197

7-1 RTC Reset .. 200

7-2 RSTSW... 201

7-3 Deadman’s Switch .. 202

7-4 Software Shutdown... 203

7-5 HALTimer Shutdown... 204

7-6 VR4102 Activation Sequence (when Battery Check Is OK) .. 206

7-7 VR4102 Activation Sequence (when Battery Check Is NG) .. 206

7-8 Cold Reset .. 209

7-9 Soft Reset ... 209

8-1 Logical Hierarchy of Memory .. 213

8-2 Cache Support.. 214

8-3 Cache Line Format ... 215

8-4 Data Cache Line Format... 215

8-5 Cache Data and Tag Organization ... 216

8-6 Data Cache State Diagram... 219

22

LIST OF FIGURES (3/4)

Fig. No. Title Page

8-7 Instruction Cache State Diagram... 219

8-8 Data flow on Instruction Fetch ... 220

8-9 Data Integrity on Load Operations ... 221

8-10 Data Integrity on Store Operations .. 222

8-11 Data Integrity on Index_Invalidate Operations... 223

8-12 Data Integrity on Index_Writeback_Invalidate Operations... 223

8-13 Data Integrity on Index_Load_Tag Operations .. 224

8-14 Data Integrity on Index_Store_Tag Operations ... 224

8-15 Data Integrity on Create_Dirty Operations... 225

8-16 Data Integrity on Hit_Invalidate Operations ... 225

8-17 Data Integrity on Hit_Writeback_Invalidate Operations ... 226

8-18 Data Integrity on Fill Operations .. 226

8-19 Data Integrity on Hit_Writeback Operations... 227

8-20 Data Integrity on Writeback Flow... 228

8-21 Data Integrity on Refill Flow... 228

8-22 Data Integrity on Writeback & Refill Flow... 229

9-1 Non-maskable Interrupt Signal .. 231

9-2 Hardware Interrupt Signals .. 233

9-3 Masking of the CPU Core Interrupts .. 234

10-1 ROM 4-byte Read, 16-bit Mode (WROMA[2:0] = 110)... 253

10-2 ROM 4-byte Read, 32-bit Mode (WROMA[2:0] = 110)... 253

10-3 PageROM 4-word Read, 16-bit Mode (WROMA[2:0] = 111, WPROM[1:0] = 10) 254

10-4 PageROM 4-word Read, 32-bit Mode (WROMA[2:0] = 111, WPROM[1:0] = 10) 255

10-5 Flash Memory Mode, 2-byte Access.. 255

10-6 1-byte Access to Even Address Using 16-bit Bus (WISAA[2:0] = 101).. 256

10-7 2-byte Access when Sampling IOCHRDY at High Level Using 16-bit Bus (WISAA[2:0] = 101) 257

10-8 1-byte Access to Odd Address Using 16-bit Bus (WISAA[2:0] = 101) ... 258

10-9 1-byte Access to Odd Address Using 8-bit Bus (WISAA[2:0] = 101) ... 258

10-10 2-byte Access when Sampling ZWS# at Low Level on 16-bit Bus (WISAA[2:0] = 101) 259

10-11 2-byte Access when Sampling ZWS# at Low Level on 8-bit Bus (WISAA[2:0] = 101) 260

10-12 2-byte Access on 16-bit Bus (WLCD/M[2:0] = 101) ... 261

10-13 1-byte Access on 8-bit Bus (WLCD/M[2:0] = 101) ... 261

10-14 2-byte Access When Sampling ZWS# at Low Level on 16-bit Bus (WLCD/M[2:0] = 101)..................... 262

10-15 1-byte Access When Sampling ZWS# at Low Level on 8-bit Bus (WLCD/M[2:0] = 101)....................... 262

10-16 2-byte Access to LCD Controller (WLCD/M[2:0] = 010)... 263

10-17 2-byte Access to LCD Controller (WLCD/M[2:0] = 011)... 263

10-18 4-byte Access to DRAM (16-bit Mode) .. 264

10-19 8-byte Access to DRAM (32-bit Mode) .. 264

10-20 Byte Read of Odd Address in DRAM (16-bit Mode)... 265

10-21 Byte Read of Even Address in DRAM (16-bit Mode) ... 265

10-22 Byte Write to Odd Address in DRAM (16-bit Mode)... 266

10-23 Byte Write to Even Address in DRAM (16-bit Mode) ... 266

23

LIST OF FIGURES (4/4)

Fig. No. Title Page

10-24 CBR Refresh (16-bit Mode) .. 267

10-25 Self Refresh (16-bit Mode).. 267

10-26 Bus Hold in Fullspeed Mode... 268

10-27 Bus Hold in Suspend Mode .. 269

11-1 DMA Space Used in DMA Transfers .. 271

13-1 Block Diagram of CMU and Peripheral Blocks ... 289

14-1 Interrupt Control Outline ... 293

15-1 Activation via Power Switch Interrupt (BATTINH/BATTINT# = 1)... 321

15-2 Activation via Power Switch Interrupt (BATTINH/BATTINT# = 0)... 321

15-3 Activation via GPIO Activation Interrupt (BATTINH/BATTINT# = 1)... 322

15-4 Activation via GPIO Activation Interrupt (BATTINH/BATTINT# = 0)... 322

15-5 Activation via DCD Interrupt (BATTINH/BATTINT# = 1)... 323

15-6 Activation via DCD Interrupt (BATTINH/BATTINT# = 0)... 323

15-7 Activation via Alarm Interrupt (BATTINH/BATTINT# = 1) ... 324

15-8 Activation via Alarm Interrupt (BATTINH/BATTINT# = 0) ... 324

15-9 Power Mode State Transition ... 325

19-1 PIU Peripheral Block Diagram.. 382

19-2 Equivalent Circuit of Coordinate Detection... 382

19-3 Internal Block Diagram of PIU .. 383

19-4 Scan Sequencer State Transition Diagram .. 384

19-5 Interval Times and States... 391

19-6 Touch/Release Detection Timing.. 404

19-7 A/D Port Scan Timing ... 404

22-1 Data Format for Transmission and Reception .. 448

22-2 Transmit Complete Interrupt Timing ... 450

22-3 Receive Complete Interrupt Timing .. 451

22-4 Receive Error Timing .. 452

24-1 Connection Example Between The VR4102 and IrDA Module ... 479

25-1 HSP Unit Block Diagram... 482

25-2 Circuit Configuration Block Diagram Examples .. 482

25-3 Block Diagram of HSP Interface Power Control ... 494

27-1 VR4102 Opcode Bit Encoding... 674

29-1 Example of Connection of PLL Passive Components .. 683

24

LIST OF TABLES (1/4)

Table. No. Title Page

1-1 BCU Registers ... 33

1-2 DMAAU Registers.. 33

1-3 DCU Registers ... 34

1-4 CMU Register .. 34

1-5 ICU Registers... 35

1-6 PMU Registers... 35

1-7 RTC Registers ... 36

1-8 DSU Registers ... 37

1-9 GIU Registers .. 37

1-10 PIU Registers... 38

1-11 AIU Registers... 39

1-12 KIU Registers... 40

1-13 DSIU Registers .. 40

1-14 LED Registers.. 41

1-15 SIU Registers... 41

1-16 HSP Registers ... 41

1-17 FIR Registers ... 42

1-18 System Control Coprocessor (CP0) Register Definitions .. 50

2-1 System Bus Interface Signals .. 63

2-2 Clock Interface Signals .. 65

2-3 Battery Monitor Interface Signals... 65

2-4 Initialization Interface Signals .. 66

2-5 RS-232-C Interface Signals ... 67

2-6 IrDA Interface Signals .. 68

2-7 Debug Serial Interface Signals .. 68

2-8 Keyboard Interface Signals.. 69

2-9 Audio Interface Signals .. 69

2-10 Touch Panel/General Purpose A/D Interface Signals.. 69

2-11 General-purpose I/O Signals ... 70

2-12 HSP MODEM Interface Signals ... 71

2-13 LED Interface Signal .. 71

2-14 Dedicated VDD and GND Signals ... 72

2-15 Status of Pins upon Reset ... 73

2-16 Connection of Unused Pins and Pin I/O Circuit Type .. 76

3-1 Number of Delay Slot Cycles Necessary for Load and Store Instructions... 82

3-2 Load/store Instruction .. 84

3-3 Load/store Instruction (Extended ISA) ... 85

3-4 ALU Immediate Instruction... 86

3-5 ALU Immediate Instruction (Extended ISA) ... 87

3-6 Three Operand Type Instruction .. 87

3-7 Three Operand Type Instruction (Extended ISA)... 88

3-8 Shift Instruction .. 88

25

LIST OF TABLES (2/4)

Table. No. Title Page

3-9 Shift Instruction (Extended ISA).. 89

3-10 Multiply/Divide Instructions ... 90

3-11 Multiply/Divide Instructions (Extended ISA).. 90

3-12 Number of Stall Cycles in Multiply and Divide Instructions... 91

3-13 Number of Delay Slot Cycles in Jump and Branch Instructions ... 92

3-14 Jump Instructions ... 93

3-15 Branch Instructions... 94

3-16 Branch Instructions (Extended ISA).. 95

3-17 Special Instructions .. 96

3-18 Special Instructions (Extended ISA) ... 96

3-19 System Control Coprocessor (CP0) Instructions .. 97

4-1 Description of Pipeline Activities during Each Stage .. 101

4-2 Correspondence of Pipeline Stage to Interlock and Exception Condition .. 110

4-3 Description of Pipeline Exception ... 111

4-4 Pipeline Interlock .. 111

5-1 Comparison of useg and xuseg.. 122

5-2 32-bit and 64-bit Supervisor Mode Segments .. 126

5-3 32-bit Kernel Mode Segments .. 130

5-4 64-bit Kernel Mode Segments .. 132

5-5 Cacheability and the xkphys Address Space ... 133

5-6 VR4102 Physical Address Space.. 136

5-7 ROM Addresses (when using 16-bit data bus) ... 137

5-8 ROM Addresses (when using 32-bit data bus) ... 137

5-9 Internal I/O Space 1.. 139

5-10 Internal I/O Space 2.. 139

5-11 DRAM Addresses (when using 16-bit data bus)... 140

5-12 DRAM Addresses (when using 32-bit data bus)... 140

5-13 Cache Algorithm ... 145

5-14 Mask Values and Page Sizes... 147

6-1 CP0 Exception Processing Registers ... 159

6-2 Cause Register Exception Code Field.. 166

6-3 64-Bit Mode Exception Vector Base Addresses ... 174

6-4 32-Bit Mode Exception Vector Base Addresses ... 174

6-5 Exception Priority Order.. 176

10-1 BCU Registers .. 235

10-2 Address Bit Correspondence between ADD Bus and External Devices .. 246

10-3 Address Connection Table with External Devices.. 246

10-4 Access Size Restrictions for Address Spaces.. 247

10-5 Summary of ROM Modes ... 248

10-6 Example of Bit Inversion in Data in VR4102 and at DATA [15:0] Pins .. 250

26

LIST OF TABLES (3/4)

Table. No. Title Page

10-7 Illegal Access Notification Methods ... 251

10-8 Access Times during Ordinary ROM Read Mode.. 252

10-9 PageROM Read Mode Access Time ... 254

10-10 System Bus Access Times .. 256

10-11 High-Speed System Bus Access Times .. 260

10-12 Access Times for LCD Interface .. 263

11-1 DMAAU Registers.. 272

12-1 DMA Priority Levels ... 281

12-2 DCU Registers ... 281

13-1 CMU Register .. 289

14-1 ICU Registers... 294

15-1 Bit Operations during Reset... 319

15-2 Bit Operations during Shutdown .. 320

15-3 Power Mode... 326

15-4 PMU Registers... 327

16-1 RTC Registers ... 336

17-1 DSU Registers ... 355

18-1 GPIO Pin Functions ... 361

18-2 GIU Registers .. 362

18-3 Table of Correspondences between GPIO[47..32] and Function Pins .. 379

18-4 Table of Correspondence between GPIO[48] and Function Pin.. 380

19-1 PIU Registers... 386

19-2 PIUCNTREG Bit Manipulation and States ... 389

19-3 PIUASCNREG Bit Manipulation and States... 396

19-4 Detected Coordinates and Page Buffers ... 399

19-5 A/D Ports and Data Buffers.. 400

19-6 Comparison of PIUs of VR4102 and VR4101.. 407

20-1 AIU Registers... 409

21-1 KIU Registers... 423

22-1 DSIU Registers .. 435

22-2 Receive Error Causes.. 452

27

LIST OF TABLES (4/4)

Table. No. Title Page

23-1 LED Registers... 453

24-1 SIU Registers.. 461

24-2 Correspondence between Baud Rates and Divisors .. 466

24-3 Interrupt Function ... 468

25-1 HSP Registers .. 483

25-2 Control Register Definitions.. 485

26-1 FIR Registers.. 498

27-1 CPU Instruction Operation Notations.. 526

27-2 Load and Store Common Functions ... 527

27-3 Access Type Specifications for Loads/Stores 528

28-1 VR4102 Coprocessor 0 Hazards... 678

28-2 Calculation Example of CP0 Hazard and the Number of Instructions Inserted 681

28

[MEMO]

29

CHAPTER 1 INTRODUCTION

This chapter describes the outline of the VR4102 (µPD30102), which is a 64-/32-bit RISC microprocessor.

1.1 FEATURES

The VR4102, which is a high-performance 64-/32-bit microprocessor employing the RISC (reduced instruction set

computer) architecture developed by MIPS, is one of the RISC microprocessor VR-SeriesTM products manufactured

by NEC.

The VR4102 is ideally suited for battery-driven high-performance portable information equipment.

It mainly consists of the high-performance ultra-low-power consumption VR4102 CPU core, and has various

peripheral functions including a DMA controller, software modem interface, serial interface, keyboard interface, IrDA

interface, touch panel interface, real-time clock, A/D converter, and D/A converter.

The external bus width of this device can be selected between 32 bits and 16 bits. This function enables the

VR4102 to process voluminous data at high speed.

The features of the VR4102 are described below.

� Employs 64-bit RISC CPU Core (VR4100 equivalent)

� Internal 64-bit processing

� Optimized 5-stage pipeline

� Conforms to MIPS I, II, III instruction sets (with the FPU, LL, and SC instructions left out)

� Supports high-speed product-sum operation instructions to execute applications in high speed

� On-chip 4-Kbyte instruction cache and 1-Kbyte data cache

� 32-double-entry translation lookaside buffer (TLB) for virtual address management

� 32-bit physical address space and 40-bit virtual address space (in 64-bit mode)

� On-chip peripheral units suited for portable equipment

• Memory controller (supports ROM, EDO-type DRAM, and flash memory)

• ISA-bus interface

• Keyboard interface

• Touch panel interface (on-chip 4-channel A/D converter)

• Controller complying with IrDA 1.1 (FIR)

• Software modem interface

• DMA controller

• Serial interface

• Debug serial interfaces

• Interrupt controller

• Audio interface (on-chip digital I/O, A/D and D/A converters)

• General-purpose A/D converter: 3 channels

• General-purpose ports

� Effective power management features, which include the following four operating modes:

• Fullspeed mode: normal operating mode in which all clocks operate

• Standby mode: all internal clocks stop except for interrupt-related clocks

• Suspend mode: bus clock and all internal clocks stop except for interrupt-related clocks

• Hibernate mode: all clocks generated by the CPU core stop

CHAPTER 1 INTRODUCTION

30

� External input clock: 32.768 kHz, 18.432 MHz (for internal CPU core and peripheral unit operation), 48 MHz

(dedicated for FIR IrDA interface)

� Supports ISA bus subset

� Clock supply management function for each on-chip peripheral unit to implement low-power consumption

� Operation supply voltage: VDD = 3.0 to 3.6 V

1.2 ORDERING INFORMATION

Part Number Package Maximum Operation Frequency

µPD30102GM-54-8EV 216-pin plastic LQFP (fine pitch) (24 × 24 mm) 54 MHz

µPD30102GM-66-8EV 216-pin plastic LQFP (fine pitch) (24 × 24 mm) 66 MHz

µPD30102S1-54-3C 224-pin plastic FBGA (16 × 16 mm) 54 MHz

µPD30102S1-66-3C 224-pin plastic FBGA (16 × 16 mm) 66 MHz

1.3 64-BIT ARCHITECTURE

The VR4102 microprocessor has a 64-bit architecture. However, it can also run 32-bit applications.

1.4 VR4102 PROCESSOR

The VR4102 consists of the VR4100 CPU core and seventeen peripheral units. It can connect external controllers

directly.

Figure 1-1 is an internal block diagram of the VR4102 processor.

Figure 1-1. V R4102 Internal Block Diagram and Example of Connection to External Blocks

µ P
D

16
66

6

48MHz

VR4100 CPU core

BCU
DMAAU

PMU

ICU

DSU

RTC

CMU

PIU

KIU

GIU

AIU

SIU

OSB OSB

RS-232-C
Driver

LCD Module

PCMCIA
/Buffer

VR4102

32.768kHz

LCD Panel

µPD16661

Touch Panel

EDO DRAM

PCcard

A/D

D/A

HSP

CODEC AFE

18.432MHz

PLL

IR
Driver

FIR

DCU

LED

ROM/
Flash memory

CHAPTER 1 INTRODUCTION

31

1.4.1 Internal Block Structure

The following provides an outline of the peripheral units.

For the CPU core, refer to 1.5 VR4100 CPU CORE.

(1) Bus Control Unit (BCU)

In the VR4102, the bus control unit (BCU) transfers data between the VR4100 CPU core and SysAD bus. It also

controls external circuits, such as the LCD controller connected to the system bus, DRAM, ROM (flash memory

or masked ROM), and PCMCIA controller, and transfers data between the VR4102 and these external devices,

using the address and data buses.

(2) Real-time Clock Unit (RTC)

The real-time clock (RTC) is provided with an accurate counter that operates on a 32.768-kHz clock pulse

supplied from the clock generator. It is also provided with several counters and Compare registers for

controlling various interrupts.

(3) Deadman’s Switch Unit (DSU)

The Deadman’s switch unit (DSU) is used to check whether the processor is running normally. If the register of

this unit is not cleared by software within a specified period, the system is shut down.

(4) Interrupt Control Unit (ICU)

The interrupt control unit (ICU) controls interrupt requests that are caused by factors either internal or external to

the VR4102, and informs the VR4100 CPU core when an interrupt request occurs.

(5) Power Management Unit (PMU)

The power management unit (PMU) outputs signals necessary to control the power of the entire system

including the VR4102. The signals are used to control the PLL of the VR4100 CPU core and the internal clocks

(pipeline clock, TClock, and MasterOut) in low-power modes.

(6) Direct Memory Access Address Unit (DMAAU)

The direct memory access address unit (DMAAU) controls the address of three different DMA transfers.

(7) Direct Memory Access Control Unit (DCU)

The direct memory access control unit (DCU) controls the arbitration of three different DMA transfers.

(8) Clock Mask Unit (CMU)

The clock mask unit (CMU) controls the way the clocks TClock and MasterOut are supplied from the VR4100

CPU core to internal peripheral units.

(9) General Purpose I/O Unit (GIU)

The general purpose I/O unit (GIU) controls 49 GPIO pins.

(10)Audio Interface Unit (AIU)

The audio interface unit (AIU) executes mic-input sampling and audio signal output by controlling the internal

A/D converter and D/A converter.

CHAPTER 1 INTRODUCTION

32

(11)Keyboard Interface Unit (KIU)

The keyboard interface unit (KIU) has 12 scan lines and 8 detection lines. It can detect when any of 64/80/96

keys are pressed. It supports key rollover for two to three continuous strokes.

(12)Touch Panel Interface Unit (PIU)

The touch panel interface unit (PIU) detects when the touch panel is touched, by controlling the internal A/D

converter.

(13)Debug Serial Interface Unit (DSIU)

The debug serial interface unit (DSIU) is a serial interface for debugging. It supports a maximum transfer rate of

115 kbps.

(14)Serial Interface Unit (SIU)

The serial interface unit (SIU) conforms to the RS-232-C specification and is compatible with 16550. It supports

a maximum transfer rate of 1.15 Mbps. Also available is an IrDA serial interface supporting a maximum transfer

rate of 115 kbps, but this interface and the RS-232-C interface are mutually exclusive.

(15)Fast IrDA Interface Unit (FIR)

The FIR unit is a unit for performing 0.5- to 4-Mbps IrDA communication. This unit operates based on a

dedicated 48-MHz clock input.

(16)Host Signal Processing Unit (HSP)

The HSP unit is used to realize a software modem. It interfaces the CPU core with an external codec device,

and controls them.

(17)Light Emitting Diode Unit (LED)

The LED unit is used to control the lighting of external LED.

CHAPTER 1 INTRODUCTION

33

1.4.2 I/O Registers

The I/O registers are used for peripheral unit control.

Table 1-1. BCU Registers

Register symbols Function Address

BCUCNTREG 1 BCU Control Register 1 0x0B00 0000

BCUCNTREG 2 BCU Control Register 2 0x0B00 0002

BCUSPEEDREG BCU Access Cycle Change Register 0x0B00 000A

BCUERRSTREG BCU BUS ERROR Status Register 0x0B00 000C

BCURFCNTREG BCU Refresh Control Register 0x0B00 000E

REVIDREG Peripheral Unit Revision ID Register 0x0B00 0010

BCURFCOUNTREG BCU Refresh Cycle Count Register 0x0B00 0012

CLKSPEEDREG Clock Setting Register 0x0B00 0014

Table 1-2. DMAAU Registers

Register symbols Function Address

AIUIBALREG AIU IN DMA Base Address Register Low 0x0B00 0020

AIUIBAHREG AIU IN DMA Base Address Register High 0x0B00 0022

AIUIALREG AIU IN DMA Address Register Low 0x0B00 0024

AIUIAHREG AIU IN DMA Address Register High 0x0B00 0026

AIUOBALREG AIU OUT DMA Base Address Register Low 0x0B00 0028

AIUOBAHREG AIU OUT DMA Base Address Register High 0x0B00 002A

AIUOALREG AIU OUT DMA Address Register Low 0x0B00 002C

AIUOAHREG AIU OUT DMA Address Register High 0x0B00 002E

FIRBALREG FIR DMA Base Address Register Low 0x0B00 0030

FIRBAHREG FIR DMA Base Address Register High 0x0B00 0032

FIRALREG FIR DMA Address Register Low 0x0B00 0034

FIRAHREG FIR DMA Address Register High 0x0B00 0036

CHAPTER 1 INTRODUCTION

34

Table 1-3. DCU Registers

Register symbols Function Address

DMARSTREG DMA Reset Register 0x0B00 0040

DMAIDLEREG DMA Sequencer Status Register 0x0B00 0042

DMASENREG DMA Sequencer Enable Register 0x0B00 0044

DMAMSKREG DMA Mask Register 0x0B00 0046

DMAREQREG DMA Request Register 0x0B00 0048

TDREG Transfer Direction Setting Register 0x0B00 004A

Table 1-4. CMU Register

Register symbol Function Address

CMUCLKMSK CMU Clock Mask Register 0x0B00 0060

CHAPTER 1 INTRODUCTION

35

Table 1-5. ICU Registers

Register symbols Function Address

SYSINT1REG Level 1 System Interrupt Register 1 0x0B00 0080

PIUINTREG Level 2 PIU Interrupt Register 0x0B00 0082

AIUINTREG Level 2 AIU Interrupt Register 0x0B00 0084

KIUINTREG Level 2 KIU Interrupt Register 0x0B00 0086

GIUINTLREG Level 2 GIU Interrupt Register Low 0x0B00 0088

DSIUINTREG Level 2 DSIU Interrupt Register 0x0B00 008A

MSYSINT1REG Level 1 Mask System Interrupt Register 1 0x0B00 008C

MPIUINTREG Level 2 Mask PIU Interrupt Register 0x0B00 008E

MAIUINTREG Level 2 Mask AIU Interrupt Register 0x0B00 0090

MKIUINTREG Level 2 Mask KIU Interrupt Register 0x0B00 0092

MGIUINTLREG Level 2 Mask GIU Interrupt Register Low 0x0B00 0094

MDSIUINTREG Level 2 Mask DSIU Interrupt Register 0x0B00 0096

NMIREG Battery Interrupt Select Register 0x0B00 0098

SOFTINTREG Software Interrupt Register 0x0B00 009A

SYSINT2REG Level 1 System Interrupt Register 2 0x0B00 0200

GIUINTHREG Level 2 GIU Interrupt Register High 0x0B00 0202

FIRINTREG Level 2 FIR Interrupt Register 0x0B00 0204

MSYSINT2REG Level 1 Mask System Interrupt Register 2 0x0B00 0206

MGIUINTHREG Level 2 Mask GIU Interrupt Register High 0x0B00 0208

MFIRINTREG Level 2 Mask FIR Interrupt Register 0x0B00 020A

Table 1-6. PMU Registers

Register symbols Function Address

PMUINTREG PMU Interrupt/Status Register 0x0B00 00A0

PMUCNTREG PMU Control Register 0x0B00 00A2

PMUINT2REG PMU Interrupt Register 2 0x0B00 00A4

PMUCNT2REG PMU Control Register 2 0x0B00 00A6

CHAPTER 1 INTRODUCTION

36

Table 1-7. RTC Registers

Register symbols Function Address

ETIMELREG Elapsed Time L Register 0x0B00 00C0

ETIMEMREG Elapsed Time M Register 0x0B00 00C2

ETIMEHREG Elapsed Time H Register 0x0B00 00C4

ECMPLREG Elapsed Compare L Register 0x0B00 00C8

ECMPMREG Elapsed Compare M Register 0x0B00 00CA

ECMPHREG Elapsed Compare H Register 0X0B00 00CC

RTCL1LREG RTC Long 1 L Register 0x0B00 00D0

RTCL1HREG RTC Long 1 H Register 0x0B00 00D2

RTCL1CNTLREG RTC Long 1 Count L Register 0x0B00 00D4

RTCL1CNTHREG RTC Long 1 Count H Register 0x0B00 00D6

RTCL2LREG RTC Long 2 L Register 0x0B00 00D8

RTCL2HREG RTC Long 2 H Register 0x0B00 00DA

RTCL2CNTLREG RTC Long 2 Count L Register 0x0B00 00DC

RTCL2CNTHREG RTC Long 2 Count H Register 0x0B00 00DE

TCLKLREG TClock L Register 0x0B00 01C0

TCLKHREG TClock H Register 0x0B00 01C2

TCLKCNTLREG TClock Count L Register 0x0B00 01C4

TCLKCNTHREG TClock Count H Register 0x0B00 01C6

RTCINTREG RTC Interrupt Register 0x0B00 01DE

CHAPTER 1 INTRODUCTION

37

Table 1-8. DSU Registers

Register symbols Function Address

DSUCNTREG DSU Control Register 0x0B00 00E0

DSUSETREG DSU Cycle (Dead Time) Set Register 0x0B00 00E2

DSUCLRREG DSU Clear Register 0x0B00 00E4

DSUTIMREG DSU Elapsed Time Register 0x0B00 00E6

Table 1-9. GIU Registers

Register symbols Function Address

GIUIOSELL GPIO Input/Output Select Register L 0x0B00 0100

GIUIOSELH GPIO Input/Output Select Register H 0x0B00 0102

GIUPIODL GPIO Port Input/Output Data Register L 0x0B00 0104

GIUPIODH GPIO Port Input/Output Data Register H 0x0B00 0106

GIUINTSTATL GPIO Interrupt Status Register L 0x0B00 0108

GIUINTSTATH GPIO Interrupt Status Register H 0x0B00 010A

GIUINTENL GPIO Interrupt Enable Register L 0x0B00 010C

GIUINTENH GPIO Interrupt Enable Register H 0x0B00 010E

GIUINTTYPL GPIO Interrupt Type (Edge or Level) Select Register L 0x0B00 0110

GIUINTTYPH GPIO Interrupt Type (Edge or Level) Select Register H 0x0B00 0112

GIUINTALSELL GPIO Interrupt Active Level Select Register L 0x0B00 0114

GIUINTALSELH GPIO Interrupt Active Level Select Register H 0x0B00 0116

GIUINTHTSELL GPIO Interrupt Hold/Through Select Register L 0x0B00 0118

GIUINTHTSELH GPIO Interrupt Hold/Through Select Register H 0x0B00 011A

GIUPODATL GPIO Port Output Data Register L 0x0B00 011C

GIUPODATH GPIO Port Output Data Register H 0x0B00 011E

CHAPTER 1 INTRODUCTION

38

Table 1-10. PIU Registers

Register symbols Function Address

PIUCNTREG PIU Control Register 0x0B00 0122

PIUINTREG PIU Interrupt Cause Register 0x0B00 0124

PIUSIVLREG PIU Data Sampling Interval Register 0x0B00 0126

PIUSTBLREG PIU A/D Converter Start Delay Register 0x0B00 0128

PIUCMDREG PIU A/D Command Register 0x0B00 012A

PIUASCNREG PIU A/D Port Scan Register 0x0B00 0130

PIUAMSKREG PIU A/D Scan Mask Register 0x0B00 0132

PIUCIVLREG PIU Check Interval Register 0x0B00 013E

PIUPB00REG PIU Page 0 Buffer 0 Register 0x0B00 02A0

PIUPB01REG PIU Page 0 Buffer 1 Register 0x0B00 02A2

PIUPB02REG PIU Page 0 Buffer 2 Register 0x0B00 02A4

PIUPB03REG PIU Page 0 Buffer 3 Register 0x0B00 02A6

PIUPB10REG PIU Page 1 Buffer 0 Register 0x0B00 02A8

PIUPB11REG PIU Page 1 Buffer 1 Register 0x0B00 02AA

PIUPB12REG PIU Page 1 Buffer 2 Register 0x0B00 02AC

PIUPB13REG PIU Page 1 Buffer 3 Register 0x0B00 02AE

PIUAB0REG PIU AD Scan Buffer 0 Register 0x0B00 02B0

PIUAB1REG PIU AD Scan Buffer 1 Register 0x0B00 02B2

PIUAB2REG PIU AD Scan Buffer 2 Register 0x0B00 02B4

PIUAB3REG PIU AD Scan Buffer 3 Register 0x0B00 02B6

PIUPB04REG PIU Page 0 Buffer 4 Register 0x0B00 02BC

PIUPB14REG PIU Page 1 Buffer 4 Register 0x0B00 02BE

CHAPTER 1 INTRODUCTION

39

Table 1-11. AIU Registers

Register symbols Function Address

MDMADATREG Mike DMA Data Register 0x0B00 0160

SDMADATREG Speaker DMA Data Register 0x0B00 0162

SODATREG Speaker Output Data Register 0x0B00 0166

SCNTREG Speaker Output Control Register 0x0B00 0168

SCNVRREG Speaker Conversion Rate Register 0x0B00 016A

MIDATREG Mike Input Data Register 0x0B00 0170

MCNTREG Mike Input Control Register 0x0B00 0172

MCNVRREG Mike Conversion Rate Register 0x0B00 0174

DVALIDREG Data Valid Register 0x0B00 0178

SEQREG Sequential Operation Enable Register 0x0B00 017A

INTREG AIU Interrupt Register 0x0B00 017C

CHAPTER 1 INTRODUCTION

40

Table 1-12. KIU Registers

Register symbols Function Address

KIUDAT0 KIU Data0 Register 0x0B00 0180

KIUDAT1 KIU Data1 Register 0x0B00 0182

KIUDAT2 KIU Data2 Register 0x0B00 0184

KIUDAT3 KIU Data3 Register 0x0B00 0186

KIUDAT4 KIU Data4 Register 0x0B00 0188

KIUDAT5 KIU Data5 Register 0x0B00 018A

KIUSCANREP KIU Scan/Repeat Register 0x0B00 0190

KIUSCANS KIU Scan Status Register 0x0B00 0192

KIUWKS KIU Wait Keyscan Stable Register 0x0B00 0194

KIUWKI KIU Wait Keyscan Interval Register 0x0B00 0196

KIUINT KIU Interrupt Register 0x0B00 0198

KIURST KIU Reset Register 0x0B00 019A

KIUGPEN KIU General Purpose Output Enable Register 0x0B00 019C

SCANLINE KIU Scan Line Register 0x0B00 019E

Table 1-13. DSIU Registers

Register symbols Function Address

PORTREG Port Change Register 0x0B00 01A0

MODEMREG Modem Control Register 0x0B00 01A2

ASIM00REG Asynchronous Mode 0 Register 0x0B00 01A4

ASIM01REG Asynchronous Mode 1 Register 0x0B00 01A6

RXB0RREG Receive Buffer Register (Extended) 0x0B00 01A8

RXB0LREG Receive Buffer Register 0x0B00 01AA

TXS0RREG Transmit Data Register (Extended) 0x0B00 01AC

TXS0LREG Transmit Data Register 0x0B00 01AE

ASIS0REG Status Register 0x0B00 01B0

INTR0REG Debug SIU Interrupt Register 0x0B00 01B2

BPRM0REG Baud-rate Generator Prescaler Mode Register 0x0B00 01B6

DSIURESETREG Debug SIU Reset Register 0x0B00 01B8

CHAPTER 1 INTRODUCTION

41

Table 1-14. LED Registers

Register symbols Function Address

LEDHTSREG LED H Time Set Register 0x0B00 0240

LEDLTSREG LED L Time Set Register 0x0B00 0242

LEDCNTREG LED Control Register 0x0B00 0248

LEDASTCREG LED Auto Stop Time Count Register 0x0B00 024A

LEDINTREG LED Interrupt Register 0x0B00 024C

Table 1-15. SIU Registers

Register symbols Function LCR[7] Address

SIURB Receiver Buffer Register (Read)

SIUTH Transmitter Holding Register (Write)

0

SIUDLL Divisor Latch (Least Significant Byte) Register 1

0x0C00 0000

SIUIE Interrupt Enable Register 0

SIUDLM Divisor Latch (Most Significant Byte) Register 1

0x0C00 0001

SIUIID Interrupt Identification Register (Read)

SIUFC FIFO Control Register (Write)

- 0x0C00 0002

SIULC Line Control Register - 0x0C00 0003

SIUMC MODEM Control Register - 0x0C00 0004

SIULS Line Status Register - 0x0C00 0005

SIUMS MODEM Status Register - 0x0C00 0006

SIUSC Scratch Register - 0x0C00 0007

SIUIRSEL SIU/FIR IrDA Selector - 0x0C00 0008

Remark LCR[7] is bit 7 of the SIULC register.

Table 1-16. HSP Registers

Register symbols Function Address

HSPINIT HSP Initialize Register 0x0C00 0020

HSPDATA[7:0] HSP Data Register [7:0] 0x0C00 0022

HSPDATA[15:8] HSP Data Register [15:8] 0x0C00 0023

HSPINDEX HSP Index Register 0x0C00 0024

HSPID[7:0] HSP ID Register 0x0C00 0028

HSPPCS[7:0] HSP I/O Address Program Confirmation Register 0x0C00 0029

HSPPCTEL[7:0] HSP Signature Checking Port 0x0C00 0029

CHAPTER 1 INTRODUCTION

42

Table 1-17. FIR Registers

Register symbols Function Address

FRSTR FIR Reset Register 0x0C00 0040

DPINTR DMA Page Interrupt Register 0x0C00 0042

DPCNTR DMA Page Control Register 0x0C00 0044

TDR Transmit Data Register 0x0C00 0050

RDR Receive Data Register 0x0C00 0052

IMR Interrupt Mask Register 0x0C00 0054

FSR FIFO Setup Register 0x0C00 0056

IRSR1 IR Setup Register 1 0x0C00 0058

CRCSR CRC Setup Register 0x0C00 005C

FIRCR FIR Control Register 0x0C00 005E

MIRCR MIR Control Register 0x0C00 0060

DMACR DMA Control Register 0x0C00 0062

DMAER DMA Enable Register 0x0C00 0064

TXIR Transmission Indicate Register 0x0C00 0066

RXIR Reception Indicate Register 0x0C00 0068

IFR Interrupt Flag Register 0x0C00 006A

RXSTS Reception Status Register 0x0C00 006C

TXFL Transmit Frame Length Register 0x0C00 006E

MRXF Maximum Receive Frame Length Register 0x0C00 0070

RXFL Receive Frame Length Register 0x0C00 0074

CHAPTER 1 INTRODUCTION

43

1.5 VR4100 CPU CORE

Figure 1-2. V R4100 CPU Core Internal Block Diagram

VR4100 CPU core

CPUCP0Instruction

Cache

(4K bytes)

Data

Cache

(1K bytes)

Bus

Interface

Clock
Generator

Address/Data(o)

Address/Data(i)

Internal Clock

ID bus

VA bus

Control(o)

Control(i)

TLB

1.5.1 VR4100 CPU Core

(1) CPU bus interface

The CPU bus interface controls data transmission/reception between the VR4100 CPU core and the BCU, which

is one of peripheral units. The VR4100 CPU interface consists of two 32-bit multiplexed address/data buses (one

is for input, and another is for output), clock signals, and control signals such as interrupts.

(2) Clock generator

The following clock inputs are oscillated and supplied to internal units.

x 32.768-kHz clock for RTC unit:

oscillating a 32.768-kHz crystal resonator input via an internal oscillator to supply to the RTC unit.

x 8.432-MHz clock for serial interface and the VR4102’s reference operating clock:

oscillating an 18.432-MHz crystal resonator input via an internal oscillator, and then multiplying it by phase-

locked loop (PLL) to generate a pipeline clock (PClock). The internal bus clock (TClock) is generated from

PClock and supplied to peripheral units.

(3) Instruction cache

The instruction cache employs direct mapping, virtual index, and physical tag. Its capacity is 4K bytes.

(4) CPU

CPU has hardware resources to process an integer instruction. They are the 64-bit register file, 64-bit integer

data bus, and multiply-and-accumulate operation unit.

CHAPTER 1 INTRODUCTION

44

(5) Coprocessor 0 (CP0)

CP0 incorporates a memory management unit (MMU) and exception handling function. MMU checks whether

there is an access between different memory segments (user, supervisor, and kernel) by executing address

conversion. The translation lookaside buffer (TLB) converts virtual addresses to physical addresses.

(6) Data cache

The data cache employs direct mapping, virtual index, physical tag, and write back. Its capacity is 1K bytes.

CHAPTER 1 INTRODUCTION

45

1.5.2 CPU Registers

The VR4100 CPU core has thirty two 64-bit general-purpose registers (GPRs).

In addition, the processor provides the following special, registers:

� 64-bit Program Counter (PC)

� 64-bit HI register, containing the integer multiply and divide upper doubleword result

� 64-bit LO register, containing the integer multiply and divide lower doubleword result

Two of the general-purpose registers have assigned the following functions:

� r0 is hardwired to a value of zero, and can be used as the target register for any instruction whose result is to

be discarded. r0 can also be used as a source when a zero value is needed.

� r31 is the link register used by link instruction, such as JAL/JALR instructions. This register can be used for

other instructions. However, be careful that use of the register by a link instruction will not coincide with use

of the register for other operations.

The register group is provided within the CP0, to process exceptions and to manage addresses.

CPU registers can operate as either 32-bit or 64-bit registers, depending on the VR4102 processor mode of

operation.

Figure 1-3 shows the CPU registers.

Figure 1-3. V R4102 CPU Registers

General-purpose register

r0 = 0

031 Multiply/divide register3263

HI

0313263

LO

Program Counter

0

PC

0

63

63

r1

r2

�
�
�
�

r29

r30

r31 = LinkAddress

3132

3132

The VR4102 has no Program Status Word (PSW) register as such; this is covered by the Status and Cause

registers incorporated within the System Control Coprocessor (CP0).

The CP0 registers are used for exception handling or address management. The overview of these registers is

described in 1.5.5 Coprocessors (CP0-CP3).

CHAPTER 1 INTRODUCTION

46

1.5.3 CPU Instruction Set Overview

Each CPU instruction is 32 bits long. As shown in Figure 1-4, there are three instruction formats:

� immediate (I-type)

� jump (J-type)

� register (R-type)

Figure 1-4. CPU Instruction Formats

I-type (immediate) op

015162021252631

J-type (jump) op target

0252631

R-type (register) op

015162021252631 561011

rs rt immediate

rs rt rd sa funct

The instruction set can be further divided into the following five groupings:

(1) Load and store instructions move data between memory and general-purpose registers. They are all

immediate (I-type) instructions, since the only addressing mode supported is base register plus 16-bit,

signed immediate offset.

(2) Computational instructions perform arithmetic, logical, shift, multiply, and divide operations on values in

registers. They include R-type (in which both the operands and the result are stored in registers) and I-type

(in which one operand is a 16-bit signed immediate value) formats.

(3) Jump and branch instructions change the control flow of a program. Jumps are always made to an absolute

address formed by combining a 26-bit target address with the high-order bits of the Program Counter (J-type

format) or register address (R-type format). The format of the branch instructions is I type. Branches have

16-bit offsets relative to the Program Counter. JAL instructions save their return address in register 31.

(4) Coprocessor 0 (System Control Coprocessor, CP0) instructions perform operations on CP0 registers to

control the memory-management and exception-handling facilities of the processor.

(5) Special instructions perform system calls and breakpoint operations, or cause a branch to the general

exception-handling vector based upon the result of a comparison. These instructions occur in both R-type

(both the operands and the result are stored in registers) and I-type (one operand is a 16-bit signed

immediate value) formats.

Chapter 3 provides a more detailed summary (Refer to Chapter 27 for detailed descriptions of the operation of

each instruction) .

CHAPTER 1 INTRODUCTION

47

1.5.4 Data Formats and Addressing

The VR4102 uses following four data formats:

Doubleword (64 bits)

Word (32 bits)

Halfword (16 bits)

Byte (8 bits)

For the VR4100 CPU core, byte ordering within all of the larger data formats - halfword, word, doubleword - can

be configured in either big-endian or little-endian order. However, the V R4102 supports the little-endian order

only.

Endianness refers to the location of byte 0 within the multi-byte data structure. Figure 1-5 shows the ordering of

bytes within words and the ordering of words within doubleword structures for the little-endian conventions.

When configured as a little-endian system, byte 0 is always the least-significant (rightmost) byte, which is

compatible with iAPXTM and DEC VAXTM conventions. Figure 1-5 shows this configuration.

Figure 1-5. Little-Endian Byte Ordering in Word Data

12 12131415

01516 82324 731

8 891011

4 4567

0 0123Lower
address

Higher
address

Word
address

Bit No.

Remarks 1. The lowest byte is the lowest address.

2. The address of word data is specified by the lowest byte’s address.

In this manual, bit 0 is always the least-significant (rightmost) bit; thus, bit designations are always little-endian.

Figure 1-6 shows little-endian byte ordering in doublewords.

CHAPTER 1 INTRODUCTION

48

Figure 1-6. Little-Endian Byte Ordering in Double Word Data

16 23

03132 8 763

8

0Lower
address

Higher
address

Double word
address

Half word

22

15 14

7 6

21 20

13 12

5 4

19 18

11 10

3 2

17 16

9 8

1 0

16 15

Word Byte

Remarks 1. The lowest byte is the lowest address.

2. The address of word data is specified by the lowest byte’s address.

The CPU uses following byte boundaries for halfword, word, and doubleword accesses:

� Halfword: An even byte boundary (0, 2, 4...)

� Word: A byte boundary divisible by four (0, 4, 8...)

� Doubleword: A byte boundary divisible by eight (0, 8, 16...)

The following special instructions to load and store data that are not aligned on 4-byte (word) or 8-byte

(doubleword) boundaries:

LWL LWR SWL SWR

LDL LDR SDL SDR

These instructions are used in pairs to provide an access to misaligned data. Accessing misaligned data incurs

one additional instruction cycle over that required for accessing aligned data.

Figure 1-7 shows the access of a misaligned word that has byte address 3 for the little-endian conventions.

Figure 1-7. Misaligned Word Accessing (Little-Endian)

56 4

01516 82324 731

3

Lower
address

Higher
address

Bit No.

CHAPTER 1 INTRODUCTION

49

1.5.5 Coprocessors (CP0-CP3)

MIPS ISA defines 4 types of coprocessors (CP0 to CP3).

CP1 is reserved to execute a floating-point instruction. CP2 and CP3 are reserved for future use. CP0 is an on-

chip system control coprocessor, which supports the virtual memory system and exception handling. The virtual

memory system is implemented using an on-chip TLB and the CP0 registers in the CPU.

CP0 translates virtual addresses to physical addresses, switches the operating mode, (kernel, supervisor, or user

mode), and management exceptions. It also controls the cache subsystem to analyze a cause and to return from the

error state.

Figure 1-8 shows the definitions of the CP0 register, and Table 1-18 shows simple descriptions of each register.

For the detailed descriptions of the registers related to the virtual system memory, refer to Chapter 5. For the

detailed descriptions of the registers related to exception handling, refer to Chapter 6.

Figure 1-8. CP0 Registers

0

* for Memory management
** for Exception handling
- Reserved

Register No. Register name

Index*

1 Random*

2 EntryLo0*

3 EntryLo1*

4 Context**

5 PageMask*

6 Wired*

7 –

8 BadVAddr**

9 Count**

10 EntryHi*

11 Compare**

12 Status**

13 Cause**

14 EPC**

15 PRId*

16

Register No. Register name

Config*

17 LLAddr*

18 WatchLo**

19 WatchHi**

20 XContext**

21 –

22 –

23 –

24 –

25 –

26 PErr**

27 CacheErr**

28 TagLo*

29 TagHi*

30 ErrorEPC**

31 –

CHAPTER 1 INTRODUCTION

50

Table 1-18. System Control Coprocessor (CP0) Register Definitions

Number Register Description

0 Index Programmable pointer to TLB array

1 Random Pseudo-random pointer to TLB array (read only)

2 EntryLo0 Low half of TLB entry for even VPN

3 EntryLo1 Low half of TLB entry for odd VPN

4 Context Pointer to kernel virtual PTE in 32-bit mode

5 PageMask TLB page mask

6 Wired Number of wired TLB entries

7  Reserved for future use

8 BadVAddr Virtual address where the most recent error occurred

9 Count Timer count

10 EntryHi High half of TLB entry (including ASID)

11 Compare Timer compare

12 Status Status register

13 Cause Cause of last exception

14 EPC Exception Program Counter

15 PRId Processor revision identifier

16 Config Configuration register (specifying memory mode system)

17 LLAddr Reserved

18 WatchLo Memory reference trap address low bits

19 WatchHi Memory reference trap address high bits

20 XContext Pointer to kernel virtual PTE in 64-bit mode

21 to 25  Reserved for future use

26 PErr Cache parity bits

27 CacheErr Index and status of cache error

28 TagLo Cache Tag register (low)

29 TagHi Cache Tag register (high)

30 ErrorEPC Error Exception Program Counter

31  Reserved for future use

CHAPTER 1 INTRODUCTION

51

1.5.6 Floating-Point Unit (FPU)

The VR4102 does not support the floating-point unit (FPU). Coprocessor Unusable exception will occur if any

FPU instructions are executed. If necessary, FPU instructions should be emulated by software in an exception

handler.

1.5.7 Cache

The VR4102 chip incorporates instruction and data caches, which are independent of each other. This

configuration enables high-performance pipeline operations. Both caches have a 64-bit data bus, enabling a one-

clock access. These buses can be accessed in parallel. The instruction cache of the VR4102 has a storage

capacity of 4 KB, while the data cache has a capacity of 1 KB.

A detailed description of caches is given in CHAPETE 8 CACHE ORGANIZATION AND OPERATION .

CHAPTER 1 INTRODUCTION

52

1.6 CPU CORE MEMORY MANAGEMENT SYSTEM (MMU)

The VR4102 has a 32-bit physical addressing range of 4 Gbytes. However, since it is rare for systems to

implement a physical memory space as large as that memory space, the CPU provides a logical expansion of

memory space by translating addresses composed in the large virtual address space into available physical memory

addresses. The VR4102 supports the following two addressing modes:

32-bit mode, in which the virtual address space is divided into 2 Gbytes for user process and 2 Gbytes for the

kernel.

64-bit mode, in which the virtual address is expanded to1 Tbyte (240 bytes) of user virtual address space.

A detailed description of these address spaces is given in Chapter 4.

1.6.1 Translation Lookaside Buffer (TLB)

The TLB converts virtual addresses to physical addresses. It runs by a full-associative method. It has 32 entries,

each mapping a pair of pages having a variable size (1 KB to 256 KB).

(1) Joint TLB (JTLB)

For fast virtual-to-physical address decoding, the VR4102 uses a large, fully associative TLB (joint TLB) that

translates 64 virtual pages to their corresponding physical addresses. The TLB is organized as 32 pairs of even-odd

entries, and maps a virtual address and address space identifier (ASID) into the 4-Gbyte physical address space.

The page size can be configured, on a per-entry basis, to map a page size of 1 KB to 256 KB. A CP0 register

stores the size of the page to be mapped, and that size is entered into the TLB when a new entry is written. Thus,

operating systems can provide special purpose maps; for example, a typical frame buffer can be memory-mapped

using only one TLB entry.

Translating a virtual address to a physical address begins by comparing the virtual address from the processor

with the physical addresses in the TLB; there is a match when the virtual page number (VPN) of the address is the

same as the VPN field of the entry, and either the Global (G) bit of the TLB entry is set, or the ASID field of the virtual

address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception is taken by the processor and

software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

1.6.2 Operating Modes

The VR4102 has three operating modes:

� User mode

� Supervisor mode

� Kernel mode

The manner in which memory addresses are translated or mapped depends on these operating modes. Refer to

CHAPTER 5 MEMORY MANAGEMENT SYSTEM for details.

CHAPTER 1 INTRODUCTION

53

1.7 INSTRUCTION PIPELINE

The VR4102 has a 5-stage instruction pipeline. Under normal circumstances, one instruction is issued each

cycle.

A detailed description of pipeline is provided in Chapter 4.

1.8 CLOCK INTERFACE

The VR4102 has the following nine clocks.

���� CLKX1, CLKX2 (input)

These are oscillation inputs of 18.432 MHz, and used to generate operation clocks for the CPU core and

serial interface.

���� RTCX1, RTCX2 (input)

These are oscillation inputs of 32.768 kHz, and used for PMU and RTC.

���� FIRCLK (input)

This is a 48-MHz clock input, and used for FIR.

���� PClock (internal)

This clock is used to control the pipeline used in the VR4100 CPU core, and for units relating to the pipeline.

This clock is generated from the clock input of CLKX1 and CLKX2 pins. Its frequency is determined by

CLKSEL[2..0] pins.

���� MasterOut (internal)

This is a bus clock of the VR4100 CPU core, and used for interrupt control. Its frequency is 1/4 of PClock

frequency.

���� TClock (internal)

This is an operation clock for VR4100 CPU core bus, internal bus of the VR4102, and on-chip peripheral unit.

In the current VR4102, its frequency is 1/2 of PClock frequency.

���� BUSCLK (output)

This clock is supplied to the controller on the system bus. Its frequency in determined by CLKSEL[2..0] pins.

���� HSPMCLK (output)

This clock is supplied to the external CODEC. Its frequency is determined by the HSPMCLKD register.

���� HSPSCLK (input)

This is an operation clock for the external CODEC and the modem interface.

Figure 1-9 shows an external circuit of the clock oscillator.

CHAPTER 1 INTRODUCTION

54

Figure 1-9. External Circuit of Clock Oscillator

(a) Crystal oscillation (b) External clock
VR4102

GND

Note1

Note2

VR4102

Note1

Note2

External
clock

Open

Notes 1. CLKX1, RTCX1

2. CLKX2, RTCX2

Cautions 1. When using a clock oscillator, run wires in the area of this figure shown by broken lines,

according to the following rules, to avoid effects such as stray capacitance:

• Minimize the wire.

• Never cause the wires to cross other signal lines or run near a line carrying a large

varying current.

• Cause the grounding point of the capacitor of the oscillator circuit to have the same

potential as GND. Never connect the capacitor to a ground pattern carrying a large

current.

• Never extract a signal from the oscillator.

2. Take it into consideration that no load such as wiring capacity is applied to the CLKX2 or

RTCX2 pin when inputting an external clock.

Figure 1-10 shows examples of oscillator having bad connection.

CHAPTER 1 INTRODUCTION

55

Figure 1-10. Examples of Oscillator with Bad Connection

(a) Connection circuit wiring is too long.

GNDNote2Note1

(b) There is another signal line crossing.

GNDNote2Note1

(c) A high varying current flows near a signal line.

GNDNote2Note1

(d) A current flows over the ground line of the
generator circuit
(The potentials of points A, B, and C change).

GNDNote2Note1
Large
current

A B C

VDD

(e) A signal is extracted.

GNDNote1Note2

Notes 1. CLKX2, RTCX2

2. CLKX1, RTCX1

56

[MEMO]

57

CHAPTER 2 PIN FUNCTIONS

2.1 PIN CONFIGURATION

x 216-pin plastic LQFP (fine-pitch) (24 u 24 mm) (Top View)

PPD30102GM-54-8EV
G

N
D

IO
W

#
IO

R
#

S
H

B
#

B
U

S
C

LK
LE

D
O

U
T

#
F

IR
C

LK
G

N
D

H
LD

A
C

K
#

H
LD

R
Q

IO
C

H
R

D
Y

IO
C

S
16

#
M

E
M

C
S

16
#

Z
W

S
#

M
E

M
W

#
M

E
M

R
#

A
D

D
25

A
D

D
24

A
D

D
23

A
D

D
22

V
D

D

G
N

D
A

D
D

21
A

D
D

20
A

D
D

19
A

D
D

18
A

D
D

17
A

D
D

16
A

D
D

15
A

D
D

14
A

D
D

13
A

D
D

12
A

D
D

8
V

D
D

G
N

D
A

D
D

7
A

D
D

6
A

D
D

5
A

D
D

4
V

D
D

G
N

D
R

xD
C

T
S

#
D

C
D

#/
G

P
IO

15
D

S
R

#
D

T
R

#/
C

LK
S

E
L0

R
T

S
#/

C
LK

S
E

L1
T

xD
/C

LK
S

E
L2

IR
D

IN
F

IR
D

IN
#/

S
E

L
IR

D
O

U
T

#
IR

IN
G

B
A

T
T

IN
H

/B
A

T
T

IN
T

#
V

D
D

GND
ILCSENSE
OFFHOOK
MUTE
AFERST#
SDI
FS
SDO
HSPSCLK
TELCON
HC0
HSPMCLK
OPD#
KPORT0
KPORT1
KPORT2
KPORT3
KPORT4
KPORT5
KPORT6
KPORT7
VDD

GND
VDD

GND
KSCAN11/GPIO43
KSCAN10/GPIO42
KSCAN9/GPIO41
KSCAN8/GPIO40
KSCAN7/GPIO39
KSCAN6/GPIO38
KSCAN5/GPIO37
KSCAN4/GPIO36
KSCAN3/GPIO35
KSCAN2/GPIO34
KSCAN1/GPIO33
KSCAN0/GPIO32
IC (Open)
GND
GND
GND
VDD

VDD

GND
VDDP
GNDP
CVDD

CLKX1
CLKX2
RTCX2
RTCX1
CGND
GPIO0
VDD

21
6

21
5

21
4

21
3

21
2

21
1

21
0

20
9

20
8

20
7

20
6

20
5

20
4

20
3

20
2

20
1

20
0

19
9

19
8

19
7

19
6

19
5

19
4

19
3

19
2

19
1

19
0

18
9

18
8

18
7

18
6

18
5

18
4

18
3

18
2

18
1

18
0

17
9

17
8

17
7

17
6

17
5

17
4

17
3

17
2

17
1

17
0

16
9

16
8

16
7

16
6

16
5

16
4

16
3

162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

V
D

D

A
G

N
D

P
IU

G
N

D
T

P
X

0
T

P
X

1
T

P
Y

0
T

P
Y

1
P

IU
V

D
D

A
D

IN
0

A
D

IN
1

A
D

IN
2

A
U

D
IO

IN
A

V
D

D

D
G

N
D

A
U

D
IO

O
U

T
D

V
D

D

LC
A

S
#

U
C

A
S

#
M

R
A

S
3#

/U
U

C
A

S
#

M
R

A
S

2#
/U

LC
A

S
#

M
R

A
S

1#
M

R
A

S
0#

R
O

M
C

S
3#

R
O

M
C

S
2#

R
O

M
C

S
1#

R
O

M
C

S
0#

R
S

T
O

U
T

R
D

#
G

N
D

V
D

D

W
R

#
LC

D
R

D
Y

LC
D

C
S

#
G

P
IO

49
D

B
U

S
32

/G
P

IO
48

D
C

T
S

#/
G

P
IO

47
D

R
T

S
#/

G
P

IO
46

D
D

IN
/G

P
IO

45
D

D
O

U
T

/G
P

IO
44

G
P

IO
14

G
P

IO
13

G
P

IO
12

G
P

IO
11

G
P

IO
10

G
P

IO
9

G
P

IO
8

G
P

IO
7

G
P

IO
6

G
P

IO
5

G
P

IO
4

G
P

IO
3

G
P

IO
2

G
P

IO
1

G
N

D

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

VDD

DATA0
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7
DATA8
DATA9

DATA10
DATA11
DATA12
DATA13
DATA14
DATA15

GND
VDD

GND
VDD

DATA16/GPIO16
DATA17/GPIO17
DATA18/GPIO18
DATA19/GPIO19
DATA20/GPIO20
DATA21/GPIO21
DATA22/GPIO22
DATA23/GPIO23
DATA24/GPIO24
DATA25/GPIO25
DATA26/GPIO26
DATA27/GPIO27
DATA28/GPIO28
DATA29/GPIO29
DATA30/GPIO30
DATA31/GPIO31

GND
VDD

GND
VDD

ADD11
ADD10

ADD9
ADD3
ADD2
ADD1
ADD0

POWER
POWERON

MPOWER
RTCRST#
RSTSW#

GND

Remark # indicates actrive low.

CHAPTER 2 PIN FUNCTIONS

58

x 224-pin plastic FGBA (16 u 16 mm)

PPD30102S1-54-3C

ABCDEFGHJKLMNPRTUV VUTRPNMLKJHGFEDCBA

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Index mark

Bottom View Top View

CHAPTER 2 PIN FUNCTIONS

59

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name

A1 VDD C15 RTS#/CLKSEL1 H15 GND

A2 SHB# C16 GND H16 KPORT6

A3 BUSCLK C17 ILCSENSE H17 KPORT4

A4 HLDACK# C18 AFERST# H18 VDD

A5 IOCHRDY D1 DATA5 J1 DATA20/GPIO20

A6 MEMW# D2 DATA3 J2 DATA17/GPIO17

A7 ADD23 D3 DATA6 J3 DATA22/GPIO22

A8 VDD D4 GND J4 DATA19/GPIO19

A9 ADD18 D5 MEMCS16# J15 KSCAN9/GPIO41

A10 ADD15 D6 ADD25 J16 VDD

A11 ADD8 D7 GND J17 GND

A12 ADD7 D8 ADD19 J18 KSCAN11/GPIO43

A13 VDD D9 ADD16 K1 DATA23/GPIO23

A14 DCD#/GPIO15 D10 ADD14 K2 DATA26/GPIO26

A15 TxD/CLKSEL2 D11 VDD K3 DATA25/GPIO25

A16 IRDOUT# D12 GND K4 DATA21/GPIO21

A17 IRING D13 ADD4 K15 KSCAN7/GPIO39

A18 VDD D14 CTS# K16 KSCAN10/GPIO42

B1 DATA1 D15 GND K17 KSCAN5/GPIO37

B2 IOR# D16 GND K18 KSCAN8/GPIO40

B3 IOW# D17 SDI L1 DATA27/GPIO27

B4 LEDOUT# D18 SDO L2 DATA31/GPIO31

B5 FIRCLK E1 DATA9 L3 DATA29/GPIO29

B6 HLDRQ# E2 DATA4 L4 DATA24/GPIO24

B7 ZWS# E3 DATA7 L15 KSCAN3/GPIO35

B8 ADD24 E4 DATA10 L16 KSCAN6/GPIO38

B9 ADD21 E15 OPD# L17 KSCAN0/GPIO32

B10 ADD12 E16 HSPSCLK L18 KSCAN4/GPIO36

B11 ADD6 E17 FS M1 DATA30/GPIO30

B12 GND E18 HC0 M2 VDD

B13 DSR# F1 DATA13 M3 GND

B14 IRDIN F2 DATA8 M4 DATA28/GPIO28

B15 FIRDIN#/SEL F3 DATA11 M15 KSCAN2/GPIO34

B16 BATTINH/BATTINT# F4 DATA14 M16 IC (Open)

B17 OFFHOOK F15 KPORT3 M17 GND

B18 MUTE F16 HSPMCLK M18 KSCAN1/GPIO33

C1 DATA2 F17 TELCON N1 VDD

C2 DATA0 F18 KPORT1 N2 ADD3

C3 GND G1 VDD N3 ADD10

C4 GND G2 DATA12 N4 GND

C5 GND G3 DATA15 N15 GND

C6 IOCS16# G4 GND N16 VDD

C7 MEMR# G15 KPORT7 N17 VDDP

C8 ADD22 G16 KPORT2 N18 GND

C9 ADD20 G17 KPORT0 P1 ADD9

C10 ADD17 G18 KPORT5 P2 ADD0

C11 ADD13 H1 DATA16/GPIO16 P3 ADD2

C12 ADD5 H2 GND P4 ADD11

C13 RxD H3 DATA18/GPIO18 P15 VDD

C14 DTR#/CLKSEL0 H4 VDD P16 GNDP

CHAPTER 2 PIN FUNCTIONS

60

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name

P17 CLKX2 T6 AVDD U13 GPIO9

P18 GND T7 LCAS# U14 GPIO6

R1 ADD1 T8 ROMCS2# U15 GPIO5

R2 POWER T9 RD# U16 GPIO1

R3 GND T10 WR# U17 GPIO2

R4 GND T11 DBUS32/GPIO48 U18 CGND

R5 AUDIOIN T12 DDOUT#/GPIO44 V1 VDD

R6 DVDD T13 GPIO11 V2 PIUGND

R7 MRAS2#/ULCAS# T14 GPIO8 V3 TPX0

R8 MRAS1# T15 GND V4 TPY1

R9 ROMCS1# T16 GND V5 ADIN2

R10 RSTOUT T17 GPIO0 V6 AUDIOOUT

R11 GND T18 RTCX1 V7 MRAS3#/UUCAS#

R12 GPIO49 U1 MPOWER V8 MRAS0#

R13 DDIN/GPIO45 U2 RTCRST# V9 ROMCS0#

R14 GPIO12 U3 AGND V10 VDD

R15 GND U4 TPX1 V11 LCDCS#

R16 CVDD U5 TPY0 V12 DCTS#/GPIO47

R17 RTCX2 U6 ADIN1 V13 GPIO14

R18 CLKX1 U7 DGND V14 GPIO10

T1 POWERON U8 UCAS# V15 GPIO7

T2 RSTSW# U9 ROMCS3# V16 GPIO4

T3 GND U10 LDCRDY V17 GPIO3

T4 PIUVDD U11 DRTS#/GPIO46 V18 VDD

T5 ADIN0 U12 GPIO13

CHAPTER 2 PIN FUNCTIONS

61

PIN IDENTIFICATION

ADD [0:25] : Address Bus IRDOUT# : IrDA Data Output

ADIN [0:2] : General Purpose Input for A/D IRING : Input Ring

AFERST# : AFE Reset KPORT [0:7] : Key Code Data Input

AGND : GND for A/D KSCAN [0:11] : Key Scan Line

AUDIOIN : Audio Input LCAS# : Lower Column Address Strobe

AUDIOOUT : Audio Output LCDCS# : LCD Chip Select

AVDD : VDD for A/D LCDRDY : LCD Ready

BATTINH : Battery Inhibit LEDOUT# : LED Output

BATTINT# : Battery Interrupt Request MEMCS16# : Memory Chip Select 16

BUSCLK : System Bus Clock MEMR# : Memory Read

CGND : GND for Oscillator MEMW# : Memory Write

CLKSEL [0:2] : Clock Select MPOWER : Main Power

CLKX1 : Clock X1 MRAS [0:3]# : DRAM Row Address Strobe

CLKX2 : Clock X2 MUTE : Mute

CTS# : Clear to Send OFFHOOK : Off Hook

CVDD : VDD for Oscillator OPD# : Output Power Down

DATA [0:31] : Data Bus PIUGND : GND for Touch Panel Interface

DBUS32 : Data Bus 32 PIUVDD : VDD for Touch Panel Interface

DCD# : Data Carrier Detect POWER : Power Switch

DCTS# : Debug Serial Clear to Send POWERON : Power On State

DDIN : Debug Serial Data Input RD# : Read

DDOUT : Debug Serial Data Output ROMCS [0:3]# : ROM Chip Select

DGND : GND for D/A RSTOUT : System Bus Reset Output

DRTS# : Debug Serial Request to Send RSTSW# : Reset Switch

DSR# : Data Set Ready RTCRST# : Real-time Clock Reset

DTR# : Data Terminal Ready RTCX1 : Real-time Clock X1

DVDD : VDD for D/A RTCX2 : Real-time Clock X2

FIRCLK : FIR Clock RTS# : Request to Send

FIRDIN# : FIR Data Input RxD : Receive Data

FS : Frame Synchronization SDI : HSP Serial Data Input

GND : Ground SDO : HSP Serial Data Output

GNDP : Ground for PLL SEL : IrDA Module Select

GPIO [0:49] : General Purpose I/O SHB# : System Hi-Byte Enable

HC0 : Hardware Control 0 TELCON : Telephone Control

HLDACK# : Hold Acknowledge TPX [0:1] : Touch Panel X I/O

HLDRQ# : Hold Request TPY [0:1] : Touch Panel Y I/O

HSPMCLK : HSP Codec Master Clock TxD : Transmit Data

HSPSCLK : HSP Codec Serial Clock UCAS# : Upper Column Address Strobe

IC : Internally Connected ULCAS# : Lower Byte of Upper Column

ILCSENSE : Input Loop Current Sensing Address Strobe

IOCHRDY : I/O Channel Ready UUCAS# : Upper Byte of Upper Column

IOCS16# : I/O Chip Select 16 Address Strobe

IOR# : I/O Read VDD : Power Supply Voltage

IOW# : I/O Write VDDP : VDD for PLL

IRDIN : IrDA Data Input WR# : Write

ZWS# : Zero Wait State

Remark # indicates active low.

CHAPTER 2 PIN FUNCTIONS

62

2.2 PIN FUNCTION DESCRIPTION

The functional classification of the VR4102 pins is listed below.

Remark # indicates active low.

Figure 2-1. V R4102 Signal Classification

RxD
TxD/CLKSEL2

RTS#/CLKSEL1
DTR#/CLKSEL0

CTS#
DCD#/GPIO15

DSR#

FIRDIN#/SEL
IRDIN

IRDOUT#

DDOUT/GPIO44
DDIN/GPIO45

DRTS#/GPIO46
DCTS#/GPIO47

POWER
RSTSW#

RTCRST#
MPOWER

POWERON

BATTINH/
BATTINT#

AUDIOOUT
AUDIOIN

CLKX1
CLKX2
RTCX1
RTCX2
FIRCLK

LEDOUT#

VDDP
GNDP

CVDD

CGND
DVDD

DGND
AVDD

AGND
PIUVDD

PIUGND

ADD (0:25)
DATA (0:15)
DATA (16:31)/
GPIO (16:31)
LCDRDY
LCDCS#
RD#
WR#
ROMCS (0:3)#
UUCAS#/MRAS3#
ULCAS#/MRAS2#
MRAS (0:1)#
UCAS#
LCAS#
BUSCLK
SHB#
IOR#
IOW#
MEMR#
MEMW#
ZWS#
RSTOUT
MEMCS16#
IOCS16#
IOCHRDY
HLDRQ#
HLDACK#
DBUS32/GPIO48

TPX (0:1)
TPY (0:1)
ADIN (0:2)

GPIO (0:49)

IRING
ILCSENSE
OFFHOOK
MUTE
AFERST#
SDI
FS
SDO
HSPSCLK
TELCON
HC0
HSPMCLK
OPD#

KPORT (0:7)
KSCAN (0:11)/

GPIO (32:43)

8
12

26
16
16

4

2

2
2
3

50

VR4102

System bus interface

Dedicated
VDD, GND

RS-232C
interface

IrDA
interface

Debug serial
interface

Initialization
interface

Battery monitor
interface

Keyboard
interface

Audio
interface

Clock
interface

LED
interface

LCD
interface

Memory
interface

ISA bus
interface

Touch panel/
general-purpose A/D interface

HSP modem interface

General-purpose I/O
(including alternate-function
pins and DCD# inputs)

CHAPTER 2 PIN FUNCTIONS

63

2.2.1 System Bus Interface Signals

These signals are used when the VR4102 is connected to a DRAM, ROM, or LCD, or other devices in the system

through the system bus.

Table 2-1. System Bus Interface Signals (1/2)

Signal I/O Description of function

ADD[25..0] O This is a 26-bit address bus. The VR4102 uses this to specify addresses for the DRAM, ROM, LCD, or

system bus (ISA).

DATA[15..0] I/O This is a 16-bit data bus. The VR4102 uses this to transmit and receive data with a DRAM, ROM, LCD,

or system bus.

DATA[31..16]/

GPIO[31..16]

I/O This function differs depending on how the DBUS32 pin is set.

<When DBUS32 = 1> : DATA[31..16]

It is the high-order 16 bits of the 32-bit data bus.

This bus is used for transmitting and receiving data between the VR4102 and the DRAM and ROM.

<When DBUS32 = 0> : GPIO[31..16]

It is a general-purpose I/O (GPIO) port.

LCDCS# O This is the LCD chip select signal. This signal is active when the VR4102 is performing LCD access

using the ADD/DATA bus.

RD# O This is active when the VR4102 is reading data from the LCD, RAM, or ROM.

WR# O This is active when the VR4102 is writing data to the LCD, RAM, or ROM.

LCDRDY I This is the LCD ready signal. Set this signal as active when the LCD controller is ready to receive

access from the VR4102.

ROMCS[3..0]# O This is the ROM chip select signal. It is used to select a ROM to be accessed from among up to four

connected ROM units.

UUCAS#/

MRAS[3]#

O This function differs depending on how the DBUS32 pin is set.

<When DBUS32 = 1> : UUCAS#

This signal is active when a valid column address is output via the ADD bus during access of

DATA[31:24] in the 32-bit data bus.

<When DBUS32 = 0> : MRAS[3]#

This is the DRAM’s RAS signal. Up to four DRAM units can be connected, and this signal is active

when a valid row address is output via the ADD bus for the DRAM connected to the high-order

address.

ULCAS#/

MRAS[2]#

O This function differs depending on how the DBUS32 pin is set.

<When DBUS32 = 1> ULCAS#

This signal is active when a valid column address is output via the ADD bus during access of

DATA[23:16] in the 32-bit data bus.

<When DBUS32 = 0> MRAS[2]#

This is the DRAM’s RAS signal. This signal is active when a valid row address is output via the ADD

bus for the DRAM connected to the next-highest address after the highest high-order address.

MRAS[1..0]# O This is the DRAM’s RAS signal.

UCAS# O This is the DRAM’s CAS signal. This signal is active when a valid column address is output via the

ADD bus during access of DATA[15:8] in the DRAM.

LCAS# O This is the DRAM’s CAS signal. This signal is active when a valid column address is output via the

ADD bus during access of DATA[7:0] in the DRAM.

CHAPTER 2 PIN FUNCTIONS

64

Table 2-1. System Bus Interface Signals (2/2)

Signal I/O Description of function

BUSCLK O This is the system bus clock. It is used to output the clock that is supplied to the controller on the

system bus. Its frequency is determined by the state of the CLKSEL2/TXD, CLKSEL1/RTS#, and

CLKSEL0/DTR pins. (See 2.2.5 RS-232-C Interface Signals .)

SHB# O This is the system bus high-byte enable signal. During system bus access, this signal is active when the

high-order byte is valid on the data bus.

IOR# O This is the system bus I/O read signal. It is active when the VR4102 accesses the system bus to read

data from an I/O port.

IOW# O This is the system bus I/O write signal. It is active when the VR4102 accesses the system bus to write

data to an I/O port.

MEMR# O This is the system bus memory read signal. It is active when the VR4102 accesses the system bus to

read data from memory.

MEMW# O This is the system bus memory write signal. It is active when the VR4102 accesses the system bus to

write data to memory.

ZWS# I This is the system bus zero wait state signal. Set this signal as active to enable the controller on the

system bus to be accessed by the VR4102 without a wait interval.

RSTOUT O This is the system bus reset signal. It is active when the VR4102 resets the system bus controller.

MEMCS16# I This is a dynamic bus sizing request signal.

Set this signal as active when system bus memory accesses data in 16-bit width. (However, the DRAM

bus memory space that is controlled by the DBUS 32 pin is excepted.)

IOCS16# I This is a dynamic bus sizing request signal.

Set this signal as active when system bus I/O accesses data in 16-bit width.

IOCHRDY I This is the system bus ready signal. Set this signal as active when the system bus controller is ready to

be accessed by the VR4102.

HLDRQ# I This is a hold request signal for the system bus and DRAM bus that is sent from an external bus master.

HLDACK# O This is a hold acknowledge signal for the system bus and DRAM bus that is sent to an external bus

master.

DBUS32/

GPIO[48]

I/O This function differs depending on the operating status.

• In normal operation (output)

It can be used as a general-purpose output port.

• After RTC reset (input)

It is a data bus width switching signal.

Sampling occurs when the RTCRST signal changes from low to high.

1 : Use 32-bit width for data bus

0 : Use 16-bit width for data bus

CHAPTER 2 PIN FUNCTIONS

65

2.2.2 Clock Interface Signals

These signals are used to supply clocks. Table 2-2 lists functions of these signals.

Table 2-2. Clock Interface Signals

Signal I/O Description of function

RTCX1 I This is the 32.768-kHz oscillator’s input pin. It is connected to one side of a crystal resonator.

RTCX2 O This is the 32.768-kHz oscillator’s output pin. It is connected to one side of a crystal resonator.

CLKX1 I This is the 18.432-MHz oscillator’s input pin. It is connected to one side of a crystal resonator.

CLKX2 O This is the 18.432-MHz oscillator’s output pin. It is connected to one side of a crystal resonator.

FIRCLK I This the 48-MHz clock input pin. Fix this at high level when FIR is not used.

2.2.3 Battery Monitor Interface Signals

These signals indicate when an external agent is able to provide enough power for system operations. Table 2-3

describes the functions of these signals.

Table 2-3. Battery Monitor Interface Signals

Signal I/O Description of function

BATTINH/

BATTINT#

I This function differs depending on how the MPOWER pin is set.

<When MPOWER = 0>

BATTINH function

This is an interrupt signal that is output when remaining power is low while battery is ON. The

external agent checks the remaining battery power and asserts the signal at this pin if the supplied

voltage is sufficient for current operations.

1 : Battery OK

0 : Battery low

<When MPOWER = 1>

BATTINT# function

This is an interrupt signal that is output when remaining power is low during normal operations. The

external agent checks the remaining battery power and asserts the signal at this pin if voltage

sufficient for operations cannot be supplied.

CHAPTER 2 PIN FUNCTIONS

66

2.2.4 Initialization Interface Signals

These signals are used when an external agent initializes the processor operation parameters. Table 2-4

describes the functions of these signals.

Table 2-4 Initialization Interface Signals

Signal I/O Description of function

MPOWER O This signal is used to turn on the main power source. The VR4102 asserts the signal at this pin to turn

on the power source for the external DC/DC converter.

POWERON O This signal indicates when the VR4102 is ready to operate. It becomes active when a power-on factor is

detected and becomes inactive when the BATTINH/BATTINT# signal check operation is completed.

POWER I This signal indicates that the POWER ON switch has been pressed. When the POWER ON switch has

been pressed, an external agent must assert the signal at this pin.

RSTSW# I This signal indicates that the RESET switch has been pressed. When the RESET switch has been

pressed, an external agent must assert the signal at this pin.

RTCRST# I This signal resets the RTC. When power is first supplied to a device, the external agent must assert the

signal at this pin for about 600 ms.

CHAPTER 2 PIN FUNCTIONS

67

2.2.5 RS-232-C Interface Signals

These signals control data transmission and reception between the VR4102 and an RS-232-C controller. Table 2-

5 describes the functions of these signals.

Table 2-5. RS-232-C Interface Signals

Signal I/O Description of function

RxD I This is a receive data signal. It is used when the RS-232-C controller sends serial data to the VR4102.

CTS# I This is the transmit enable (“clear-to-send”) signal. This signal is asserted when the RS-232-C controller

is ready to receive transmission of serial data.

DCD#/

GPIO[15]

I This is a carrier detection signal. This signal is asserted when valid serial data is being received. It is

also used when detecting a power-on factor for the VR4102.

When this pin is not used for DCD# signal, this pin can be used as an interrupt detection function for the

GIU unit.

DSR# I This is the data set ready signal. Assert this signal to set up transmission and reception of serial data

between the RS-232C controller and the VR4102.

TxD/

CLKSEL[2],

RTS#/

CLKSEL[1],

DTR#/

CLKSEL[0]

I/O This function differs depending on the operating status.

• In normal operation (output)

TxD signal (output):

This is a transmit data signal. It is used when the VR4102 sends serial data to the RS-232C controller.

RTS# signal (output):

This is a transmit request signal. This signal is asserted when the VR4102 is ready to receive serial

data from the RS-232C controller.

DTR# signal (output):

This is a terminal equipment ready signal. This signal is asserted when the VR4102 is ready to

transmit or receive serial data.

• After RTC reset (input)

These signals are used to set the CPU core operation and BUSCLK frequency (CLKSEL[2..0]: input).

Sampling occurs when the RTCRST signal changes from low to high.

CLKSEL[2..0] CPU Core frequency BUSCLK frequency

111 RFU RFU

110 RFU RFU

101 53.6 MHz 6.700 MHz

100 49.2 MHz 6.075 MHz

011 45.4 MHz 5.675 MHz

010 42.1 MHz 5.275 MHz

001 36.9 MHz 9.200 MHz

000 32.8 MHz 8.200 MHz

Caution Some of these settings of frequency may not be able to select in the future.

CHAPTER 2 PIN FUNCTIONS

68

2.2.6 IrDA Interface Signals

These signals are used to control data transmission and reception between the VR4102 and an IrDA controller.

Table 2-6 describes the functions of these signals.

Table 2-6. IrDA Interface Signals

Signal I/O Description of function

IRDIN I This is the IrDA serial data input signal. It is used when the VR4102 sends serial data to the IrDA

controller, for both FIR and SIR. If the IrDA controller used is an HP product, however, this signal should

be used for only SIR.

FIRDIN#/SEL I/O This function differs according to the IrDA controller used (for how to switch a controller, refer to 24.2.13).

x HP’s controller

FIRDIN#: It is a FIR receive data input signal.

x TEMIC’s controller

SEL: It is an output port for external FIR/SIR switching.

x SHARP’s controller

Use is prohibited.

IRDOUT# O This is the IrDA serial data output signal for both SIR and FIR. It is used when the IrDA controller sends

serial data to the VR4102.

2.2.7 Debug Serial Interface Signals

These signals are used to control data transmission and reception between the VR4102 and a external debug

serial controller. Table 2-7 describes the functions of these signals.

Table 2-7. Debug Serial Interface Signals

Signal I/O Description of function

DDOUT/

GPIO[44]

O This is the debug serial data output signal. It is used when an external debug serial data controller sends

serial data to the VR4102.

When this pin is not used for the DDOUT signal, it can be used as a general-purpose output port.

DDIN/

GPIO[45]

I/O This is the debug serial data input signal. It is used when the VR4102 sends serial data to an external

debug serial controller.

When this pin is not used for the DDIN signal, it can be used as a general-purpose output port.

DRTS#/

GPIO[46]

O This is a transmission request signal. The VR4102 asserts this signal before sending serial data.

When this pin is not used for the DRTS# signal, it can be used as a general-purpose output port.

DCTS#/

GPIO[47]

I/O This is a transmit acknowledge signal. The VR4102 asserts this signal when it is ready to receive

transmitted serial data.

When this pin is not used for the DCTS# signal, it can be used as a general-purpose output port.

CHAPTER 2 PIN FUNCTIONS

69

2.2.8 Keyboard Interface Signals

These signals are used to control a keyboard circuit to the VR4102. Table 2-8 describes the functions of these

signals.

Table 2-8. Keyboard Interface Signals

Signal I/O Description of function

KPORT[7..0] I This is a keyboard scan data input signal. It is used to scan for pressed keys on the keyboard.

KSCAN[11..0]/

GPIO[43..32]

O These signal are used as keyboard scan data output signals and a general-purpose output port. The scan

line is set as active when scanning for pressed keys on the keyboard.

Pins that are not used for the key scan operation can be used as a general-purpose output port.

2.2.9 Audio Interface Signals

This signal is used to input/output audio signals. Table 2-9 describes the functions of this signal.

Table 2-9. Audio Interface Signals

Signal I/O Description of function

AUDIOOUT O This is an audio output signal. Analog signals that have been converted via the on-chip 10-bit D/A

converter are output.

AUDIOIN I This pin is the audio input pin.

2.2.10 Touch Panel/General Purpose A/D Interface Signals

These are the signals to the on-chip A/D converter of the VR4102. Four of these signals are used for a touch

panel, one is used for audio input, and the remaining three are used as general-purpose pins. Table 2-10 describes

the functions of these signals.

Table 2-10. Touch Panel/General Purpose A/D Interface Signals

Signal I/O Description of function

TPX[1..0] I/O This is an I/O signal that is used for the touch panel. It uses the voltage applied to the X coordinate and

the voltage input to the Y coordinate to detect which coordinates on the touch panel are being pressed.

TPY[1..0] I/O This is an I/O signal that is used for the touch panel. It uses the voltage applied to the Y coordinate and

the voltage input to the X coordinate to detect which coordinates on the touch panel are being pressed.

ADIN[2..0] I This is a general-purpose A/D input signal.

CHAPTER 2 PIN FUNCTIONS

70

2.2.11 General-purpose I/O Signals

These are general-purpose I/O pins of the VR4102. Ordinary, 33 of the 49 GPIO pins are used as alternate-

function pins. Table 2-11 describes the functions of these signals.

Table 2-11. General-purpose I/O Signals

Signal I/O Description of function

GPIO[3..0] I/O These are maskable power-on factors. After start-up, they are used as ordinary GPIO pins.

GPIO[8..4] I/O These are ordinary GPIO pins.

GPIO[12..9] I/O These are maskable power-on factors. After start-up, they are used as ordinary GPIO pins.

GPIO[14..13] I/O These are ordinary GPIO pins.

DATA[31..16]/

GPIO[31..16]

I/O See 2.2.1 System Bus Interface Signals .

KSCAN[11..0]/

GPIO[43..32]

O See 2.2.8 Keyboard Interface Signals .

DDOUT/

GPIO[44]

O See 2.2.7 Debug Serial Interface Signals .

DDIN/GPIO[45] I/O See 2.2.7 Debug Serial Interface Signals .

DRTS#/

GPIO[46]

O See 2.2.7 Debug Serial Interface Signals .

DCTS#/

GPIO[47]

I/O See 2.2.7 Debug Serial Interface Signals .

DBUS32/

GPIO[48]

I/O See 2.2.1 System Bus Interface Signals .

GPIO[49] I/O This function differs depending on the operating status.

• In normal operation

It can be used as a general-purpose output port.

• After RTC reset

Input state. Input low level. Sampling occurs when the RTCRST signal changes from low to high.

CHAPTER 2 PIN FUNCTIONS

71

2.2.12 HSP MODEM Interface Signals

Table 2-12. HSP MODEM Interface Signals

Signal I/O Function

IRING I RING signal detect signal. This pin becomes active when the RING signal is detected.

ILCSENSE I Handset detect signal.

OFFHOOK O On-hook relay control signal.

MUTE O Modem speaker mute control signal.

AFERST# O CODEC reset signal.

SDI I Serial input signal from CODEC.

FS I Frame synchronization signal from CODEC.

SDO O Serial output signal to CODEC.

HSPSCLK I Operation clock input of modem interface block for CODEC.

TELCON O Handset relay control signal.

HC0 O CODEC control signal.

HSPMCLK O Clock output to CODEC.

OPD# O Use this pin for controlling power of CODEC and DAA. This signal is set as active when to set power

supply to them ON.

2.2.13 LED Interface Signal

Table 2-13. LED Interface Signal

Signal I/O Description of function

LEDOUT# O This is an output signal for lighting LEDs.

CHAPTER 2 PIN FUNCTIONS

72

2.2.14 Dedicated V DD and GND Signals

Table 2-14. Dedicated V DD and GND Signals

Signal Description of function

VDDP This is the dedicated VDD for the PLL.

GNDP This is the dedicated GND for the PLL.

CVDD This is the dedicated VDD for the internal oscillator.

CGND This is the dedicated GND for the internal oscillator.

DVDD This is the dedicated VDD for the D/A converter. The voltage applied to this pin becomes the maximum

value for AUDIOOUT’s analog output.

DGND This is the dedicated GND for the D/A converter. The voltage applied to this pin becomes the minimum

value for AUDIOOUT’s analog output.

AVDD This is the dedicated VDD for the A/D converter. The voltage applied to this pin becomes the maximum

voltage value for the A/D interface signals.

AGND This is the dedicated GND for the A/D converter. The voltage applied to this pin becomes the minimum

voltage value detectable by the A/D interface signals.

PIUVDD This is the dedicated VDD for the touch panel interface.

PIUGND This is the dedicated GND for the touch panel interface.

CHAPTER 2 PIN FUNCTIONS

73

2.3 PIN STATUS UPON SPECIFIC STATES

2.3.1 Pin Status upon Reset

Table 2-15. Status of Pins upon Reset (1/3)

Signal When

reset by

RTCRST

When reset by

Deadman’s

Switch or RSTSW

During

Suspend

mode

During Hibernate

mode or when shut

down by HAL timer

During

bus

hold

ADD[25..0] 0 0 Note 1 0 Hi-Z

DATA[15..0] 0 0 Note 1 0 Hi-Z

DATA[31..16]/

GPIO[31..16]

0/

Hi-Z

0/

Hi-Z

Note 1 0/

Hi-Z

Hi-Z/

Note 1

LCDCS# Hi-Z 1 1 Hi-Z 1

RD# Hi-Z 1 1 Hi-Z Hi-Z

WR# Hi-Z 1 1 Hi-Z Hi-Z

LCDRDY ð ð ð ð ð

ROMCS[3..0]# Hi-Z 1 1 Hi-Z 1

UUCAS#/MRAS[3]

#

1 Note 3 0 0 Hi-Z

ULCAS#/MRAS[2]# 1 Note 3 0 0 Hi-Z

MRAS[1..0]# 1 Note 3 0 0 Hi-Z

UCAS# 1 Note 3 0 0 Hi-Z

LCAS# 1 Note 3 0 0 Hi-Z

BUSCLK 0 0 0 0 Note 2

SHB# Hi-Z 1 1 Hi-Z Hi-Z

IOR# Hi-Z 1 1 Hi-Z Hi-Z

IOW# Hi-Z 1 1 Hi-Z Hi-Z

MEMR# Hi-Z 1 1 Hi-Z Hi-Z

MEMW# Hi-Z 1 1 Hi-Z Hi-Z

ZWS# ð ð ð ð ð

RSTOUT Hi-Z 1 0 Hi-Z Note 4

IOCS16# ð ð ð ð ð

MEMCS16# ð ð ð ð ð

IOCHRDY ð ð ð ð ð

Notes 1. The state at the previous Fullspeed mode is retained.

2. Bus hold from Suspend mode: Outputs the low-level signal

Bus hold from Fullspeed mode or standby mode: Outputs clocks.

3. Reset by RSTSW# signal: This pin outputs the low-level signal (self refresh)

Reset by Deadman’s Switch: This pin outputs the high-level signal

4. Normal operations are performed.

Remark 0: outputs low level, 1: outputs high level, Hi-Z: high-impedance

CHAPTER 2 PIN FUNCTIONS

74

Table 2-15. Status of Pins upon Reset (2/3)

Signal When

reset by

RTCRST

When reset by

Deadman’s

Switch or RSTSW

During

Suspend

mode

During Hibernate

mode or when shut

down by HAL timer

During

bus

hold

HLDRQ# ð ð ð ð ð
HLDACK# Hi-Z 1 Note 1 Hi-Z Note 1
RTCX1 ð ð ð ð ð
RTCX2 ð ð ð ð ð
CLKX1 ð ð ð ð ð
CLKX2 ð ð ð ð ð
FIRCLK ð ð ð ð ð
BATTINH/
BATTINT#

ð ð ð ð ð

MPOWER 0 1 1 0 1
POWERON 0 0 0 0 0
POWER ð ð ð ð ð
RSTSW# ð ð ð ð ð
RTCRST# ð ð ð ð ð
RxD ð ð ð ð ð
TxD/CLKSEL[2] Hi-Z 1 1 1 Note 1
RTS#/CLKSEL[1] Hi-Z 1 1 1 Note 1
CTS# ð ð ð ð ð
DCD#/GPIO[15] ð ð ð ð ð
DTR#/CLKSEL[0] Hi-Z 1 1 1 Note 1
DSR# ð ð ð ð ð
IRDIN ð ð ð ð ð
IRDOUT# 0 0 0 0 Note 1
FIRDIN#/SEL Hi-Z Hi-Z Note 2 Hi-Z Note 2

DDIN/

GPIO[45]Note3

 Hi-Z/
Hi-Z

 Hi-Z/
Hi-Z

Hi-Z/
Note 2

 Hi-Z/
Hi-Z

Hi-Z/
Note 2

DDOUT/

GPIO[44]Note3

1 1 1 1 1

DRTS#/

GPIO[46]Note3

1 1 1 1 1

DCTS#/

GPIO[47]Note3

 Hi-Z/

Hi-Z

 Hi-Z/

Hi-Z

Hi-Z/

Note 2
 Hi-Z/

Hi-Z

Hi-Z/

Note 2

Notes 1. Normal operations are performed.

2. The state at the previous Fullspeed mode is retained.

3. This pin can be switched by software between function-pin and output-port uses.

Remark 0: outputs low level, 1: outputs high level, Hi-Z: high-impedance

CHAPTER 2 PIN FUNCTIONS

75

Table 2-15. Status of Pins upon Reset (3/3)

Signal When

reset by

RTCRST

When reset by

Deadman’s

Switch or RSTSW

During

Suspend

mode

During Hibernate

mode or when shut

down by HAL timer

During

bus

hold

KPORT[7..0] ð ð ð ð ð
KSCAN[11..0]/

GPIO[43..32]
Note 1

Hi-Z Hi-Z Note 2 Hi-Z Note 3

AUDIOOUT 0 0 Note 2 0 Note 3
TPX[1..0] Hi-Z 1 Note 2 1 Note 3
TPY[1..0] Hi-Z Hi-Z Note 2 Hi-Z Note 3
ADIN[2..0] ð ð ð ð ð
AUDIOIN ð ð ð ð ð
GPIO[14..0] Hi-Z Hi-Z Note 2 Hi-Z Note 3
IRING ð ð ð ð ð
ILCSENSE ð ð ð ð ð
OFFHOOKNote 4 Hi-Z Hi-Z Note 2 Hi-Z Note 2
MUTENote 4 Hi-Z Hi-Z Note 2 Hi-Z Note 2
AFERST#Note 4 0 0 Note 2 0 Note 2
SDI ð ð ð ð ð
FS ð ð ð ð ð
SDO 0 0 Note 2 0 Note 2
HSPSCLK ð ð ð ð ð
TELCONNote 4 Hi-Z Hi-Z Note 2 Hi-Z Note 2
HC0Note 4 0 0 Note 2 0 Note 2
HSPMCLKNote 4 0 0 Note 2 0 Note 2
OPD# 0 0 Note 2 0 Note 2
LEDOUT# 1 Note 3 Note 3 Note 3 Note 3
DBUS32/

GPIO[48]
Note 5

Hi-Z Hi-Z Note 2 Hi-Z Note 2

GPIO[49]
Note 5 Hi-Z Hi-Z Note 2 Hi-Z Note 2

Notes 1. This pin can be switched by software between function-pin and output-port uses.

2. The state at the previous Fullspeed mode is retained.

3. Normal operations are performed.

4. Be sure to set the BSC bit (DI) of the HSPINT register (0x0C00 0020) to 1 during initialization.

5. After RTC reset is canceled, this signal functions as an output port.

Remark 0: outputs low level, 1: outputs high level, Hi-Z: high-impedance

CHAPTER 2 PIN FUNCTIONS

76

2.3.2 Connection of Unused Pins and Pin I/O Circuits

Table 2-16. Connection of Unused Pins and Pin I/O Circuit Type (1/3)

Signal Internal

processing

External

processing

Drive

capability

I/O circuit type

ADD[25..0] ð ð 120 pF A

DATA[15..0] ð ð 40 pF A

DATA[31..16]/

GPIO[31..16]

ð ð /

Pull up

Pull down

40 pF A

LCDCS# ð ð 40 pF A

RD# ð Note 1 120 pF A

WR# ð Note 1 120 pF A

LCDRDY ð Pull up ð A

ROMCS[3..0]# ð ð 40 pF A

UUCAS#/MRAS[3]# ð Note 1 40 pF A

ULCAS#/MRAS[2]# ð Note 1 40 pF A

MRAS[1..0]# ð Note 1 40 pF A

UCAS# ð Note 1 40 pF A

LCAS# ð Note 1 40 pF A

BUSCLK ð ð 40 pF A

SHB# ð Note 1 40 pF A

IOR# ð Note 1 40 pF A

IOW# ð Note 1 40 pF A

MEMR# ð Note 1 40 pF A

MEMW# ð Note 1 40 pF A

ZWS# Note 2 Pull up ð A

RSTOUT ð Pull up 40 pF A

IOCS16# Note 2 Pull up ð A

MEMCS16# Note 2 Pull up ð A

IOCHRDY Note 2 Pull up ð A

Notes 1. Pull up when the bus hold function is used.

2. Intermediate-level input is enabled when the MPOWER pin is set for low-level output.

CHAPTER 2 PIN FUNCTIONS

77

Table 2-16. Connection of Unused Pins and Pin I/O Circuit Type (2/3)

Signal Internal

processing

External

processing

Drive

capability

I/O circuit type

HLDRQ# Note 1 Note 2 ð A
HLDACK# ð ð 40 pF A
RTCX1 ð Resonator ð ð
RTCX2 ð Resonator ð ð
CLKX1 ð Resonator ð ð
CLKX2 ð Resonator ð ð
FIRCLK ð Note 3 ð A
BATTINH/
BATTINT#

Schmitt ð ð B

MPOWER ð ð 40 pF A
POWERON ð ð 40 pF A
POWER Schmitt ð ð B
RSTSW# Schmitt ð ð B
RTCRST# Schmitt ð ð B
RxD ð ð ð A
TxD/CLKSEL[2] ð Pull up

Pull down
40 pF A

RTS#/CLKSEL[1] ð Pull up
Pull down

40 pF A

CTS# ð ð ð A
DCD#/GPIO[15] ð Pull up ð A
DTR#/CLKSEL[0] ð Pull up

Pull down
40 pF A

DSR# ð ð ð A
IRDIN ð Pull up ð A
IRDOUT# ð ð 40 pF A
FIRDIN#/SEL ð Pull up

Pull down
40 pF A

DDIN/

GPIO[45]Note 4

ð ð 40 pF A

DDOUT/

GPIO[44]Note 4

ð ð 40 pF A

DRTS#/

GPIO[46]Note 4

ð ð 40 pF A

DCTS#/

GPIO[47]Note 4

ð ð 40 pF A

Notes 1. Intermediate-level input is enabled when the MPOWER pin is set for low-level output.

2. When the bus hold function is used : Pull up.

When the bus hold function is not used : Connect to VDD.

3. When FIR unit is used : Attach an oscillator.

When FIR unit is not used : Connect to VDD.

4. This pin can be switched by software between function-pin and output-port uses.

CHAPTER 2 PIN FUNCTIONS

78

Table 2-16. Connection of Unused Pins and Pin I/O Circuit Type (3/3)

Signal Internal

processing

External

processing

Drive

capability

I/O circuit type

KPORT[7..0] Schmitt, Pull down ð ð F
KSCAN[11..0]/

GPIO[43..32]
Note 1

ð ð 40 pF A

AUDIOOUT ð Note 2 ð G
TPX[1..0] ð ð 120 pF or more C

TPY[1] ð ð 120 pF or more D

TPY[0] ð ð 120 pF or more C

ADIN[2..0] ð ð ð E
AUDIOIN ð ð ð E
GPIO[14..13] ð Pull up

Pull down
40 pF A

GPIO[12..9] Schmitt Pull up
Pull down

40 pF B

GPIO[8..5] ð Pull up
Pull down

40 pF A

GPIO[4..0] Schmitt Pull up
Pull down

40 pF B

IRING Schmitt Pull down ð B
ILCSENSE ð Pull down ð A
OFFHOOKNote 3 ð ð 40 pF A
MUTENote 3 ð ð 40 pF A
AFERST#Note 3 ð ð 40 pF A
SDI ð Pull up

Pull down
ð A

FS ð Pull up
Pull down

ð A

SDO ð ð 40 pF A
HSPSCLK ð ð ð A
TELCONNote 3 ð ð 40 pF A
HC0Note 3 ð ð 40 pF A
HSPMCLKNote 3 ð ð 40 pF A
OPD# ð ð 40 pF A
LEDOUT# ð ð 40 pF A
DBUS32/

GPIO[48]
Note 4

ð Pull up
Pull down

40 pF A

GPIO[49]
Note 4 ð Pull down ð A

Notes 1. This pin can be switched by software between function-pin and output-port uses.

2. Connect an operation amplifier which has high-impedance input characteristics, since the output level

of AUDIOOUT pin varies according to the external impedance.

3. Be sure to set BSC bit (DI) of the HSPINT register (0x0C00 0020) to 1 during initialization.

4. After RTC reset is canceled, this signal functions as an output port.

CHAPTER 2 PIN FUNCTIONS

79

2.3.3 Pin I/O Circuits

VDD

input
enable

output
disable

N-ch

P-chdata

IN/OUT

Type A

output
disable

Vref

N-ch

N-ch

VDD

IN/OUT

P-ch

P-chdata

input
enable N-ch

Type D

P-ch

N-ch

Vref

IN

Type E
output

disable
N-ch

VDD

IN/OUT

P-chdata

input
enable

Type B

output
disable

Vref

N-ch

N-ch

VDD

IN/OUT

P-ch

P-chdata

Type C

open drain

pulldown
enable

output
disable

N-ch

P-chdata
VDD

IN/OUT

N-ch

input
enable

Type F

OUT
analog
output
voltage

Type G

80

[MEMO]

81

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

This chapter is an overview of the central processing unit (CPU) instruction set; refer to the Chapter 27 for

detailed descriptions of individual CPU instructions.

3.1 CPU INSTRUCTION FORMATS

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction

formats - immediate (I-type), jump (J-type), and register (R-type) - as shown in Figure 3-1. The use of a small

number of instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated

and less frequently used instruction and addressing modes from these three formats as needed.

Figure 3-1. CPU Instruction Formats

I-type (immediate) op

015162021252631

J-type (jump) op target

0252631

R-type (register)

immediate:

func:

sa:

rd:

target:

6-bit function field

5-bit shift amount

5-bit destination register specifier

26-bit unconditional branch target address

16-bit immediate value, branch displacement or
address displacement

5-bit target (source/destination) register or branch
condition

6-bit operation code

5-bit source register specifier

rt:

rs:

op:

op

015162021252631 561011

rs rt immediate

rs rt rd sa func

(1) Support of the MIPS ISA

The VR4102 does not support a multiprocessor operating environment. Thus the synchronization support

instructions defined in the MIPS II and MIPS III ISA - the load linked and store conditional instructions - cause

reserved instruction exception. The load/link (LL) bit is eliminated.

Note that the SYNC instruction is handled as a NOP instruction since all load/store instructions in this processor

are executed in program order.

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

82

3.2 INSTRUCTION CLASSES

3.2.1 Load and Store Instructions

Load and store are immediate (I-type) instructions that move data between memory and the general-purpose

registers. The only addressing mode that load and store instructions directly support is base register plus 16-bit

signed immediate offset.

(1) Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called a

delayed load instruction. The instruction slot immediately following this delayed load instruction is referred to as

the load delay slot.

In the VR4000 Series, a load instruction can be followed directly by an instruction that accesses a register that is

loaded by the load instruction. In this case, however, an interlock occurs for a necessary number of cycles. Any

instruction can follow a load instruction, but the load delay slot should be scheduled appropriately for both

performance and compatibility with the VR3000TM Series microprocessors. For detail, see CHAPTER 4 VR4102

PIPELINE.

(2) Store Delay Slot

When a store instruction is writing data to a cache, the data cache is kept busy at the DC and WB stages. If an

instruction (such as load) that follows directly the store instruction accesses the data cache in the DC stage, a

hardware-driven interlock occurs. To overcome this problem, the store delay slot should be scheduled.

Table 3-1. Number of Delay Slot Cycles Necessary for Load and Store Instructions

Instruction Necessary number of PCycles

Load 1

Store 1

(3) Defining Access Types

Access type indicates the size of a VR4102 processor data item to be loaded or stored, set by the load or store

instruction opcode. Access types and accessed byte are shown in Table 3-2.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the

addressed field. For a little-endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within the

addressed doubleword (shown in Table 3-2). Only the combinations shown in Table 3-2 are permissible; other

combinations cause address error exceptions.

Tables 3-3 and 3-4 list the ISA-defined load/store instructions and expand-ISA instructions, respectively.

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

83

Figure 3-2. Byte Specification Related to Load and Store Instructions

Accessed byteLow-order

address bit (Little endian)

Access type

(value)

2 1 0 63 0

Doubleword (7) 0 0 0 7 6 5 4 3 2 1 0

7-byte (6) 0 0 0 6 5 4 3 2 1 0

0 0 1 7 6 5 4 3 2 1

6-byte (5) 0 0 0 5 4 3 2 1 0

0 1 0 7 6 5 4 3 2

5-byte (4) 0 0 0 4 3 2 1 0

0 1 1 7 6 5 4 3

Word (3) 0 0 0 3 2 1 0

1 0 0 7 6 5 4

Triple byte (2) 0 0 0 2 1 0

0 0 1 3 2 1

1 0 0 6 5 4

1 0 1 7 6 5

Halfword (1) 0 0 0 1 0

0 1 0 3 2

1 0 0 5 4

1 1 0 7 6

Byte (0) 0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

84

Table 3-2. Load/store Instruction

Instruction Format and Description

Load Byte LB rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The bytes of the memory location specified by the address are sign extended and loaded into register rt.

Load Byte Unsigned LBU rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The bytes of the memory location specified by the address are zero extended and loaded into register rt.

Load Halfword LH rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The halfword of the memory location specified by the address is sign extended and loaded to register rt.

Load Halfword

Unsigned

LHU rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The halfword of the memory location specified by the address is zero extended and loaded to register rt.

Load Word LW rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The word of the memory location specified by the address is sign extended and loaded to register rt. In the

64-bit mode, it is further sign extended to 64 bits.

Load Word Left LWL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the left the word whose address is specified so that the address-specified byte is at the left-

most position of the word. The result of the shift operation is merged with the contents of register rt

and loaded to register rt. In the 64-bit mode, it is further sign extended to 64 bits.

Load Word Right LWR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the right the word whose address is specified so that the address-specified byte is at the right-

most position of the word. The result of the shift operation is merged with the contents of register rt and

loaded to register rt. In the 64-bit mode, it is further sign extended to 64 bits.

Store Byte SB rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The least significant byte of register rt is stored to the memory location specified by the address.

Store Halfword SH rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The least significant halfword of register rt is stored to the memory location specified by the address.

Store Word SW rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The lower word of register rt is stored to the memory location specified by the address.

Store Word Left SWL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the right the contents of register rt so that the left-most byte of the word is in the position of the

address-specified byte. The result is stored to the lower word in memory.

Store Word Right SWR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the left the contents of register rt so that the right-most byte of the word is in the position of the

address-specified byte. The result is stored to the upper word in memory.

op base rt offset

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

85

Table 3-3. Load/store Instruction (Extended ISA)

Instruction Format and Description

Load Doubleword LD rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The doubleword of the memory location specified by the address are loaded into register rt.

Load Doubleword Left LDL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the left the double word whose address is specified so that the address-specified byte is at the

left-most position of the double word. The result of the shift operation is merged with the contents of

register rt and loaded to register rt.

Load Doubleword

Right

LDR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the right the double word whose address is specified so that the address-specified byte is at

the right-most position of the double word. The result of the shift operation is merged with the contents

of register rt and loaded to register rt.

Load Word Unsigned LWU rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The word of the memory location specified by the address are zero extended and loaded into register rt

Store Doubleword SD rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The contents of register rt are stored to the memory location specified by the address.

Store Doubleword Left SDL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the right the contents of register rt so that the left-most byte of the double word is in the

position of the address-specified byte. The result is stored to the lower doubleword in memory.

Store Doubleword

Right

SDR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the left the contents of register rt so that the right-most byte of the double word is in the

position of the address-specified byte. The result is stored to the upper doubleword in memory.

op base rt offset

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

86

3.2.2 Computational Instructions

Computational instructions perform arithmetic, logical, and shift operations on values in registers. Computational

instructions can be either in register (R-type) format, in which both operands are registers, or in immediate (I-type)

format, in which one operand is a 16-bit immediate.

Computational instructions are classified as:

(1) ALU immediate instructions (Tables 3-4 and 3-5)

(2) Three-operand type instructions (Tables 3-6 and 3-7)

(3) Shift instructions (Tables 3-8 and 3-9)

(4) Multiply/divide instructions (Table 3-10 and 3-11)

To maintain data compatibility between the 64- and 32-bit modes, it is necessary to sign-extend 32-bit operands

correctly. If the sign extension is not correct, the 32-bit operation result is meaningless.

Table 3-4. ALU Immediate Instruction

Instruction Format and Description

Add Immediate ADDI rt, rs, immediate

The 16-bit immediate is sign extended and then added to the contents of register rs to form a 32-bit

result. The result is stored into register rt. In the 64-bit mode, the operand must be sign extended. An

exception occurs on the generation of 2’s complement overflow.

Add Immediate

Unsigned

ADDIU rt, rs, immediate

The 16-bit immediate is sign extended and then added to the contents of register rs to form a 32-bit

result. The result is stored into register rt. In the 64-bit mode, the operand must be sign extended. No

exception occurs on the generation of integer overflow.

Set On Less Than

Immediate

SLTI rt, rs, immediate

The 16-bit immediate is sign extended and then compared to the contents of register rt treating both

operands as signed integers. If rs is less than the immediate, the result is set to 1; otherwise, the result

is set to 0. The result is stored to register rt.

Set On Less Than

Immediate Unsigned

SLTIU rt, rs, immediate

The 16-bit immediate is sign extended and then compared to the contents of register rt treating both

operands as unsigned integers. If rs is less than the immediate, the result is set to 1; otherwise, the

result is set to 0. The result is stored to register rt.

And Immediate ANDI rt, rs, immediate

The 16-bit immediate is zero extended and then ANDed with the contents of the register. The result is

stored into register rt.

Or Immediate ORI rt, rs, immediate

The 16-bit immediate is zero extended and then ORed with the contents of the register. The result is

stored into register rt.

Exclusive Or

Immediate

XORI rt, rs, immediate

The 16-bit immediate is zero extended and then Ex-ORed with the contents of the register. The result

is stored into register rt.

Load Upper

Immediate

LUI rt, immediate

The 16-bit immediate is shifted left by 16 bits to set the lower 16 bits of word to 0. The result is stored

into register rt. In the 64-bit mode, the operand must be sign extended.

op rs rt immediate

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

87

Table 3-5. ALU Immediate Instruction (Extended ISA)

Instruction Format and Description

Doubleword Add
Immediate

DADDI rt, rs, immediate
The 16-bit immediate is sign extended to 64 bits and then added to the contents of register rs to form a
64-bit result. The result is stored into register rt.
An exception occurs on the generation of integer overflow.

Doubleword Add
Immediate Unsigned

DADDIU rt, rs, immediate
The 16-bit immediate is sign extended to 64 bits and then added to the contents of register rs to form a
64-bit result. The result is stored into register rt.
No exception occurs on the generation of overflow.

Table 3-6. Three Operand Type Instruction

Instruction Format and Description

Add ADD rd, rs, rt
The contents of registers rs and rt are added together to form a 32-bit result. The result is stored into
register rd. In the 64-bit mode, the operand must be sign extended. An exception occurs on the
generation of integer overflow.

Add Unsigned ADDU rd, rs, rt
The contents of registers rs and rt are added together to form a 32-bit result. The result is stored into
register rd. In the 64-bit mode, the operand must be sign extended. No exception occurs on the
generation of integer overflow.

Subtract SUB rd, rs, rt
The contents of register rt are subtracted from the contents of register rs. The 32-bit result is stored
into register rd. In the 64-bit mode, the operand must be sign extended. An exception occurs on the
generation of integer overflow.

Subtract Unsigned SUBU rd, rs, rt
The contents of register rt are subtracted from the contents of register rs. The 32-bit result is stored
into register rd. In the 64-bit mode, the operand must be sign extended. No exception occurs on the
generation of integer overflow.

Set On Less Than SLT rd, rs, rt
The contents of registers rs and rt are compared, treating both operands as signed integers. If the
contents of register rs is less than that of register rt, the result is set to 1; otherwise, the result is set to
0. The result is stored to register rd.

Set On Less Than
Unsigned

SLTU rd, rs, rt
The contents of registers rs and rt are compared treating both operands as unsigned integers. If the
contents of register rs is less than that of register rt, the result is set to 1; otherwise, the result is set to
0. The result is stored to register rd.

And AND rd, rt, rs
The contents of register rs are logical ANDed with that of general register rt bit-wise. The result is
stored to register rd.

Or OR rd, rt, rs
The contents of register rs are logical ORed with that of general register rt bit-wise. The result is stored
to register rd.

Exclusive Or XOR rd, rt, rs
The contents of register rs are logical Ex-ORed with that of general register rt bit-wise. The result is
stored to register rd.

Nor NOR rd, rt, rs
The contents of register rs are logical NORed with that of general register rt bit-wise. The result is
stored to register rd.

op rs rt immediate

op rs rt functrd sa

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

88

Table 3-7. Three Operand Type Instruction (Extended ISA)

Instruction Format and Description

Doubleword Add DADD rd, rt, rs

The contents of register rs are added to that of register rt. The 64-bit result is stored into register rd.

An exception occurs on the generation of integer overflow.

Doubleword Add

Unsigned

DADDU rd, rt, rs

The contents of register rs are added to that of register rt. The 64-bit result is stored into register rd. No

exception occurs on the generation of integer overflow.

Doubleword Subtract DSUB rd, rt, rs

The contents of register rt are subtracted from that of register rs. The 64-bit result is stored into register

rd. An exception occurs on the generation of integer overflow.

Doubleword Subtract

Unsigned

DSUBU rd, rt, rs

The contents of register rt are subtracted from that of register rs. The 64-bit result is stored into register

rd. No exception occurs on the generation of integer overflow.

Table 3-8. Shift Instruction

Instruction Format and Description

Shift Left Logical SLL rd, rs, sa

The contents of register rt are shifted left by sa bits and zeros are inserted into the emptied lower bits.

The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Right Logical SRL rd, rs, sa

The contents of register rt are shifted right by sa bits and zeros are inserted into the emptied higher

bits. The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Right Arithmetic SRA rd, rt, sa

The contents of register rt are shifted right by sa bits and the emptied higher bits are sign extended.

The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Left Logical

Variable

SLLV rd, rt, rs

The contents of register rt are shifted left and zeros are inserted into the emptied lower bits. The lower

five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-bit

mode, the operand must be sign extended.

Shift Right Logical

Variable

SRLV rd, rt, rs

The contents of register rt are shifted right and zeros are inserted into the emptied higher bits. The

lower five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-

bit mode, the operand must be sign extended.

Shift Right Arithmetic

Variable

SRAV rd, rt, rs

The contents of register rt are shifted right and the emptied higher bits are sign extended. The lower

five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-bit

mode, the operand must be sign extended.

op rs rt functrd sa

op rs rt functrd sa

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

89

Table 3-9. Shift Instruction (Extended ISA)

Instruction Format and Description

Doubleword Shift Left

Logical

DSLL rd, rs, sa

The contents of register rt are shifted left by sa bits and zeros are inserted into the emptied lower bits.

The 64-bit result is stored into register rd.

Doubleword Shift

Right Logical

DSRL rd, rs, sa

The contents of register rt are shifted right by sa bits and zeros are inserted into the emptied higher

bits. The 64-bit result is stored into register rd.

Doubleword Shift

Right Arithmetic

DSRA rd, rt, sa

The contents of register rt are shifted right by sa bits and the emptied higher bits are sign extended.

The 64-bit result is stored into register rd.

Doubleword Shift Left

Logical Variable

DSLLV rd, rt, rs

The contents of register rt are shifted left and zeros are inserted into the emptied lower bits. The lower

six bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift

Right Logical Variable

DSRLV rd, rt, rs

The contents of register rt are shifted right and zeros are inserted into the emptied higher bits. The

lower six bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift

Right Arithmetic

Variable

DSRAV rd, rt, rs

The contents of register rt are shifted right and the emptied higher bits are sign extended. The lower six

bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift Left

Logical + 32

DSLL32 rd, rt, sa

The contents of register rt are shifted left by 32 + sa bits and zeros are inserted into the emptied lower

bits. The 64-bit result is stored into register rd.

Doubleword Shift

Right Logical + 32

DSRL32 rd, rt, sa

The contents of register rt are shifted right by 32 + sa bits and zeros are inserted into the emptied

higher bits. The 64-bit result is stored into register rd.

Doubleword Shift

Right Arithmetic + 32

DSRA32 rd, rt, sa

The contents of register rt are shifted right by 32 + sa bits and the emptied higher bits are sign

extended. The 64-bit result is stored into register rd.

op rs rt functrd sa

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

90

Table 3-10. Multiply/Divide Instructions

Instruction Format and Description

Multiply MULT rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 32-bit signed integers. The

64-bit result is stored into special registers HI and LO. In the 64-bit mode, the operand must be sign

extended.

Multiply Unsigned MULTU rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 32-bit unsigned integers.

The 64-bit result is stored into special registers HI and LO. In the 64-bit mode, the operand must be

sign extended.

Divide DIV rs, rt

The contents of register rs are divided by that of register rt, treating both operands as 32-bit signed

integers. The 32-bit quotient is stored into special register LO, and the 32-bit remainder is stored into

special register HI. In the 64-bit mode, the operand must be sign extended.

Divide Unsigned DIVU rs, rt

The contents of register rs are divided by that of register rt, treating both operands as 32-bit unsigned

integers. The 32-bit quotient is stored into special register LO, and the 32-bit remainder is stored into

special register HI. In the 64-bit mode, the operand must be sign extended.

Move From HI MFHI rd

The contents of special register HI are loaded into register rd.

Move From LO MFLO rd

The contents of special register LO are loaded into register rd.

Move To HI MTHI rs

The contents of register rs are loaded into special register HI.

Move To LO MTLO rs

The contents of register rs are loaded into special register LO.

Table 3-11. Multiply/Divide Instructions (Extended ISA) (1/2)

Instruction Format and Description

Doubleword Multiply DMULT rs, rt

The contents of registers rt and rs are multiplied, treating both operands as signed integers. The 128-

bit result is stored into special registers HI and LO.

Doubleword Multiply

Unsigned

DMULTU rs, rt

The contents of registers rt and rs are multiplied, treating both operands as unsigned integers. The

128-bit result is stored into special registers HI and LO.

Doubleword Divide DDIV rs, rt

The contents of register rs are divided by that of register rt, treating both operands as signed integers.

The 64-bit quotient is stored into special register LO, and the 64-bit remainder is stored into special

register HI.

Doubleword Divide

Unsigned

DDIVU rs, rt

The contents of register rs are divided by that of register rt, treating both operands as unsigned

integers. The 64-bit quotient is stored into special register LO, and the 64-bit remainder is stored into

special register HI.

op rs rt functrd sa

op rs rt functrd sa

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

91

Table 3-11. Multiply/Divide Instructions (Extended ISA) (2/2)

Instruction Format and Description

Multiply and Add 16-

bit Integer

MADD16 rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 16-bit signed integers (by

sign extending to 64 bits). The result is added to the combined value of special registers HI and LO.

The 64-bit result is stored into special registers HI and LO.

Doubleword Multiply

and Add 16-bit Integer

DMADD16 rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 16-bit signed integers (by

sign extending to 64 bits). The result is added to value of special register LO. The 64-bit result is stored

into special register LO.

MFHI and MFLO instructions after a multiply or divide instruction generate interlocks to delay execution of the

next instruction, inhibiting the result from being read until the multiply or divide instruction completes.

Table 3-12 gives the number of processor cycles (PCycles) required to resolve interlock or stall between various

multiply or divide instructions and a subsequent MFHI or MFLO instruction.

Table 3-12. Number of Stall Cycles in Multiply and Divide Instructions

Instruction Number of instruction cycles

MULT 1

MULTU 1

DIV 35

DIVU 35

DMULT 4

DMULTU 4

DDIV 67

DDIVU 67

MADD16 1

DMADD16 1

op rs rt functrd sa

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

92

3.2.3 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a

delay of one instruction: that is, the instruction immediately following the jump or branch instruction (this is known as

the instruction in the delay slot) always executes while the target instruction is being fetched from memory.

For instructions involving a link (such as JAL and BLTZAL), the return address is saved in register r31.

Table 3-13. Number of Delay Slot Cycles in Jump and Branch Instructions

Instruction Necessary number of cycles

Branch instruction 1

Jump instruction 1

(1) Overview of jump instructions

Subroutine calls in high-level languages are usually implemented with J or JAL instructions, both of which are J-

type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the high-order 4

bits of the current program counter to form a 32-bit or 64-bit absolute address.

Returns, dispatches, and cross-page jumps are usually implemented with the JR or JALR instructions. Both are

R-type instructions that take the 32-bit or 64-bit byte address contained in one of the general-purpose registers.

For more information, refer to Chapter 27.

(2) Overview of branch instructions

A branch instruction has a PC-related signed 16-bit offset.

Tables 3-14 through 3-16 show the lists of Jump, Branch, and Extended ISA instructions, respectively.

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

93

Table 3-14. Jump Instruction

Instruction Format and Description

Jump J target

The contents of 26-bit target address is shifted left by two bits and combined with the high-order four

bits of the PC. The program jumps to this calculated address with a delay of one instruction.

Jump And Link JAL target

The contents of 26-bit target address is shifted left by two bits and combined with the high-order four

bits of the PC. The program jumps to this calculated address with a delay of one instruction. The

address of the instruction following the delay slot is stored into r31 (link register).

Instruction Format and Description

Jump Register JR rs

The program jumps to the address specified in register rs with a delay of one instruction.

Jump And Link

Register

JALR rs, rd

The program jumps to the address specified in register rs with a delay of one instruction.

The address of the instruction following the delay slot is stored into rd.

There are the following common restrictions for Tables 3-15 and 3-16.

(1) Branch address

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to

the 16-bit offset (shifted left by 2 bits and sign-extended to 64 bits). All branches occur with a delay of one

instruction.

(2) Operation when unbranched

If the branch condition does not meet in executing a Likely instruction, the instruction in its delay slot is nullified.

For all other branch instructions, the instruction in its delay slot is unconditionally executed.

Remark The target instruction of the branch is fetched at the EX stage of the branch instruction. Comparison

of the operands of the branch instruction and calculation of the target address is performed at phase 2

of the RF stage and phase 1 of the EX stage of the instruction. Branch instructions require one cycle

of the branch delay slot defined by the architecture. Jump instructions also require one cycle of delay

slot. If the branch condition is not satisfied in a branch likely instruction, the instruction in its delay slot

is nullified.

op rs rt functrd sa

op target

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

94

There are special symbols used in the instruction formats of Tables 3-15 through 3-19.

REGIMM : Opcode

Sub : Sub-operation code

CO : Sub-operation identifier

BC : BC sub-operation code

br : Branch condition identifier

op : Operation code

Table 3-15. Branch Instructions

Instruction Format and Description

Branch On Equal BEQ rs, rt, offset

If the contents of register rs are equal to that of register rt, the program branches to the target address.

Branch On Not Equal BNE rs, rt, offset

If the contents of register rs are not equal to that of register rt, the program branches to the target

address.

Branch On Less Than

Or Equal To Zero

BLEZ rs, offset

If the contents of register rs are less than or equal to zero, the program branches to the target address.

Branch On Greater

Than Zero

BGTZ rs, offset

If the contents of register rs are greater than zero, the program branches to the target address.

Instruction Format and Description

Branch On Less Than

Zero

BLTZ rs, offset

If the contents of register rs are less than zero, the program branches to the target address.

Branch On Greater

Than Or Equal To

Zero

BGEZ rs, offset

If the contents of register rs are greater than or equal to zero, the program branches to the target

address.

Branch On Less Than

Zero And Link

BLTZAL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the

contents of register rs are less than zero, the program branches to the target address.

Branch On Greater

Than Or Equal To

Zero And Link

BGEZAL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the

contents of register rs are greater than or equal to zero, the program branches to the target address.

Instruction Format and Description

Branch On

Coprocessor 0 True

BC0T offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the

instruction in the delay slot to calculate out the branch target address. If the conditional signal of the

coprocessor 0 is true, the program branches to the target address with one-instruction delay.

Branch On

Coprocessor 0 False

BC0F offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the

instruction in the delay slot to calculate out the branch target address. If the conditional signal of the

coprocessor 0 is false, the program branches to the target address with one-instruction delay.

op rs rt offset

REGIMM offsetrs sub

COP0 offsetBC br

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

95

Table 3-16. Branch Instructions (Extended ISA)

Instruction Format and Description

Branch On Equal

Likely

BEQL rs, rt, offset

If the contents of register rs are equal to that of register rt, the program branches to the target address.

If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Not Equal

Likely

BNEL rs, rt, offset

If the contents of register rs are not equal to that of register rt, the program branches to the target

address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Less Than

Or Equal To Zero

Likely

BLEZL rs, offset

If the contents of register rs are less than or equal to zero, the program branches to the target address.

If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Greater

Than Zero

BGTZ rs, offset

If the contents of register rs are greater than zero, the program branches to the target address. If the

branch condition is not met, the instruction in the delay slot is discarded.

Instruction Format and Description

Branch On Less Than

Zero Likely

BLTZL rs, offset

If the contents of register rs are less than zero, the program branches to the target address. If the

branch condition is not met, the instruction in the delay slot is discarded.

Branch On Greater

Than Or Equal To

Zero Likely

BGEZL rs, offset

If the contents of register rs are greater than or equal to zero, the program branches to the target

address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Less Than

Zero And Link Likely

BLTZALL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the

contents of register rs are less than zero, the program branches to the target address. If the branch

condition is not met, the instruction in the delay slot is discarded.

Branch On Greater

Than Or Equal To

Zero And Link Likely

BGEZALL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the

contents of register rs are greater than or equal to zero, the program branches to the target address. If

the branch condition is not met, the instruction in the delay slot is discarded.

Instruction Format and Description

Branch On

Coprocessor 0 True

Likely

BC0TL offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the

instruction in the delay slot to calculate out the branch target address. If the conditional signal of the

coprocessor 0 is true, the program branches to the target address with one-instruction delay. If the

branch condition is not met, the instruction in the delay slot is discarded.

Branch On

Coprocessor 0 False

Likely

BC0FL offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the

instruction in the delay slot to calculate out the branch target address. If the conditional signal of the

coprocessor 0 is false, the program branches to the target address with one-instruction delay. If the

branch condition is not met, the instruction in the delay slot is discarded.

op rs rt offset

REGIMM offsetrs sub

COP0 offsetBC br

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

96

3.2.4 Special Instructions

Special instructions generate software exceptions. Their formats are R-type (Syscall, Break). The Trap

instruction is available only for the VR4000 Series. All the other instructions are available for all VR Series.

Table 3-17. Special Instructions

Instruction Format and Description

Synchronize SYNC

Completes the load/store instruction executing in the current pipeline before the next load/store

instruction starts execution.

System Call SYSCALL

Generates a system call exception, and then transits control to the exception handling program.

Breakpoint BREAK

Generates a break point exception, and then transits control to the exception handling program.

Table 3-18. Special Instructions (Extended ISA) (1/2)

Instruction Format and Description

Trap If Greater Than

Or Equal

TGE rs, rt

The contents of register rs are compared with that of register rt, treating both operands as signed

integers. If the contents of register rs are greater than or equal to that of register rt, an exception

occurs.

Trap If Greater Than

Or Equal Unsigned

TGEU rs, rt

The contents of register rs are compared with that of register rt, treating both operands as unsigned

integers. If the contents of register rs are greater than or equal to that of register rt, an exception

occurs.

Trap If Less Than TLT rs, rt

The contents of register rs are compared with that of register rt, treating both operands as signed

integers. If the contents of register rs are less than that of register rt, an exception occurs.

Trap If Less Than

Unsigned

TLTU rs, rt

The contents of register rs are compared with that of register rt, treating both operands as unsigned

integers. If the contents of register rs are less than that of register rt, an exception occurs.

Trap If Equal TEQ rs, rt

If the contents of registers rs and rt are equal, an exception occurs.

Trap If Not Equal TNE rs, rt

If the contents of registers rs and rt are not equal, an exception occurs.

SPECIAL rs rt functrd sa

SPECIAL rs rt functrd sa

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

97

Table 3-18. Special Instruction (Extended ISA) (2/2)

Instruction Format and Description

Trap If Greater Than

Or Equal Immediate

TGEI rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both

operands as signed integers. If the contents of register rs are greater than or equal to 16-bit sign-

extended immediate data, an exception occurs.

Trap If Greater Than

Or Equal Immediate

Unsigned

TGEIU rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both

operands as unsigned integers. If the contents of register rs are greater than or equal to 16-bit sign-

extended immediate data, an exception occurs.

Trap If Less Than

Immediate

TLTI rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both

operands as signed integers. If the contents of register rs are less than 16-bit sign-extended immediate

data, an exception occurs.

Trap If Less Than

Immediate Unsigned

TLTIU rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both

operands as unsigned integers. If the contents of register rs are less than 16-bit sign-extended

immediate data, an exception occurs.

Trap If Equal

Immediate

TEQI rs, immediate

If the contents of register rs and immediate data are equal, an exception occurs.

Trap If Not Equal

Immediate

TNEI rs, immediate

If the contents of register rs and immediate data are not equal, an exception occurs.

3.2.5 System Control Coprocessor (CP0) Instructions

System control coprocessor (CP0) instructions perform operations specifically on the CP0 registers to manipulate

the memory management and exception handling facilities of the processor.

Table 3-19. System Control Coprocessor (CP0) Instructions (1/2)

Instruction Format and Description

Move To System

Control Coprocessor

MTC0 rt, rd

The word data of general-purpose register rt in the CPU are loaded into general-purpose register rd in

the CP0.

Move From System

Control Coprocessor

MFC0 rt, rd

The word data of general-purpose register rd in the CP0 are loaded into general-purpose register rt in

the CPU.

Doubleword Move To

System Control

Coprocessor 0

DMTC0 rt, rd

The doubleword data of general-purpose register rt in the CPU are loaded into general-purpose register

rd in the CP0.

Doubleword Move

From System Control

Coprocessor 0

DMFC0 rt, rd

The doubleword data of general-purpose register rd in the CP0 are loaded into general-purpose

register rt in the CPU.

REGIMM immediaters sub

COP0 sub rt 0rd

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

98

Table 3-19. System Control Coprocessor (CP0) Instructions (2/2)

Instruction Format and Description

Read Indexed TLB

Entry

TLBR

The TLB entry indexed by the index register is loaded into the entryHi, entryLo0, entryLo1, or page

mask register.

Write Indexed TLB

Entry

TLBWI

The contents of the entryHi, entryLo0, entryLo1, or page mask register are loaded into the TLB entry

indexed by the index register.

Write Random TLB

Entry

TLBWR

The contents of the entryHi, entryLo0, entryLo1, or page mask register are loaded into the TLB entry

indexed by the random register.

Probe TLB For

Matching Entry

TLBP

The address of the TLB entry that matches with the contents of entryHi register is loaded into the index

register.

Return From

Exception

ERET

The program returns from exception, interrupt, or error trap.

Instruction Format and Description

STANDBY STANDBY

The processor’s operating mode is transited from fullspeed mode to standby mode.

SUSPEND SUSPEND

The processor’s operating mode is transited from fullspeed mode to suspend mode.

HIBERNATE HIBERNATE

The processor’s operating mode is transited from fullspeed mode to hibernate mode.

Instruction Format and Description

Cache Operation Cache op, offset (base)

The 16-bit offset is sign extended to 32 bits and added to the contents of the register case, to form

virtual address. This virtual address is translated to physical address with TLB. For this physical

address, cache operation that is indicated by 5-bit sub-opcode is performed.

COP0 functCO

CACHE offsetbase op

COP0 functCO

99

CHAPTER 4 VR4102 PIPELINE

This chapter describes the basic operation of the VR4102 processor pipeline, which includes descriptions of the

delay slots (instructions that follow a branch or load instruction in the pipeline), interrupts to the pipeline flow caused

by interlocks and exceptions, and CP0 hazards.

4.1 PIPELINE STAGES

The VR4102 has a five-stage instruction pipeline; each stage takes one PCycle (one cycle of Pclock), and each

PCycle has two phases:)1 and)2, as shown in Figure 4-1. Thus, the execution of each instruction takes at least

5 PCycles. An instruction can take longer - for example, if the required data is not in the cache, the data must be

retrieved from main memory. Once the pipeline has been filled, five instructions are executed simultaneously.

Figure 4-1. Pipeline Stages

Cycle

Phase

PCycle

PClock

IF

)2)1)2)1)2)1)2)1)2)1

RF EX DC WB

The five pipeline stages are:

� IF - Instruction cache fetch

� RF - Register fetch

� EX - Execution

� DC - Data cache fetch

� WB - Write back

Figure 4-2 shows the five stages of the instruction pipeline. In this figure, a row indicates the execution process

of each instruction, and a column indicates the processes executed simultaneously.

CHAPTER 4 VR4102 PIPELINE

100

Figure 4-2. Instruction Execution in the Pipeline

(Five stages)

Current CPU cycle

PCycle

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

4.1.1 Pipeline Activities

Figure 4-3 shows the activities that can occur during each pipeline stage; Table 4-1 describes these pipeline

activities.

Figure 4-3. Pipeline Activities

IF1

I Fetch
and

Decode

Branch

Load/Store

ALU

Cycle

Phase

PCycle

PClock

IF2

)2)1)2)1)2)1)2)1)2)1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

IDC

ITC

ICA

IDEC

WB

WB

DCWDTDSA

DVA

EX

BAC

RF

DCA DLA

DTLB DTC

CHAPTER 4 VR4102 PIPELINE

101

Table 4-1. Description of Pipeline Activities during Each Stage

Cycle Phase Mnemonic Description

IDC Instruction cache address decode)1

ITLB Instruction address translation

ICA Instruction cache array access
IF

)2

ITC Instruction tag check

)1 IDEC Instruction decode

RF Register operand fetchRF)2

BAC Branch address calculation

EX Execution stage

DVA Data virtual address calculation

)1

SA Store align

DCA Data cache address decode/array access

EX

)2

DTLB Data address translation

DLA Data cache load align

DTC Data tag checkDC

)1

DTD Data transfer to data cache

DCW Data cache write
WB

)1

WB Write back to register file

CHAPTER 4 VR4102 PIPELINE

102

4.2 BRANCH DELAY

During a VR4102’s pipeline operation, a one-cycle branch delay occurs when:

x Target address is calculated by a Jump instruction

x Branch condition of branch instruction is met and then logical operation starts for branch-destination

comparison

The instruction address generated at the EX stage in the Jump/Branch instruction are available in the IF stage,

two instructions later.

Figure 4-4 illustrates the branch delay and the location of the branch delay slot.

Figure 4-4. Branch Delay

Branch delay

(Branch delay slot)

Target

Branch

PCycle

IF RF EX DC WB

IF RF EX DC WB

IF RF EX DC WB

4.3 LOAD DELAY

A load instruction that does not allow its result to be used by the instruction immediately following is called a

delayed load instruction. The instruction immediately following this delayed load instruction is referred to as the load

delay slot.

In the VR4102, the instruction immediately following a load instruction can use the contents of the loaded register,

however in such cases hardware interlocks insert additional delay cycles. Consequently, scheduling load delay slots

can be desirable, both for performance and VR-Series processor compatibility.

4.4 PIPELINE OPERATION

The operation of the pipeline is illustrated by the following examples that describe how typical instructions are

executed. The instructions described are: ADD, JALR, BEQ, TLT, LW, and SW. Each instruction is taken through

the pipeline and the operations that occur in each relevant stage are described.

CHAPTER 4 VR4102 PIPELINE

103

(1) Add instruction (Add rd, rs, rt)

IF stage In)1 of the IF stage, the eleven least-significant bits of the virtual address are used to access the
instruction cache. In)2 of the IF stage, the cache index is compared with the page frame number
and the cache data is read out. The virtual PC is incremented by 4 so that the next instruction can
be fetched.

RF stage During)2, the 2-port register file is addressed with the rs and rt fields and the register data is valid
at the register file output. At the same time, bypass multiplexers select inputs from either the EX-
or DC-stage output in addition to the register file output, depending on the need for an operand
bypass.

EX stage The ALU controls are set to do an A + B operation. The operands flow into the ALU inputs, and the
ALU operation is started. The result of the ALU operation is latched into the ALU output latch
during)1.

DC stage This stage is a NOP for this instruction. The data from the output of the EX stage (the ALU) is
moved into the output latch of the DC.

WB stage During)1, the WB latch feeds the data to the inputs of the register file, which is accessed by the
rd field. The file write strobe is enabled. By the end of)1, the data is written into the file.

Figure 4-5. Add Instruction Pipeline Activities

IF1Cycle

Phase

PCycle

PClock

IF2

)2)1)2)1)2)1)2)1)2)1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

IDC

ITC

ICA

IDEC WBEXRF

CHAPTER 4 VR4102 PIPELINE

104

(2) Jump and Link Register instruction (JALR rd, rs)

IF stage Same as the IF stage for the ADD instruction.

RF stage A register specified in the rs field is read from the file during)2 at the RF stage, and the value
read from the rs register is input to the virtual PC latch synchronously. This value is used to fetch
an instruction at the jump destination. The value of the virtual PC incremented during the IF stage
is incremented again to produce the link address PC + 8 where PC is the address of the JALR
instruction. The resulting value is the PC to which the program will eventually return. This value is
placed in the Link output latch of the Instruction Address unit.

EX stage The PC + 8 value is moved from the Link output latch to the output latch of the EX stage.

DC stage The PC + 8 value is moved from the output latch of the EX stage to the output latch of the DC
stage.

WB stage Refer to the ADD instruction. Note that if no value is explicitly provided for rd then register 31 is
used as the default. If rd is explicitly specified, it cannot be the same register addressed by rs; if it
is, the result of executing such an instruction is undefined.

Figure 4-6. JALR Instruction Pipeline Activities

IF1Cycle

Phase

PCycle

PClock

IF2

)2)1)2)1)2)1)2)1)2)1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

IDC

ITC

ICA

IDEC WBEX

BAC

RF

CHAPTER 4 VR4102 PIPELINE

105

(3) Branch on Equal instruction (BEQ rs, rt, offset)

IF stage Same as the IF stage for the ADD instruction.

RF stage During)2, the register file is addressed with the rs and rt fields. A check is performed to
determine if each corresponding bit position of these two operands has equal values. If they are
equal, the PC is set to PC + target, where target is the sign-extended offset field. If they are not
equal, the PC is set to PC + 4.

EX stage The next PC resulting from the branch comparison is valid at the beginning of)2 for instruction
fetch.

DC stage This stage is a NOP for this instruction.

WB stage This stage is a NOP for this instruction.

Figure 4-7. BEQ Instruction Pipeline Activities

IF1Cycle

Phase

PCycle

PClock

IF2

)2)1)2)1)2)1)2)1)2)1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

IDC

ITC

ICA

IDEC EX

BAC

RF

CHAPTER 4 VR4102 PIPELINE

106

(4) Trap if Less Than instruction (TLT rs, rt)

IF stage Same as the IF stage for the ADD instruction.

RF stage Same as the RF stage for the ADD instruction.

EX stage ALU controls are set to do an A – B operation. The operands flow into the ALU inputs, and the
ALU operation is started. The result of the ALU operation is latched into the ALU output latch
during)1. The sign bits of operands and of the ALU output latch are checked to determine if a
less than condition is true. If this condition is true, a Trap exception occurs. The value in the PC
register is used as an exception vector value, and from now on any instruction will be invalid.

DC stage No operation

WB stage The EPC register is loaded with the value of the PC if the less than condition was met in the EX
stage. The Cause register ExCode field and BD bit are updated appropriately, as is the EXL bit
of the Status register. If the less than condition was not met in the EX stage, no activity occurs in
the WB stage.

Figure 4-8. TLT Instruction Pipeline Activities

IF1Cycle

Phase

PCycle

PClock

IF2

)2)1)2)1)2)1)2)1)2)1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

IDC

ITC

ICA

IDEC EXRF

CHAPTER 4 VR4102 PIPELINE

107

(5) Load Word instruction (LW rt, offset (base))

IF stage Same as the IF stage for the ADD instruction.

RF stage Same as the RF stage for the ADD instruction. Note that the base field is in the same position as
the rs field.

EX stage Refer to the EX stage for the ADD instruction. For LW, the inputs to the ALU come from
GPR[base] through the bypass multiplexer and from the sign-extended offset field. The result of
the ALU operation that is latched into the ALU output latch in)1 represents the effective virtual
address of the operand (DVA).

DC stage The cache tag field is compared with the Page Frame Number (PFN) field of the TLB entry. After
passing through the load aligner, aligned data is placed in the DC output latch during)2.

WB stage During)1, the cache read data is written into the register file addressed by the rt field.

Figure 4-9. LW Instruction Pipeline Activities

IF1Cycle

Phase

PCycle

PClock

IF2

)2)1)2)1)2)1)2)1)2)1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

IDC

ITC

ICA

IDEC

WBDVA

EXRF DCA DLA

DTLB DTC

CHAPTER 4 VR4102 PIPELINE

108

(6) Store Word instruction (SW rt, offset (base))

IF stage Same as the IF stage for the ADD instruction.

RF stage Same as the RF stage for the LW instruction.

EX stage Refer to the LW instruction for a calculation of the effective address. From the RF output latch,
the GPR[rt] is sent through the bypass multiplexer and into the main shifter, where the shifter
performs the byte-alignment operation for the operand. The results of the ALU are latched in the
output latches during)1. The shift operations are latched in the output latches during)2.

DC stage Refer to the LW instruction for a description of the cache access.

WB stage If there was a cache hit, the content of the store data output latch is written into the data cache at
the appropriate word location.

Note that all store instructions use the data cache for two consecutive PCycles. If the following
instruction requires use of the data cache, the pipeline is slipped for one PCycle to complete the
writing of an aligned store data.

Figure 4-10. SW Instruction Pipeline Activities

IF1Cycle

Phase

PCycle

PClock

IF2

)2)1)2)1)2)1)2)1)2)1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

IDC

ITC

ICA

IDEC

DCWDTDSA

DVA

EXRF

DTLB DTC

CHAPTER 4 VR4102 PIPELINE

109

4.5 INTERLOCK AND EXCEPTION HANDLING

Smooth pipeline flow is interrupted when cache misses or exceptions occur, or when data dependencies are

detected. Interruptions handled using hardware, such as cache misses, are referred to as interlocks, while those

that are handled using software are called exceptions. As shown in Figure 4-11, all interlock and exception

conditions are collectively referred to as faults.

Figure 4-11. Interlocks, Exceptions, and Faults

SlipStallAbort

Exceptions Interlocks

Software Hardware

Faults

At each cycle, exception and interlock conditions are checked for all active instructions.

Because each exception or interlock condition corresponds to a particular pipeline stage, a condition can be

traced back to the particular instruction in the exception/interlock stage, as shown in Table 4-2. For instance, an LDI

Interlock is raised in the Register Fetch (RF) stage.

Tables 4-2 to 4-4 describe the pipeline interlocks and exceptions listed in Table 4-2.

CHAPTER 4 VR4102 PIPELINE

110

Table 4-2. Correspondence of Pipeline Stage to Interlock and Exception Condition

Stage IF RF EX DC WB

Status

Interlock Stall ð ITM

ICM

ð DTM

DCM

DCB

ð

Slip ð LDI

MDI

SLI

CP0

ð ð ð

Exception IAErr NMI

ITLB

IPErr

INTr

IBE

SYSC

BP

Cun

RSVD

Trap

OVF

DAErr

Reset

DTLB

TMod

DPErr

WAT

DBE

ð

Remark In the above table, exception conditions are listed up in higher priority order.

CHAPTER 4 VR4102 PIPELINE

111

Table 4-3. Description of Pipeline Exception

Exception Description

IAErr Instruction Address Error exception

NMI Non-maskable Interrupt exception

ITLB ITLB exception

IPErr Instruction Parity Error exception

INTr Interrupt exception

IBE Instruction Bus Error exception

SYSC System Call exception

BP Breakpoint exception

CUn Coprocessor Unusable exception

RSVD Reserved Instruction exception

Trap Trap exception

OVF Overflow exception

DAErr Data Address Error exception

Reset Reset exception

DTLB DTLB exception

DTMod DTLB Modified exception

DPErr Data Parity Error exception

WAT Watch exception

DBE Data Bus Error exception

Table 4-4. Pipeline Interlock

Interlock Description

ITM Interrupt TLB Miss

ICM Interrupt Cache Miss

LDI Load Data Interlock

MDI MD Busy Interlock

SLI Store-Load Interlock

CP0 Coprocessor 0 Interlock

DTM Data TLB Miss

DCM Data Cache Miss

DCB Data Cache Busy

CHAPTER 4 VR4102 PIPELINE

112

4.5.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are

cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced this

instruction are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exceptional conditions is detected for an instruction, the VR4102 will kill it and all following instructions.

When this instruction reaches the WB stage, the exception flag and various information items are written to CP0

registers. The current PC is changed to the appropriate exception vector address and the exception bits of earlier

pipeline stages are cleared.

This implementation allows all preceding instructions to complete execution and prevents all subsequent

instructions from completing. Thus the value in the EPC is sufficient to restart execution. It also ensures that

exceptions are taken in the order of execution; an instruction taking an exception may itself be killed by an

instruction further down the pipeline that takes an exception in a later cycle.

Figure 4-12. Exception Detection

DC1 DC2 WB1

RF1 RF2 EX1 EX2 DC1 DC2 WB1

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1

EX1 EX2

Exception vector

2

Ecxeption

1

1I 2I 1R 2R 1E 2E 1D 2D 1W 2W

1I 2I 1R 2R 1E 2E 1D 2D 1W 2W

1I 2I 1R 2R 1E 2E 1D 2D 1W 2W

1F 2F 1R 2R 1E 2E 1D 2D 1W 2W

: Killed stage

: Interpret

CHAPTER 4 VR4102 PIPELINE

113

4.5.2 Stall Conditions

Stalls are used to stop the pipeline for conditions detected after the RF stage. When a stall occurs, the processor

will resolve the condition and then the pipeline will continue. Figure 4-13 shows a data cache miss stall, and Figure

4-14 shows a CACHE instruction stall.

Figure 4-13. Data Cache Miss Stall

1

Detect data cache miss

IF RF EX DC WB WB WB WB WB

IF RF EX DC DC DC DC DC WB

IF RF EX EX EX EX EX DC WB

IF RF RF RF RF RF EX DC WB

2 3

1

Start moving data cache line to write buffer2

Get last word into cache and restart pipeline3

If the cache line to be replaced is dirty � the W bit is set � the data is moved to the internal write buffer in the

next cycle. The write-back data is returned to memory. The last word in the data is returned to the cache at 3, and

pipelining restarts.

Figure 4-14. CACHE Instruction Stall

1

CACHE instruction start

IF RF EX DC WB WB WB WB WB

IF RF EX DC DC DC DC DC WB

IF RF EX EX EX EX EX DC WB

IF RF RF RF RF RF EX DC WB

2

1

CACHE instruction complete2

When the CACHE instruction enters the DC pipe-stage, the pipeline stalls while the CACHE instruction is

executed. The pipeline begins running again when the CACHE instruction is completed, allowing the instruction

fetch to proceed.

CHAPTER 4 VR4102 PIPELINE

114

4.5.3 Slip Conditions

During)2 of the RF stage and)1 of the EX stage, internal logic will determine whether it is possible to start the

current instruction in this cycle. If all of the source operands are available (either from the register file or via the

internal bypass logic) and all the hardware resources necessary to complete the instruction will be available

whenever required, then the instruction “run”; otherwise, the instruction will “slip”. Slipped instructions are retired on

subsequent cycles until they issue. The backend of the pipeline (stages DC and WB) will advance normally during

slips in an attempt to resolve the conflict. NOPs will be inserted into the bubble in the pipeline. Instructions killed by

branch likely instructions, ERET or exceptions will not cause slips.

Figure 4-15. Load Data Interlock

1

ADD A, B

Load B

Load A

Bypass

Detect load interlock

IF RF EX DC WB

IF RF EX DC WB

IF RF RF EX DC WB

IF RF EX DC WB

1

Get the target data2

2

Load Data Interlock is detected in the RF stage shown in as Figure 4-15 and also the pipeline slips in the stage.

Load Data Interlock occurs when data fetched by a load instruction and data moved from HI, LO or CP0 register is

required by the next immediate instruction. The pipeline begins running again when the clock after the target of the

load is read from the data cache, HI, LO and CP0 register. The data returned at the end of the DC stage is input into

the end of the RF stage, using the bypass multiplexers.

Figure 4-16. MD Busy Interlock

1

MFLO/MFHI

Bypass

Detect MD busy interlock

IF RF EX DC WB

IF RF RF EX DC WB

IF RF EX DC WB

1

Get target data2

2

CHAPTER 4 VR4102 PIPELINE

115

MD Busy Interlock is detected in the RF stage as shown in Figure 4-16 and also the pipeline slips in the stage.

MD Busy Interlock occurs when Hi/Lo register is required by MFHi/Lo instruction before finishing Mult/Div execution.

The pipeline begins running again the clock after finishing Mult/Div execution. The data returned from the Hi/Lo

register at the end of the DC stage is input into the end of the RF stage, using the bypass multiplexers.

Store-Load Interlock is detected in the EX stage and the pipeline slips in the RF stage. Store-Load Interlock

occurs when store instruction followed by load instruction is detected. The pipeline begins running again one clock

after.

Coprocessor 0 Interlock is detected in the EX stage and the pipeline slips in the RF stage. A coprocessor

interlock occurs when an MTC0 instruction for the Configuration or Status register is detected.

The pipeline begins running again one clock after.

4.5.4 Bypassing

In some cases, data and conditions produced in the EX, DC and WB stages of the pipeline are made available to

the EX stage (only) through the bypass data path.

Operand bypass allows an instruction in the EX stage to continue without having to wait for data or conditions to

be written to the register file at the end of the WB stage. Instead, the Bypass Control Unit is responsible for ensuring

data and conditions from later pipeline stages are available at the appropriate time for instructions earlier in the

pipeline.

The Bypass Control Unit is also responsible for controlling the source and destination register addresses supplied

to the register file.

4.6 CODE COMPATIBILITY

The VR4100 CPU core can execute all programs that can be executed in other VR-Series processors. But the

reverse is not necessarily true. Programs complied using a standard MIPS compiler can be executed in both types

of processors. When using manual assembly, however, write programs carefully so that compatibility with other VR-

series processors can be maintained. Matters which should be paid attention to when porting programs between the

VR4100 CPU core and other VR-Series processors are listed below.

• The VR4100 CPU core does not support floating-point instructions since it has no Floating-Point Unit (FPU).

• Multiply-add instructions (DMADD16, MADD16) are added in the VR4100 CPU core.

• Instructions for power modes (HIBERNATE, STANDBY, SUSPEND) are added in the VR4100 CPU core to

support power modes.

• The VR4100 CPU core does not have the LL bit to perform synchronization of multiprocessing. Therefore, the

CPU core does not support instructions which manipulate the LL bit (LL, LLD, SC, SCD).

• The CP0 hazards of the VR4100 CPU core are equally or less stringent than those of other processors (see

Chapter 28 for details).

For more information, refer to Chapter 27, the VR4000, VR4400 User’s Manual, or the VR4200TM User’s Manual.

116

[MEMO]

117

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

The VR4102 provides a memory management unit (MMU) which uses a translation lookaside buffer (TLB) to

translate virtual addresses into physical addresses. This chapter describes the virtual and physical address spaces,

the virtual-to-physical address translation, the operation of the TLB in making these translations, and the CP0

registers that provide the software interface to the TLB.

5.1 TRANSLATION LOOKASIDE BUFFER (TLB)

Virtual addresses are translated into physical addresses using an on-chip TLB 22. The on-chip TLB is a fully-

associative memory that holds 32 entries, which provide mapping to 32 odd/even page pairs for one entry. The

pages can have five different sizes, 1 K, 4 K, 16 K, 64 K, and 256 K, and can be specified in each entry. If it is

supplied with a virtual address, each of the 32 TLB entries is checked simultaneously to see whether they match the

virtual addresses that are provided with the ASID field and saved in the EntryHi register.

If there is a virtual address match, or “hit,” in the TLB, the physical page number is extracted from the TLB and

concatenated with the offset to form the physical address.

If no match occurs (TLB “miss”), an exception is taken and software refills the TLB from the page table resident in

memory. The software writes to an entry selected using the Index register or a random entry indicated in the

Random register.

If more than one entry in the TLB matches the virtual address being translated, the operation is undefined and the

TLB may be disabled. In this case, the TLB-Shutdown (TS) bit of the Status register is set to 1, and the TLB

becomes unusable (an attempt to access the TLB results in a TLB Mismatch exception regardless of whether there

is an entry that hits). The TS bit can be cleared only by a reset.

Note that virtual addresses may be converted to physical addresses without using a TLB, depending on the

address space that is being subjected to address translation. For example, address translation for the kseg0 or

kseg1 address space does not use mapping. The physical addresses of these address spaces are determined by

subtracting the base address of the address space from the virtual addresses.

5.2 VIRTUAL ADDRESS SPACE

The address space of the CPU is extended in memory management system, by converting (translating) huge

virtual memory addresses into physical addresses.

The physical address space of the VR4102 is 4 Gbytes and 32-bit width addresses are used.

For the virtual address space, up to 2 Gbytes (231) are provided as a user’s area and 32-bit width addresses are

used in the 32-bit mode. In the 64-bit mode, up to 1 Tbyte (240) is provided as a user’s area and 64-bit width

addresses are used. For the format of the TLB entry in each mode, refer to 5.4.1.

As shown in Figures 4-2 and 4-3, the virtual address is extended with an address space identifier (ASID), which

reduces the frequency of TLB flushing when switching contexts. This 8-bit ASID is in the CP0 EntryHi register, and

the Global (G) bit is in the EntryLo0 and EntryLo1 registers, described later in this chapter.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

118

Figure 5-1. Virtual-to-Physical Address Translation

Virtual address

The offset is then added to the PFN

passing through the TLB.

If there is a match, the page frame

number (PFN) representing the high-

order bits of the physical address is

output from the TLB.

The virtual page number (VPN) in the

virtual address (VA) is compared with

the VPN in the TLB.

TLB
entry

Physical address

3

2

TLB

1
ASID OffsetVPN

Offset

PFN

PFN

G ASID VPN

5.2.1 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor

with the virtual addresses in the TLB; there is a match when the virtual page number (VPN) of the address is the

same as the VPN field of the entry, and either:

� the Global (G) bit of the TLB entry is set to 1, or

� the ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Mismatch exception is taken by the processor

and software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is output from the TLB and concatenated with

the offset, which represents an address within the page frame space. The offset does not pass through the TLB.

Instead, the low-order bits of the virtual address are output without being translated. See descriptions about the

virtual address space for details. For details about the physical address, see 5.4.9 Virtual-to-Physical Address

Translation .

The next two sections describe the 32-bit and 64-bit mode address translations.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

119

5.2.2 32-bit Mode Address Translation

Figure 5-2 shows the virtual-to-physical-address translation of a 32-bit mode address. The pages can have five

different sizes between 1 Kbyte (10 bits) and 256 Kbytes (18 bits), each being 4 times as large as the preceding one

in ascending order, that is 1 K, 4 K, 16 K, 64 K, and 256 K.

� Shown at the top of Figure 5-2 is the virtual address space in which the page size is 1 Kbyte and the offset is

10 bits. The 22 bits excluding the ASID field represents the virtual page number (VPN), enabling selecting a

page table of 4 M entries.

� Shown at the bottom of Figure 5-2 is the virtual address space in which the page size is 256 Kbytes and the

offset is 18 bits. The 14 bits excluding the ASID field represents the VPN, enabling selecting a page table of

16 K entries.

Figure 5-2. 32-bit Mode Virtual Address Translation

Bits 31 to 29 of the virtual
address select the user,
supervisor, or kernel
address space.

31

PFN

Virtual address for 16K (214) 256-Kbyte pages

Virtual address for 4M (222) 1-Kbyte pages

22 bits = 4M pages

The offset is passed to
physical address without
being changed.

The offset is passed to
physical address without
being changed.

Virtual-to-physical address
translation with the TLB

Virtual-to-physical address
translation with the TLB

10228

0

09102829313239

ASID

Offset

VPN Offset

TLB

14 bits = 16K pages
18148

017182829313239

ASID VPN Offset

TLB

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

120

5.2.3 64-bit Mode Address Translation

Figure 5-3 shows the virtual-to-physical-address translation of a 64-bit mode address. The pages can have five

different sizes between 1 Kbyte (10 bits) and 256 Kbytes (18 bits), each being 4 times as large as the preceding one

in ascending order, that is 1K, 4K, 16K, 64K, and 256K. This figure illustrates the two possible page sizes: a 1-

Kbyte page (10 bits) and a 256-Kbyte page (18 bits).

� Shown at the top of Figure 5-3 is the virtual address space in which the page size is 1 Kbyte and the offset is

10 bits. The 30 bits excluding the ASID field represents the virtual page number (VPN), enabling selecting a

page table of 1 G entry.

� Shown at the bottom of Figure 5-3 is the virtual address space in which the page size is 256 Kbytes and the

offset is 18 bits. The 22 bits excluding the ASID field represents the VPN, enabling selecting a page table of

4 M entries.

Figure 5-3. 64-bit Mode Virtual Address Translation

31

PFN

32-bit physical address

1022 308

0

091039406162636471

ASID

Offset

TLB

1822 228

0171839406162636471

ASID

TLB

0 or -1

0 or -1 VPN Offset

VPN Offset

Bits 62 and 63 of the virtual
address select the user,
supervisor, or kernel
address space.

Virtual address for 4M (222) 256-Kbyte pages

Virtual address for 1G (230) 1-Kbyte pages

30 bits = 1G pages

The offset is passed to
physical address without
being changed.

The offset is passed to
physical address without
being changed.

Virtual-to-physical address
translation with the TLB

Virtual-to-physical address
translation with the TLB

22 bits = 4M pages

2

2

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

121

5.2.4 Operating Modes

The processor has three operating modes that function in both 32- and 64-bit operations:

� User mode

� Supervisor mode

� Kernel mode

User and Kernel modes are common to all VR-Series processors. Generally, Kernel mode is used to executing

the operating system, while User mode is used to run application programs. The VR4000 series processors have a

third mode, which is called Supervisor mode and categorized in between User and Kernel modes. This mode is

used to configure a high-security system.

When an exception occurs, the CPU enters Kernel mode, and remains in this mode until an exception return

instruction (ERET) is executed. The ERET instruction brings back the processor to the mode in which it was just

before the exception occurs.

These modes are described in the next three sections.

5.2.5 User Mode Virtual Addressing

During the single user mode, a 2-Gbyte (231 bytes) virtual address space (useg) can be used in the 32-bit mode.

In the 64-bit mode, a 1-Tbyte (240 bytes) virtual address space (xuseg) can be used.

As shown in Tables 5-2 and 5-3, each virtual address is extended independently as another virtual address by

setting an 8-bit address space ID area (ASID), to support user processes of up to 256. The contents of TLB can be

retained after context switching by allocating each process by ASID. useg and xuseg can be referenced via TLB.

Whether a cache is used or not is determined for each page by the TLB entry (depending on the C bit setting in the

TLB entry).

The User segment starts at address 0 and the current active user process resides in either useg (in 32-bit mode)

or xuseg (in 64-bit mode). The TLB identically maps all references to useg/xuseg from all modes, and controls

cache accessibility.

The processor operates in User mode when the Status register contains the following bit-values:

� KSU = 10

� EXL = 0

� ERL = 0

In conjunction with these bits, the UX bit in the Status register selects 32- or 64-bit User mode addressing as

follows:

� When UX = 0, 32-bit useg space is selected.

� When UX = 1, 64-bit xuseg space is selected.

Table 5-1 lists the characteristics of each user segment (useg and xuseg).

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

122

Figure 5-4. User Mode Address Space

64-bit mode32-bit modeNote

0x8000 0000

0xFFFF FFFF

Address error

0x0000 0100 0000 0000

0xFFFF FFFF FFFF FFFF

Address error

xuseguseg

0x0000 0000

0x7FFF FFFF
2 Gbytes with
TLB mapping

0x0000 0000 0000 0000

0x0000 00FF FFFF FFFF
1 Tbyte with

TLB mapping

Note The VR4102 uses 64-bit addresses within it. When the processor is running in Kernel mode, it saves

the contents of each register or restores their previous contents to initialize them before switching the

context. For 32-bit mode addressing, bit 31 is sign-extended to bits 32 to 63, and the resulting 32 bits

are used for addressing. Usually, it is impossible for 32-bit mode programs to generate invalid

addresses. If context switching occurs and the processor enters Kernel mode, however, an attempt

may be made to save an address other than the sign-extended 32-bit address mentioned above to a

64-bit register. In this case, user-mode programs are likely to generate an invalid address.

Table 5-1. Comparison of useg and xuseg

Address bit Status register bit value Segment Address range Size

value KSU EXL ERL UX name

32-bit

A[31] = 0

10 0 0 0 useg 0x0000 0000

to

0x7FFF FFFF

2 Gbytes

(231 bytes)

64-bit

A[63..40] = 0

10 0 0 1 xuseg 0x0000 0000 0000 0000

to

0x0000 00FF FFFF FFFF

1 Tbyte

(240 bytes)

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

123

(1) useg (32-bit mode)

In User mode, when UX = 0 in the Status register and the most significant bit of the virtual address is 0, User

mode addressing is compatible with the 32-bit addressing model shown in Figure 5-4, and a 2-Gbyte user

address space is available, labeled useg.

Any attempt to reference an address with the most-significant bit set while in User mode causes an Address

Error exception (see CHAPTER 6 EXCEPTION PROCESSING).

The TLB Mismatch exception vector is used for TLB misses.

(2) xuseg (64-bit mode)

In User mode, when UX = 1 in the Status register and bits 63 to 40 of the virtual address are all 0, User mode

addressing is extended to the 64-bit addressing model shown in Figure 5-4. In 64-bit User mode, the processor

provides a single address space of 240 bytes, labeled xuseg.

Any attempt to reference an address with bits 63:40 equal to 1 causes an Address Error exception (see

CHAPTER 6 EXCEPTION PROCESSING).

The XTLB Mismatch exception vector is used for TLB misses.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

124

5.2.6 Supervisor-mode Virtual Addressing

Supervisor mode is designed for layered operating systems in which a true kernel runs in Kernel mode, and the

rest of the operating system runs in Supervisor mode.

All of the suseg, sseg, xsuseg, xsseg, and csseg spaces are referenced via TLB. Whether cache can be used or

not is determined by bit C of each page’s TLB entry.

The processor operates in Supervisor mode when the Status register contains the following bit-values:

� KSU = 01

� EXL = 0

� ERL = 0

In conjunction with these bits, the SX bit in the Status register selects 32- or 64-bit Supervisor mode addressing:

� When SX = 0, 32-bit supervisor space is selected.

� When SX = 1, 64-bit supervisor space is selected.

Table 5-2 lists the characteristics of the Supervisor mode segments.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

125

Figure 5-5. Supervisor Mode Address Space

64-bit mode32-bit modeNote

0xDFFF FFFF
0xE000 0000

0xC000 0000

0xFFFF FFFF
Address error

0x0000 0010 0000 0000

0xFFFF FFFF FFFF FFFF

suseg

sseg

0x7FFF FFFF

0x0000 0000

0x8000 0000

xsuseg

xsseg

csseg

0xBFFF FFFF

0x4000 00FF FFFF FFFF

0x4000 0100 0000 0000

0x0000 000F FFFF FFFF

0.5 Gbytes with
TLB mapping

Address error

2 Gbytes with
TLB mapping

Address error

0.5 Gbytes with
TLB mapping

Address error

1 Tbyte with
TLB mapping

Address error

1 Tbyte with
TLB mapping

0xFFFF FFFF E000 0000

0xFFFF FFFF DFFF FFFF

0xFFFF FFFF C000 0000

0xFFFF FFFF BFFF FFFF

0x3FFF FFFF FFFF FFFF

0x4000 0000 0000 0000

0x0000 0000 0000 0000

0x0000 00FF FFFF FFFF

0x0000 0100 0000 0000

Note The VR4102 uses 64-bit addresses within it. For 32-bit mode addressing, bit 31 is sign-extended to bits

32 to 63, and the resulting 32 bits are used for addressing. Usually, it is impossible for 32-bit mode

programs to generate invalid addresses. In an operation of base register + offset for addressing,

however, a two’s complement overflow may occur, causing an invalid address. Note that the result

becomes undefined. Two factors that can cause a two’s complement follow:

� When offset bit 15 is 0, base register bit 31 is 0, and bit 31 of the operation “base register + offset” is 1

� When offset bit 15 is 1, base register bit 31 is 1, and bit 31 of the operation “base register + offset” is 0

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

126

Table 5-2. 32-bit and 64-bit Supervisor Mode Segments

Address bit Status register bit value Segment Address range Size

value KSU EXL ERL SX name

32-bit

A[31] = 0

01 0 0 0 suseg 0x0000 0000

to

0x7FFF FFFF

2 Gbytes

(231 bytes)

32-bit

A[31..29] = 110

01 0 0 0 sseg 0xC000 0000

to

0xDFFF FFFF

512 Mbytes

(229 bytes)

64-bit

A[63..62] = 00

01 0 0 1 xsuseg 0x0000 0000 0000 0000

to

0x0000 00FF FFFF FFFF

1 Tbyte

(240 bytes)

64-bit

A[63..62] = 01

01 0 0 1 xsseg 0x4000 0000 0000 0000

to

0x4000 00FF FFFF FFFF

1 Tbyte

(240 bytes)

64-bit

A[63..62] = 11

01 0 0 1 csseg 0xFFFF FFFF C000 0000

to

0xFFFF FFFF DFFF FFFF

512 Mbytes

(229 bytes)

(1) suseg (32-bit Supervisor mode, user space)

When SX = 0 in the Status register and the most-significant bit of the virtual address space is set to 0, the suseg

virtual address space is selected; it covers 2 Gbytes (231 bytes) of the current user address space. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This mapped

space starts at virtual address 0x0000 0000 and runs through 0x7FFF FFFF.

(2) sseg (32-bit Supervisor mode, supervisor space)

When SX = 0 in the Status register and the three most-significant bits of the virtual address space are 110, the

sseg virtual address space is selected; it covers 512 Mbytes (229 bytes) of the current supervisor virtual address

space. The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs through 0xDFFF FFFF.

(3) xsuseg (64-bit Supervisor mode, user space)

When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 00, the xsuseg

virtual address space is selected; it covers 1 Tbyte (240 bytes) of the current user address space. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This mapped

space starts at virtual address 0x0000 0000 0000 0000 and runs through 0x0000 00FF FFFF FFFF.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

127

(4) xsseg (64-bit Supervisor mode, current supervisor space)

When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 01, the xsseg

virtual address space is selected; it covers 1 Tbyte (240 bytes) of the current supervisor virtual address space.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This

mapped space begins at virtual address 0x4000 0000 0000 0000 and runs through 0x4000 00FF FFFF FFFF.

(5) csseg (64-bit Supervisor mode, separate supervisor space)

When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 11, the csseg

virtual address space is selected; it covers 512 Mbytes (229 bytes) of the separate supervisor virtual address

space. The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000 and runs through 0xFFFF FFFF DFFF

FFFF.

5.2.7 Kernel-mode Virtual Addressing

If the Status register satisfies any of the following conditions, the processor runs in Kernel mode.

� KSU = 00

� EXL = 1

� ERL = 1

The addressing width in Kernel mode varies according to the state of the KX bit of the Status register, as follows:

� When KX = 0, 32-bit kernel space is selected.

� When KX = 1, 64-bit kernel space is selected.

The processor enters Kernel mode whenever an exception is detected and it remains in Kernel mode until an

exception return (ERET) instruction is executed and results in ERL and/or EXL = 0. The ERET instruction restores

the processor to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual

address, as shown in Figure 5-6. Table 5-3 lists the characteristics of the 32-bit Kernel mode segments, and Table

5-4 lists the characteristics of the 64-bit Kernel mode segments.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

128

Figure 5-6. Kernel Mode Address Space

32-bit modeNote 1

0.5 Gbytes with
TLB mapping

0.5 Gbytes with
TLB mapping

0.5 Gbytes without
TLB mapping
uncacheable

64-bit mode

0xDFFF FFFF
0xE000 0000

0xC000 0000

0xFFFF FFFF 0xFFFF FFFF FFFF FFFF

kuseg

kseg0

kseg1

ksseg

kseg3

0x7FFF FFFF

0x0000 0000

0x8000 0000

xkuseg

xksseg

xkphys

xkseg

ckseg0

ckseg1

ckseg

cksseg

0xBFFF FFFF
0xFFFF FFFF 9FFF FFFF

0xFFFF FFFF A000 0000

0.5 Gbytes without
TLB mapping

cacheable

2 Gbytes with TLB
mapping

0xFFFF FFFF E000 0000

0xFFFF FFFF DFFF FFFF

0xFFFF FFFF C000 0000

0xFFFF FFFF BFFF FFFF

0xFFFF FFFF 7FFF FFFF

0xFFFF FFFF 8000 0000

0xC000 00FF 7FFF FFFF

0xC000 00FF 8000 0000

0.5 Gbytes with
TLB mapping

0.5 Gbytes with
TLB mapping

0.5 Gbytes without
TLB mapping
uncacheable

0.5 Gbytes without
TLB mapping

cacheable

Address error

With TLB mapping

Without TLB mapping
(See Table 5-7 for

details.)

Address error

1 Tbyte with TLB
mapping

Address error

1 Tbyte with TLB
mapping

0x4000 00FF FFFF FFFF

0x4000 0100 0000 0000

0xC000 0000 0000 0000

0xBFFF FFFF FFFF FFFF

0x8000 0000 0000 0000

0x7FFF FFFF FFFF FFFF

0x3FFF FFFF FFFF FFFF

0x4000 0000 0000 0000

0x0000 0000 0000 0000

0x0000 00FF FFFF FFFF

0x0000 0100 0000 0000

0xA000 0000

0x9FFF FFFF

Note2

Note 2

Notes 1. The VR4102 uses 64-bit addresses within it. For 32-bit mode addressing, bit 31 is sign-extended to

bits 32 to 63, and the resulting 32 bits are used for addressing. Usually, a 64-bit instruction is used

for the program in 32-bit mode. In an operation of base register + offset for addressing, however, a

two’s complement overflow may occur, causing an invalid address. Note that the result becomes

undefined. Two factors that can cause a two’s complement follow:

� When offset bit 15 is 0, base register bit 31 is 0, and bit 31 of the operation “base register + offset”

is 1

� When offset bit 15 is 1, base register bit 31 is 1, and bit 31 of the operation “base register + offset”

is 0

2. The K0 field of the Config register controls cacheability of kseg0 and ckseg0.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

129

Figure 5-7. xkphys Area Address Space

0xBFFF FFFF FFFF FFFF

0xB000 0000 FFFF FFFF

0xB000 0001 0000 0000

0xB800 0001 0000 0000

0xB800 0000 FFFF FFFF

0xB800 0000 0000 0000

0xB7FF FFFF FFFF FFFF

0xAFFF FFFF FFFF FFFF

0xB000 0000 0000 0000

0xA800 0000 FFFF FFFF

0xA800 0001 0000 0000

Address error

Address error

Address error
0x9FFF FFFF FFFF FFFF

0xA000 0000 0000 0000

0xA800 0000 0000 0000

0xA7FF FFFF FFFF FFFF

0xA000 0001 0000 0000

0xA000 0000 FFFF FFFF

0x9800 0000 FFFF FFFF

0x9800 0001 0000 0000

0x9000 0001 0000 0000

0x97FF FFFF FFFF FFFF

0x9800 0000 0000 0000

Address error

4 Gbytes without
TLB mapping

cacheable

4 Gbytes without
TLB mapping

cacheable

Address error

Address error

Address error

Address error

4 Gbytes without
TLB mapping

cacheable

4 Gbytes without
TLB mapping

cacheable

4 Gbytes without
TLB mapping

cacheable

4 Gbytes without
TLB mapping

cacheable

4 Gbytes without
TLB mapping

cacheable

4 Gbytes without
TLB mapping

cacheable

0x8000 0000 0000 0000

0x8000 0000 FFFF FFFF

0x8000 0001 0000 0000

0x9000 0000 FFFF FFFF

0x9000 0000 0000 0000

0x8800 0000 FFFF FFFF

0x8800 0001 0000 0000

0x8FFF FFFF FFFF FFFF

0x87FF FFFF FFFF FFFF

0x8800 0000 0000 0000

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

130

Table 5-3. 32-bit Kernel Mode Segments

Address bit value Status register bit value Segment Virtual address Physical Size

KSU EXL ERL KX name address

32-bit

A[31] = 0

0 kuseg 0x0000 0000

to

0x7FFF FFFF

TLB map 2 Gbytes

(231 bytes)

32-bit

A[31..29] = 100

0 kseg0 0x8000 0000

to

0x9FFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 Mbytes

(229 bytes)

32-bit

A[31..29] = 101

0 kseg1 0xA000 0000

to

0xBFFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 Mbytes

(229 bytes)

32-bit

A[31..29] = 110

0 ksseg 0xC000 0000

to

0xDFFF FFFF

TLB map 512 Mbytes

(229 bytes)

32-bit

A[31..29] = 111

KSU = 00

or

EXL = 1

or

ERL = 1

0 kseg3 0xE000 0000

to

0xFFFF FFFF

TLB map 512 Mbytes

(229 bytes)

(1) kuseg (32-bit Kernel mode, user space)

When KX = 0 in the Status register, and the most-significant bit of the virtual address space is 0, the kuseg

virtual address space is selected; it is the current 2-Gbyte (231-byte) user address space.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to kuseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 Gbytes (231 bytes) without TLB

mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached so

that the cache error handler can use it. This allows the Cache Error exception code to operate uncached using

r0 as a base register.

(2) kseg0 (32-bit Kernel mode, kernel space 0)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 100, the

kseg0 virtual address space is selected; it is the current 512-Mbyte (229-byte) physical space.

References to kseg0 are not mapped through TLB; the physical address selected is defined by subtracting

0x8000 0000 from the virtual address.

The K0 field of the Config register controls cacheability (see CHAPTER 6 EXCEPTION PROCESSING).

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

131

(3) kseg1 (32-bit Kernel mode, kernel space 1)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 101, the

kseg1 virtual address space is selected; it is the current 512-Mbyte (229-byte) physical space.

References to kseg1 are not mapped through TLB; the physical address selected is defined by subtracting

0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and main memory (or memory-mapped I/O device

registers) is accessed directly.

(4) ksseg (32-bit Kernel mode, supervisor space)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 110, the

ksseg virtual address space is selected; it is the current 512-Mbyte (229-byte) virtual address space. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to ksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

(5) kseg3 (32-bit Kernel mode, kernel space 3)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 111, the

kseg3 virtual address space is selected; it is the current 512-Mbyte (229-byte) kernel virtual space. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to kseg3 are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

132

Table 5-4. 64-bit Kernel Mode Segments

Address bit Status register bit value Segment Virtual address Physical Size

value KSU EXL ERL KX name address

64-bit

A[63..62] = 00

1 xkuseg 0x0000 0000 0000 0000

to

0x0000 00FF FFFF FFFF

TLB map 1 Tbyte

(240 bytes)

64-bit

A[63..62] = 01

1 xksseg 0x4000 0000 0000 0000

to

0x4000 00FF FFFF FFFF

TLB map 1 Tbyte

(240 bytes)

64-bit

A[63..62] = 10

1 xkphys 0x8000 0000 0000 0000

to

0xBFFF FFFF FFFF FFFF

0x0000 0000

to

0xFFFF FFFF

4 Gbytes

(232 bytes)

64-bit

A[63..62] = 11

1 xkseg 0xC000 0000 0000 0000

to

0xC000 00FF 7FFF FFFF

TLB map 240 - 231

bytes

64-bit

A[63..62] = 11

A[63..31] = -1

1 ckseg0 0xFFFF FFFF 8000 0000

to

0xFFFF FFFF 9FFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 Mbytes

(229 bytes)

64-bit

A[63..62] = 11

A[63..31] = -1

1 ckseg1 0xFFFF FFFF A000 0000

to

0xFFFF FFFF BFFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 Mbytes

(229 bytes)

64-bit

A[63..62] = 11

A[63..31] = -1

1 cksseg 0xFFFF FFFF C000 0000

to

0xFFFF FFFF DFFF FFFF

TLB map 512 Mbytes

(229 bytes)

64-bit

A[63..62] = 11

A[63..31] = -1

KSU = 00

or

EXL = 1

or

ERL = 1

1 ckseg3 0xFFFF FFFF E000 0000

to

0xFFFF FFFF FFFF FFFF

TLB map 512 Mbytes

(229 bytes)

(6) xkuseg (64-bit Kernel mode, user space)

When KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 00, the xkuseg virtual

address space is selected; it is the 1-Tbyte (240 bytes) current user address space. The virtual address is

extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to xkuseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 Gbytes (231 bytes) without TLB

mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached so

that the cache error handler can use it. This allows the Cache Error exception code to operate uncached using

r0 as a base register.

(7) xksseg (64-bit Kernel mode, current supervisor space)

When KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 01, the xksseg address

space is selected; it is the 1-Tbyte (240 bytes)current supervisor address space. The virtual address is extended

with the contents of the 8-bit ASID field to form a unique virtual address.

References to xksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

133

(8) xkphys (64-bit Kernel mode, physical spaces)

When the KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 10, the virtual

address space is called xkphys and selected as either cached or uncached. If any of bits 58 to 32 of the

address is 1, an attempt to access that address results in an address error.

Whether cache can be used or not is determined by bits 59 to 61 of the virtual address. Table 5-5 shows

cacheability corresponding to 8 address spaces.

Table 5-5. Cacheability and the xkphys Address Space

Bits 61-59 Cacheability Start address

0 Cached 0x8000 0000 0000 0000

to

0x8000 0000 FFFF FFFF

1 Cached 0x8800 0000 0000 0000

to

0x8800 0000 FFFF FFFF

2 Uncached 0x9000 0000 0000 0000

to

0x9000 0000 FFFF FFFF

3 Cached 0x9800 0000 0000 0000

to

0x9800 0000 FFFF FFFF

4 Cached 0xA000 0000 0000 0000

to

0xA000 0000 FFFF FFFF

5 Cached 0xA800 0000 0000 0000

to

0xA800 0000 FFFF FFFF

6 Cached 0xB000 0000 0000 0000

to

0xB000 0000 FFFF FFFF

7 Cached 0xB800 0000 0000 0000

to

0xB800 0000 FFFF FFFF

(9) xkseg (64-bit Kernel mode, physical spaces)

When the KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 11, the virtual

address space is called xkseg and selected as either of the following:

• kernel virtual space, xkseg, the current kernel virtual space; the virtual address is extended with the contents

of the 8-bit ASID field to form a unique virtual address

References to xkseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

• one of the four 32-bit kernel compatibility spaces, as described in the next section.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

134

(10)64-bit Kernel mode compatible spaces (ckseg0, ckseg1, cksseg, and ckseg3)

If the conditions listed below are satisfied in Kernel mode, ckseg0, ckseg1, cksseg, or ckseg3 (each having 512

Mbytes) is selected as a compatible space according to the state of the bits 30 and 29 (two low-order bits) of the

address.

� The KX bit of the Status register is 1.

� Bits 63 and 62 of the 64-bit virtual address are 11.

� Bits 61 to 31 of the virtual address are all 1.

(i) ckseg0

This space is an unmapped region, compatible with the 32-bit mode kseg0 space. The K0 field of the Config

register controls cacheability and coherency.

(ii) ckseg1

This space is an unmapped and uncached region, compatible with the 32-bit mode kseg1 space.

(iii) cksseg

This space is the current supervisor virtual space, compatible with the 32-bit mode ksseg space.

References to cksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

(iv) ckseg3

This space is the current supervisor virtual space, compatible with the 32-bit mode kseg3 space.

References to ckseg3 are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

135

5.3 PHYSICAL ADDRESS SPACE

Using a 32-bit address, the processor physical address space encompasses 4 Gbytes. The VR4102 uses this 4-

Gbyte physical address space as shown in Figure 5-8.

Figure 5-8. V R4102 Physical Address Space

0x1800 0000

0x1FFF FFFF
0x2000 0000

0xFFFF FFFF

0x17FF FFFF

0x1400 0000

0x0000 0000

0x09FF FFFF
0x0A00 0000

0x1000 0000

0x13FF FFFF

0x0B00 0000

0x0FFF FFFF

0x0AFF FFFF

0x0D00 0000
0x0CFF FFFF

RFU

DRAM Area

(Mirror Image of 0x0000 0000 to 0x1FFF FFFF
A)

ROM Area (Include Boot ROM)

System Bus I/O Area (ISA-IO)

System Bus I/O Area (ISA-MEM)

RFU

Internal I/O Area 1

Internal I/O Area 2

LCD/High-Speed System Bus Area

0x0C00 0000
0x0BFF FFFF

0x03FF FFFF
0x0400 0000

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

136

Table 5-6. VR4102 Physical Address Space

Physical address Space Capacity (bytes)

0xFFFF FFFF to 0x2000 0000 Mirror image of 0x1FFF FFFF to 0x0000 0000 3.5 G

0x1FFF FFFF to 0x1800 0000 ROM space 128 M

0x17FF FFFF to 0x1400 0000 System bus I/O space (ISA-IO) 64 M

0x13FF FFFF to 0x1000 0000 System bus memory space (ISA-MEM) 64 M

0x0FFF FFFF to 0x0D00 0000 Space reserved for future use 48 M

0x0CFF FFFF to 0x0C00 0000 Internal I/O space 1 16 M

0x0BFF FFFF to 0x0B00 0000 Internal I/O space 2 16 M

0x0AFF FFFF to 0x0A00 0000 LCD/high-speed system bus memory space 16 M

0x09FF FFFF to 0x0400 0000 Space reserved for future use 96 M

0x03FF FFFF to 0x0000 0000 DRAM space 64 M

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

137

5.3.1 ROM Space

The ROM space differs depending on the data bus’ bit width and the capacity of the ROM being used.

• The data bus’ bit width is set via the DBUS32 pin.

• The ROM capacity is set via the BCUNTREG1’s ROM64 bit.

The physical addresses of the ROM space are listed below.

Table 5-7. ROM Addresses (when using 16-bit data bus)

Physical address ADD[25:0] pin When using 32-M ROM When using 64-M ROM

0x1FFF FFFF to 0x1FC0 0000 0x3FF FFFF to

0x3C0 0000

Bank 3 (ROMCS[3]#) Bank 3 (ROMCS[3]#)

0x1FBF FFFF to 0x1F80 0000 0x3BF FFFF to

0x380 0000

Bank 2 (ROMCS[2]#)

0x1F7F FFFF to 0x1F40 0000 0x37F FFFF to

0x340 0000

Bank 1 (ROMCS[1]#) Bank 2 (ROMCS[2]#)

0x1F3F FFFF to 0x1F00 0000 0x33F FFFF to

0x300 0000

Bank 0 (ROMCS[0]#)

0x1EFF FFFF to 0x1E80 0000 0x2FF FFFF to

0x280 0000

ROM space reserved for

future use

Bank 1 (ROMCS[1]#)

0x1E7F FFFF to 0x1E00 0000 0x27F FFFF to

0x200 0000

Bank 0 (ROMCS[0]#)

0x1DFF FFFF to 0x1800 0000 0x1FF FFFF to

0x000 0000

ROM space reserved for

future use

Table 5-8. ROM Addresses (when using 32-bit data bus)

Physical address ADD[25:0] pin When using 32-Mbit ROM When using 64-Mbit ROM

0x1FFF FFFF to 0x1F80 0000 0x3FF FFFF to

0x380 0000

Bank 1 (ROMCS[1]#) Bank 1 (ROMCS[1]#)

0x1F7F FFFF to 0x1F00 0000 0x37F FFFF to

0x300 0000

Bank 0 (ROMCS[0]#)

0x1EFF FFFF to 0x1E00 0000 0x2FF FFF0 to

0x200 0000

ROM space reserved for

future use

Bank 0 (ROMCS[0]#)

0x1DFF FFFF to 0x1800 0000 0x1FF FFFF to

0x000 0000

ROM space reserved for

future use

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

138

5.3.2 System Bus Space

The following three types of system bus space are available.

• System bus I/O space

This corresponds to the ISA’s I/O space.

• System bus memory space

This corresponds to the ISA’s memory space.

• High-speed system bus memory space

The access speed can be set independently of the system bus memory space.

There are 16 Mbytes of high-speed system bus memory space. Therefore, the ADD[25:24] pin is fixed as

10.

When system bus memory has been accessed from the high-speed system bus memory space, the

LCDCS# pin becomes active.

The high-speed system bus memory space is used exclusively from the LCD space. To switch between

these two types of space, set the ISAM/LCD bit in BCUCNTREG1.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

139

5.3.3 Internal I/O Space

The VR4102 has two internal I/O spaces. Each of these spaces are described below.

Table 5-9. Internal I/O Space 1

Physical address Internal I/O

0x0CFF FFFF to 0x0C00 0060 Reserved for future use

0x0C00 005F to 0x0C00 0040 FIR

0x0C00 003F to 0x0C00 0020 HSP (Software modem interface)

0x0C00 001F to 0x0C00 0000 SIU (16550)

Table 5-10. Internal I/O Space 2

Physical address Internal I/O

0x0BFF FFFF to 0x0B00 02C0 Reserved for future use

0x0B00 02BF to 0x0B00 02A0 PIU2

0x0B00 029F to 0x0B00 0280 Reserved for future use

0x0B00 027F to 0x0B00 0260 A/D test

0x0B00 025F to 0x0B00 0240 LED

0x0B00 023F to 0x0B00 0220 Reserved for future use

0x0B00 021F to 0x0B00 0200 ICU2

0x0B00 01FF to 0x0B00 01E0 Reserved for future use

0x0B00 01DF to 0x0B00 01C0 RTC2

0x0B00 01BF to 0x0B00 01A0 DSIU

0x0B00 019F to 0x0B00 0180 KIU1

0x0B00 017F to 0x0B00 0160 AIU

0x0B00 015F to 0x0B00 0140 Reserved for future use

0x0B00 013F to 0x0B00 0120 PIU1

0x0B00 011F to 0x0B00 0100 GIU1

0x0B00 00FF to 0x0B00 00E0 DSU

0x0B00 00DF to 0x0B00 00C0 RTC1

0x0B00 00BF to 0x0B00 00A0 PMU

0x0B00 009F to 0x0B00 0080 ICU1

0x0B00 007F to 0x0B00 0060 CMU

0x0B00 005F to 0x0B00 0040 DCU

0x0B00 003F to 0x0B00 0020 DMAAU

0x0B00 001F to 0x0B00 0000 BCU

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

140

5.3.4 LCD Space

This space is used to access the external LCD controller.

All data that is accessed via this space is inverted-bit data.

The LCD space is used exclusively from the high-speed system bus memory space. To switch between these

two types of space, set the ISAM/LCD bit in BCUCNTREG1.

5.3.5 DRAM Space

The DRAM space differs depending on the data bus’ bit width and the capacity of the DRAM being used.

• The data bus’ bit width is set via the DBUS32 pin.

• The DRAM capacity is set via the BCUCNTREG1’s DRAM64 bit.

The physical addresses of the DRAM space are listed below.

Table 5-11. DRAM Addresses (when using 16-bit data bus)

Physical address When using 16-Mbit DRAM When using 64-Mbit DRAM

0x03FF FFFF to 0x0200 0000 DRAM space reserved for future use DRAM space reserved for future use

0x01FF FFFF to 0x0180 0000 Bank 3 (MRAS[3]#/UUCAS#)

0x017F FFFF to 0x0100 0000 Bank 2 (MRAS[2]#/ULCAS#)

0x00FF FFFF to 0x0080 0000 Bank 1 (MRAS[1]#)

0x007F FFFF to 0x0060 0000 Bank 3 (MRAS[3]#/UUCAS#) Bank 0 (MRAS[0]#)

0x005F FFFF to 0x0040 0000 Bank 2 (MRAS[2]#/ULCAS#)

0x003F FFFF to 0x0020 0000 Bank 1 (MRAS[1]#)

0x001F FFFF to 0x0000 0000 Bank 0 (MRAS[0]#)

Table 5-12. DRAM Addresses (when using 32-bit data bus)

Physical address When using 16-Mbit DRAM When using 64-Mbit DRAM

0x03FF FFFF to 0x0200 0000 DRAM space reserved for future use DRAM space reserved for future use

0x01FF FFFF to 0x0180 0000 Bank 1 (MRAS[1]#)

0x017F FFFF to 0x0100 0000

0x00FF FFFF to 0x0080 0000 Bank 0 (MRAS[0]#)

0x007F FFFF to 0x0060 0000 Bank 1 (MRAS[1]#)

0x005F FFFF to 0x0040 0000

0x003F FFFF to 0x0020 0000 Bank 0 (MRAS[0]#)

0x001F FFFF to 0x0000 0000

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

141

5.4 SYSTEM CONTROL COPROCESSOR

The System Control Coprocessor (CP0) is implemented as an integral part of the CPU, and supports memory

management, address translation, exception handling, and other privileged operations. CP0 contains the registers

shown in Figure 5-9 plus a 32-entry TLB. The sections that follow describe how the processor uses each of the

memory management-related registers.

Remark Each CP0 register has a unique number that identifies it; this number is referred to as the register

number. See Chapter 1 for details. Also see Chapter 6 for the CP0 functions and the relationships

between exception processing and registers.

Figure 5-9. CP0 Registers and the TLB

31

0

Remark

TLB

(Safe entries)

(See Random register for the

TLB Wired boundary.)

127/255 0

EntryHi
10*

EntryLo0
2*

Index
0*

Context
4*

BadVAddr
8*

Compare
11*

Count
9*

Random
1*

EntryLo1
3*

PageMask
5*

Status
12*

Cause
13*

WatchLo
18*

EPC
14*

Wired
6*

PRId
15*

WatchHi
19*

XContext
20*

ErrorEPC
30*

Cache Error
27*

Parity Error
26*

LLAddr
17*

TagLo
28*

TagHi
29*

Config
16*

*: Register number

Used for memory management Used for exception processing

Caution When accessing the CP0 register, some instructions require consideration of the interval time

until the next instruction is executed, because it takes a while from when the contents of the

CP0 register change to when this change is reflected on the CPU operation. This time lag is

called CP0 hazard. For details, see Chapter 28.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

142

5.4.1 Format of a TLB Entry

Figure 5-10 shows the TLB entry formats for both 32- and 64-bit modes. Each field of an entry has a

corresponding field in the EntryHi, EntryLo0, EntryLo1, or PageMask registers.

Figure 5-10. Format of a TLB Entry

114115 96127 107 106

(a) 32-bit mode

0 MASK 0

82121

13 8 11

6495 75 74 73 72 71

VPN2 G 0 ASID

5960

224

3263 3738 35 34 33

0 PFN C D V 0

13 1 1

2728

224

031 56 3 2 1

0 PFN C D V 0

13 1 1

210211 192255 203 202

(b) 64-bit mode

0 MASK 0

190 189

8212 22 29

45 8 11

128191 139 138 137 136 135

R 0 VPN2 G 0 ASID

9192

2236

64127 6970 67 66 65

0 PFN C D V 0

13 1 1

2728

2236

063 56 3 2 1

0 PFN C D V 0

13 1 1

167168

The format of the EntryHi, EntryLo0, EntryLo1, and PageMask registers are nearly the same as the TLB entry.

However, it is unknown what bit of the EntryHi register corresponds to the TLB G bit.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

143

Figure 5-11. Format of a TLB Entry (1/2)

(a) PageMask Register

1819 031 11 10

0 MASK 0

13 8 11

MASK : Page comparison mask, which determines the virtual page size for the corresponding entry.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

(b) EntryHi Register

3940

(a) 32-bit mode

8321

031 11 10 8 7

VPN2 0 ASID

(b) 64-bit mode

62 61

832 22 29

063 11 10 8 7

R Fill VPN2 0 ASID

VPN2: Virtual page number divided by two (mapping to two pages)

ASID : Address space ID. An 8-bit ASID field that lets multiple processes share the TLB; each process has a

distinct mapping of otherwise identical virtual page numbers.

R : Space type (00 o user, 01 o supervisor, 11 o kernel). Matches bits 63 and 62 of the virtual address.

Fill : Reserved. Ignored on write. When read, returns zero.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

144

Figure 5-11. Format of a TLB Entry (2/2)

(c) EntryLo0 and EntryLo1 Registers

2728

EntryLo1

EntryLo0

EntryLo1

EntryLo0

224

031 56 3 2 1

0 PFN C D V G

13 1 1

2728

224

031 56 3 2 1

0 PFN C D V G

13 1 1

(a) 32-bit mode

(b) 64-bit mode

2728

2236

063 56 3 2 1

0 PFN C D V G

13 1 1

2728

2236

063 56 3 2 1

0 PFN C D V G

13 1 1

PFN : Page frame number; high-order bits of the physical address.

C : Specifies the TLB page attribute.

D : Dirty. If this bit is set to 1, the page is marked as dirty and, therefore, writable. This bit is actually a

write-protect bit that software can use to prevent alteration of data.

V : Valid. If this bit is set to 1, it indicates that the TLB entry is valid; otherwise, a TLB Invalid exception

(TLBL or TLBS) occurs.

G : Global. If this bit is set in both EntryLo0 and EntryLo1, then the processor ignores the ASID during TLB

lookup.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The coherency attribute (C) bits are used to specify whether to use the cache in referencing a page. When the

cache is used, whether the page attribute is “cached” or “uncached” is selected by algorithm.

Table 5-13 lists the page attributes selected according to the value in the C bits.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

145

Table 5-13. Cache Algorithm

C bit value Cache algorithm

0 Cached

1 Cached

2 Uncached

3 Cached

4 Cached

5 Cached

6 Cached

7 Cached

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

146

5.5 CP0 REGISTERS

The CP0 registers explained below are accessed by the memory management system and software. A

parenthesized number that follows each register name is a register number.

5.5.1 Index Register (0)

The Index register is a 32-bit, read/write register containing five bits to index an entry in the TLB. The most-

significant bit of the register shows the success or failure of a TLB probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB read (TLBR) or TLB write index (TLBWI)

instructions.

Figure 5-12. Index Register

4530 031

P 0 Index

1 26 5

P : Indicates whether probing is successful or not. It is set to 1 if the latest TLBP instruction fails. It is

cleared to 0 when the TLBP instruction is successful.

Index : Specifies an index to a TLB entry that is a target of the TLBR or TLBWI instruction.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

5.5.2 Random Register (1)

The Random register is a read-only register. The low-order 5 bits are used in referencing a TLB entry. This

register is decremented each time an instruction is executed. The values that can be set in the register are as

follows:

� The lower bound is the content of the Wired register.

� The upper bound is 31.

The Random register specifies the entry in the TLB that is affected by the TLBWR instruction. The register is

readable to verify proper operation of the processor.

The Random register is set to the value of the upper bound upon Cold Reset. This register is also set to the

upper bound when the Wired register is written. Figure 5-13 shows the format of the Random register.

Figure 5-13. Random Register

45 031

0 Random

27 5

Random : TLB random index

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

147

5.5.3 EntryHi (10), EntryL O0 (2), EntryL O1 (3), and PageMask (5) Registers

These registers are used in address translation, to rewrite TLB or to find match of TLB entry. When a TLB

exception occurs, the information of the address that causes the exception is loaded into these registers. For the

formats of these registers, see Figure 5-11.

(1) EntryHi Register (10)

The EntryHi register is read/write-accessible. It is used to access the high-order bits of built-in TLB. The

EntryHi register holds the high-order bits of a TLB entry for TLB read and write operations. If a TLB Mismatch,

TLB Invalid, or TLB Modified exception occurs, the EntryHi register sets the virtual page number (VPN2) for a

virtual address where an exception occurred and the ASID. See Chapter 6 for details of the TLB exception.

The ASID is used to read from or write to the ASID field of the TLB entry. It is also checked with the ASID of the

TLB entry as the ASID of the virtual address during address translation.

The EntryHi register is accessed by the TLBP, TLBWR, TLBWI, and TLBR instructions.

(2) EntryLo0 (2) and EntryLo1 (3) Registers

The EntryLo register consists of two registers that have identical formats: EntryLo0, used for even virtual pages

and EntryLo1, used for odd virtual pages. The EntryLo0 and EntryLo1 registers are both read-/write-accessible.

They are used to access the low-order bits of the built-in TLB. When a TLB read/write operation is carried out,

the EntryLo0 and EntryLo1 registers hold the contents of the low-order 32 bits of TLB entries at even and odd

addresses, respectively.

(3) PageMask Register (5)

The PageMask register is a read/write register used for reading from or writing to the TLB; it holds a comparison

mask that sets the five types of page sizes for each TLB entry, as shown in Table 5-14. Page sizes must be

from 1 Kbyte to 256 Kbytes.

TLB read and write instructions use this register as either a source or a destination; Bits 18 to 11 that are targets

of comparison are masked during address translation.

Table 5-14 lists the mask pattern for each page size. If the mask pattern is one not listed below, the TLB

behaves unexpectedly.

Table 5-14. Mask Values and Page Sizes

Page size Bit

18 17 16 15 14 13 12 11

1 Kbyte 0 0 0 0 0 0 0 0

4 Kbytes 0 0 0 0 0 0 1 1

16 Kbytes 0 0 0 0 1 1 1 1

64 Kbytes 0 0 1 1 1 1 1 1

256 Kbytes 1 1 1 1 1 1 1 1

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

148

5.5.4 Wired Register (6)

The Wired register is a read/write register that specifies the lower boundary of the random entry of the TLB as

shown in Figure 5-14. Wired entries cannot be overwritten by a TLBWR instruction. They can, however, be

overwritten by a TLBWI instruction. Random entries can be overwritten by both instructions.

Figure 5-14. Positions Indicated by the Wired Register

0

31

Value in the Wired register

Range of Wired

entries

Range specified by

the Random register

The Wired register is set to 0 upon Cold Reset. Writing this register also sets the Random register to the value of

its upper bound (see 5.5.2 Random register (1)). Figure 5-15 shows the format of the Wired register.

Figure 5-15. Wired Register

45 031

0 Wired

27 5

Wired : TLB wired boundary

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

149

5.5.5 Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains information identifying the

implementation and revision level of the CPU and CP0. Figure 5-16 shows the format of the PRId register.

Figure 5-16. PRId Register

1516 78 031

0 Imp Rev

16 8 8

Imp : CPU core processor ID number (0x0C for the VR4102)

Rev : CPU core processor revision number

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The processor revision number is stored as a value in the form y.x, where y is a major revision number in bits 7 to

4 and x is a minor revision number in bits 3 to 0.

The processor revision number can distinguish some CPU core revisions, however there is no guarantee that

changes to the CPU core will necessarily be reflected in the PRId register, or that changes to the revision number

necessarily reflect real CPU core changes. Therefore, create a program that does not depend on the processor

revision number area.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

150

5.5.6 Config Register (16)

The Config register indicates and specifies various configuration options selected on VR4102 processors.

Some configuration options, as defined by the EC and BE fields, are set by the hardware during Cold Reset and

are included in the Config register as read-only status bits for the software to access. Other configuration options

(AD, EP, and K0 fields) can be read/written and controlled by software; on Cold Reset these fields are undefined.

Since only a subset of the VR4000 options are available in the VR4102, some bits are set to constants (e.g., bits

14:13) that were variable in the VR4000. The Config register should be initialized by software before caches are

used. Figure 5-17 shows the format of the Config register.

Figure 5-17. Config Register Format

1 11

23

5 1 1

22 1718 1516 14

1 3 4

2830 242731

0 EC EP AD 0 1 0 BE 1

1

13

0

1

12

CS

3

11 9

IC

3

8 6

DC

3

5 3

0

3

2 0

K0

EC : System interface clock ratio (read only)

000 o Processor clock frequency divided by 2

Others o Reserved

EP : Transfer data pattern (cache write-back pattern)

0000 o DD: 1 word/1 cycle

Others o Reserved

AD : Accelerate data mode setting

0 o VR4000 Series compatible mode

1 o Reserved

BE : BigEndianMem. Indicates endian.

0 o Little endian

1 o Reserved

CS : Cache size mode indication

0 o Reserved

1 o Cache of small capacity

IC : Instruction cache size indication. The size is 2(10+IC) bytes when CS bit is set to 1.

2 o 4 Kbytes

Others o Reserved

DC : Data cache size indication. The size is 2(10+DC) bytes when CS bit is set to 1.

0 o 1 Kbytes

Others o Reserved

K0 : kseg0 cache coherency algorithm

010 o Uncached

Others o Cached

1: 1 is returned when it is read.

0: 0 is returned when it is read.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

151

Caution The value that can be set is different from that of the V R4100. Be sure to set the EP field and

the AD bit to 0. If they are set with any other values, the processor may behave unexpectedly.

5.5.7 Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register is a read/write register, and not used with the V R4102

processor except for diagnostic purpose, and serves no function during normal operation.

LLAddr register is implemented just for compatibility between the VR4102 and VR4000/VR4400.

Figure 5-18. LLAddr Register

031

PAddr

32

PAddr: 32-bit physical address

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

152

5.5.8 Cache Tag Registers (TagLo (28) and TagHi (29))

The TagLo and TagHi registers are 32-bit read/write registers that hold the primary cache tag and parity during

cache initialization, cache diagnostics, or cache error processing. The Tag registers are written by the CACHE and

MTC0 instructions.

The P fields of these registers are ignored on Index Store Tag operations by the CACHE instruction. Parity is

computed by the store operation. Figure 5-19 shows the format of these registers.

Figure 5-19. TagLo and TagHi Registers

22

031 10 9 8 7 126

PTagLo V D W 0 W ’ P

11 1 1 15

22

031 10 9 8 1

PTagLo V 0 P

11 8

031

0

32

Instruction
cache

Data cache

Tag Hi

PTagLo: Specifies physical address bits 31 to 10.

V : Valid bit

D : Dirty bit. However, this bit is defined only for the compatibility with the VR4000 Series processors,

and does not indicate the status of cache memory in spite of its readability and writability. This bit

cannot change the status of cache memory.

W : Write-back bit (set if cache line has been updated)

W’ : Even parity for the write-back bit

P : Even parity bit for primary cache tag

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

153

5.5.9 Virtual-to-Physical Address Translation

During virtual-to-physical address translation, the CPU compares the 8-bit ASID (and while the Global bit, G, is

not set to 1) of the virtual address to the ASID of the TLB entry to see if there is a match. One of the following

comparisons are also made:

� In 32-bit mode, the high-order bitsNote of the 32-bit virtual address are compared to the contents of the VPN2

(virtual page number divided by two) of each TLB entry.

� In 64-bit mode, the high-order bitsNote of the 64-bit virtual address are compared to the contents of the R and

the VPN2 (virtual page number divided by two) of each TLB entry.

If a TLB entry matches, the physical address and access control bits (C, D, and V) are retrieved from the

matching TLB entry. While the V bit of the entry must be set to 1 for a valid address translation to take place, it is

not involved in the determination of a matching TLB entry.

Figure 5-20 illustrates the TLB address translation flow.

Note The number of bits differs from page sizes. The table below shows the examples of high-order bits of the

virtual address in page size of 256 Kbytes and 1 Kbytes.

Page size

Mode

256 Kbytes 1 Kbytes

32-bit mode bits 31 to 19 bits 31 to 11

64-bit mode bits 63, 62, 39 to 19 bits 63, 62, 39 to 11

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

154

Figure 5-20. TLB Address Translation

Virtual address (input)

VPN
and

ASID

Exception

Exception Exception Exception

Exception

Exception

Physical address (output)

Address
error

No

Yes

Yes

YesNo

Yes

YesNo
Legal

address?
Supervisor

mode?

User
mode?

Legal
address?

Address
error

Legal
address?

Address
error

No

No

Yes

Yes

Yes
Mapped

address?

No
VPN

match?

Dirty

Valid

Global
No

G = 1?

No

V = 1?

Yes

Yes

No

D = 1?

NoYes
Uncached

area?

No
ASID

match?

No
32-bit

address?

Yes

Yes

TLB
Mismatch

XTLB
Mismatch

TLB
Invalid

No

No

Yes

Write?
TLB

Modified

Access
main

memory

Access
cache

memory

Exception

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

155

5.5.10 TLB Misses

If there is no TLB entry that matches the virtual address, a TLB Refill (miss) exception occursNote. If the access

control bits (D and V) indicate that the access is not valid, a TLB Modified or TLB Invalid exception occurs. If the C

bit is 010, the retrieved physical address directly accesses main memory, bypassing the cache.

Note See Chapter 6 for details of the TLB Miss exception.

5.5.11 TLB Instructions

The instructions used for TLB control are described below.

(1) Translation lookaside buffer probe (TLBP)

The translation lookaside buffer probe (TLBP) instruction loads the Index register with a TLB number that

matches the content of the EntryHi register. If there is no TLB number that matches the TLB entry, the highest-

order bit of the Index register is set.

(2) Translation lookaside buffer read (TLBR)

The translation lookaside buffer read (TLBR) instruction loads the EntryHi, EntryLo0, EntryLo1, and PageMask

registers with the content of the TLB entry indicated by the content of the Index register.

(3) Translation lookaside buffer write index (TLBWI)

The translation lookaside buffer write index (TLBWI) instruction writes the contents of the EntryHi, EntryLo0,

EntryLo1, and PageMask registers to the TLB entry indicated by the content of the Index register.

(4) Translation lookaside buffer write random (TLBWR)

The translation lookaside buffer write random (TLBWR) instruction writes the contents of the EntryHi, EntryLo0,

EntryLo1, and PageMask registers to the TLB entry indicated by the content of the Random register.

156

[MEMO]

157

CHAPTER 6 EXCEPTION PROCESSING

This chapter describes CPU exception processing, including an explanation of hardware that processes

exceptions, followed by the format and use of each CPU exception register.

The chapter concludes with a description of each exception’s cause, together with the manner in which the CPU

processes and services each exception.

6.1 HOW EXCEPTION PROCESSING WORKS

The processor receives exceptions from a number of sources, including translation lookaside buffer (TLB) misses,

arithmetic overflows, I/O interrupts, and system calls. When the CPU detects an exception, the normal sequence of

instruction execution is suspended and the processor enters Kernel mode (see Chapter 5 for a description of system

operating modes).

The processor then disables interrupts and transfers control for execution to the exception handler (located at a

specific address as an exception handling routine implemented by software). The handler saves the context of the

processor, including the contents of the program counter, the current operating mode (User or Supervisor), statuses,

and interrupt enabling. This context is saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program Counter (EPC) register with a location where

execution can restart after the exception has been serviced. The restart location in the EPC register is the address

of the instruction that caused the exception or, if the instruction was executing in a branch delay slot, the address of

the branch instruction immediately preceding the delay slot.

The VR4102 processor supports a Supervisor mode and fast TLB refill for all address spaces. The VR4102 also

provides the following functions:

� Interrupt enable (IE) bit

� Operating mode (User, Supervisor, or Kernel)

� Exception level (normal or exception is indicated by the EXL bit in the Status register)

� Error level (normal or error is indicated by the ERL bit in the Status register).

Interrupts are enabled when the following conditions are satisfied:

(1) Interrupt enable

An interrupt is enabled when the following conditions are satisfied.

x Interrupt enable bit (IE) = 1

x EXL bit = 0, ERL bit = 0

x Corresponding IM field bits in the Status register = 1

CHAPTER 6 EXCEPTION PROCESSING

158

(2) Operating mode

The operating mode is specified by KSU bit in the Status register when both the exception level and error level

are normal (0).

(3) Exception/error levels

The operation enters Kernel mode when either EXL bit or ERL bit in the Status register is set to 1. Returning

from an exception resets the exception level to normal (0) (for details, see Chapter 27).

The registers that retain address, cause, and status information during exception processing are described in 6.3

EXCEPTION PROCESSING REGISTERS. For a description of the exception process, see 6.4 DETAILS OF

EXCEPTIONS.

6.2 PRECISION OF EXCEPTIONS

VR4102 exceptions are logically precise; the instruction that causes an exception and all those that follow it are

aborted and can be re-executed after servicing the exception. When succeeding instructions are killed, exceptions

associated with those instructions are also killed. Exceptions are not taken in the order detected, but in instruction

fetch order.

There is a special case in which the VR4102 processor may not be able to restart easily after servicing an

exception. When a cache data parity error exception occurs on a load with a cache hit, the VR4102 processor does

not prevent the cache data (with erroneous parity) from being written back into the register file during the WB stage.

The exception is still precise, since both the EPC and CacheError registers are updated with the correct virtual

address pointing to the offending load instruction, and the exception handler can still determine the cause of

exception and its origin. The program can be restarted by rewriting the destination register - not automatically,

however, as in the case of all the other precise exceptions where no status change occurs.

CHAPTER 6 EXCEPTION PROCESSING

159

6.3 EXCEPTION PROCESSING REGISTERS

This section describes the CP0 registers that are used in exception processing. Table 6-1 lists these registers,

along with their number-each register has a unique identification number that is referred to as its register number.

The CP0 registers not listed in the table are used in memory management (see Chapter 5 for details).

The exception handler examines the CP0 registers during exception processing to determine the cause of the

exception and the state of the CPU at the time the exception occurred.

The registers in Table 6-1 are used in exception processing, and are described in the sections that follow.

Table 6-1. CP0 Exception Processing Registers

Register name Register number

Context register 4

BadVAddr register 8

Count register 9

Compare register 11

Status register 12

Cause register 13

EPC register 14

WatchLo register 18

WatchHi register 19

XContext register 20

Parity Error register 26

Cache Error register 27

ErrorEPC register 30

CHAPTER 6 EXCEPTION PROCESSING

160

6.3.1 Context Register (4)

The Context register is a read/write register containing the pointer to an entry in the page table entry (PTE) array

on the memory; this array is a table that stores virtual-to-physical address translations. When there is a TLB miss,

the operating system loads the unsuccessfully translated entry from the PTE array to the TLB. The Context register

is used by the TLB Refill exception handler for loading TLB entries. The Context register duplicates some of the

information provided in the BadVAddr register, but the information is arranged in a form that is more useful for a

software TLB exception handler. Figure 6-1 shows the format of the Context register.

Figure 6-1. Context Register Format

(a) 32-bit mode

4217

0

24

242531 4 3

PTEBase BadVPN2 0

(b) 64-bit mode

42139

02563 4 3

PTEBase BadVPN2 0

PTEBase : The PTEBase field is a read/write field. It is used by software as the pointer to the base address

of the PTE table in the current user address space.

BadVPN2 : The BadVPN2 field is written by hardware if a TLB miss occurs. This field holds the value (VPN2)

obtained by halving the virtual page number of the most recent virtual address for which

translation failed.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The 21-bit BadVPN2 field contains bits 31-11 of the virtual address that caused the TLB miss; bit 10 is excluded

because a single TLB entry maps to an even-odd page pair. For a 1-Kbyte page size, this format can directly

address the pair-table of 8-byte PTEs. When the page size is 4 Kbytes or more, shifting or masking this value

produces the correct PTE reference address.

CHAPTER 6 EXCEPTION PROCESSING

161

6.3.2 BadVAddr Register (8)

The Bad Virtual Address (BadVAddr) register is a read-only register that saves the most recent virtual address

that failed to have a valid translation, or that had an addressing error. Figure 6-2 shows the format of the BadVAddr

register.

Caution This register saves no information after a bus error exception, because it is not an address

error exception.

Figure 6-2. BadVAddr Register Format

(a) 32-bit mode

32

031

BadVAddr

(b) 64-bit mode

(b) 64-bit mode

64

063

BadVAddr

BadVAddr: Most recent virtual address for which an addressing error occurred, or for which address

translation failed

6.3.3 Count Register (9)

The read/write Count register acts as a timer. It is incremented in synchronization with the MasterOut clock,

regardless of whether instructions are being executed, retired, or any forward progress is actually made through the

pipeline.

This register is a free-running type. When the register reaches all ones, it rolls over to zero and continues

counting. This register is used for self-diagnostic test, system initialization, or the establishment of inter-process

synchronization.

Figure 6-3 shows the format of the Count register.

Figure 6-3. Count Register Format

32

031

Count

Count: 32-bit up-date count value that is compared with the value of the Compare register

CHAPTER 6 EXCEPTION PROCESSING

162

6.3.4 Compare Register (11)

The Compare register causes a timer interrupt; it maintains a stable value that does not change on its own.

When the value of the Count register (see 6.3.3) equals the value of the Compare register, the IP(7) bit in the

Cause register is set. This causes an interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer interrupt request.

For diagnostic purposes, the Compare register is a read/write register. Normally, this register should be only

used for a write. Figure 6-4 shows the format of the Compare register.

Figure 6-4. Compare Register Format

32

031

Compare

Compare: Value that is compared with the count value of the Count register

6.3.5 Status Register (12)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the

diagnostic states of the processor. Figure 5-5 shows the format of the Status register. Figure 5-6 shows the details

of the Diagnostic Status (DS) field. All DS field bits other than the TS bit are writable.

Figure 6-5. Status Register Format

29 28 27 26 25 24 16 15 8 7 6 5 4 3 2 1 031

0 CU0 0 RE DS IM (7:0) KX SX UX KSU ERL

1213 9

EXL IE

8 111211 1

CU0 : Enables/disables the use of the coprocessor (1 o Enabled, 0 o Disabled).

CP0 can be used by the kernel at all times.

0 : Reserved for future use. Write 0 in a write operation. When this bit is read, 0 is read.

RE : Enables/disables reversing of the endian setting in User mode (0 o Disabled, 1 o Enabled). This bit

must be set to 0 since the VR4102 supports the little-endian order only.

DS : Diagnostic Status field (see Figure 6-6).

IM : Interrupt Mask field used to enable/disable interrupts (0 o Disabled, 1 o Enabled). This field consists

of 8 bits that are used to control eight interrupts. The bits are assigned to interrupts as follows:

IM7 : Masks a timer interrupt.

IM(6:2) : Mask ordinary interrupts (Int(4:0)Note). However, Int4Note never occur in the VR4102.

IM(1:0) : Mask software interrupts or Cause register IP(1:0).

Note Int(4:0) are internal signals of the VR4100 CPU core. For details about connection to the on-

chip peripheral units, refer to Chapter 14.

CHAPTER 6 EXCEPTION PROCESSING

163

KX : Enables 64-bit addressing in Kernel mode (0 o 32-bit, 1 o 64-bit). If this bit is set, an XTLB Refill

exception occurs if a TLB miss occurs in the Kernel mode address space.

SX : Enables 64-bit addressing and operation in Supervisor mode (0 o 32-bit, 1 o 64-bit). If this bit is

set, an XTLB Refill exception occurs if a TLB miss occurs in the Supervisor mode address space.

UX: : Enables 64-bit addressing and operation in User mode (0 o 32-bit, 1 o 64-bit). If this bit is set, an

XTLB Refill exception occurs if a TLB miss occurs in the User mode address space.

KSU : Sets and indicates the operating mode (10 o User, 01 o Supervisor, 00 o Kernel).

ERL : Sets and indicates the error level (0 o Normal, 1 o Error).

EXL : Sets and indicates the exception level (0 o Normal, 1 o Exception).

IE : Sets and indicates interrupt enabling/disabling (0 o Disabled, 1 o Enabled).

Figure 6-6. Status Register Diagnostic Status Field

161718192021222324

0 BEV TS SR 0 CH CE DE

11111112

BEV : Specifies the base address of a TLB Refill exception vector and common exception vector (0 o

Normal, 1 o Bootstrap).

TS : Occurs the TLB to be shut down (read-only) (0 o Not shut down, 1 o Shut down). This bit is used to

avoid any problems that may occur when multiple TLB entries match the same virtual address. After

the TLB has been shut down, reset the processor to enable restart. Note that the TLB is shut down

even if a TLB entry matching a virtual address is marked as being invalid (with the V bit cleared).

SR : Occurs a Soft Reset or NMI exception (0 o Not occurred, 1 o Occurred).

CH : CP0 condition bit (0 o False, 1 o True). This bit can be read and written by software only; it cannot

be accessed by hardware.

CE : When CE = 1, the contents of the PErr register are written to the check bits of the cache (See 6.3.10)

DE : Specifies whether a cache parity error causes an exception (0 o Enable parity check, 1 o Disable

parity check).

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The status register has the following fields where the modes and access status are set.

CHAPTER 6 EXCEPTION PROCESSING

164

(1) Interrupt enable

Interrupts are enabled when all of the following conditions are true:

� IE is set to 1.

� EXL is cleared to 0.

� ERL is cleared to 0.

� The appropriate bit of the IM is set to 1.

(2) Operating modes

The following Status register bit settings are required for User, Kernel, and Supervisor modes.

� The processor is in User mode when KSU = 10, EXL = 0, and ERL = 0.

� The processor is in Supervisor mode when KSU = 01, EXL = 0, and ERL = 0.

� The processor is in Kernel mode when KSU = 00, EXL = 1, or ERL = 1.

(3) 32- and 64-bit modes

The following Status register bit settings select 32- or 64-bit operation for User, Kernel, and Supervisor

operating modes. Enabling 64-bit operation permits the execution of 64-bit opcodes and translation of 64-bit

addresses. 64-bit operation for User, Kernel and Supervisor modes can be set independently.

� 64-bit addressing for Kernel mode is enabled when KX bit = 1. 64-bit operations are always valid in Kernel

mode.

� 64-bit addressing and operations are enabled for Supervisor mode when SX bit = 1.

� 64-bit addressing and operations are enabled for User mode when UX bit = 1.

(4) Kernel address space accesses

Access to the kernel address space is allowed when the processor is in Kernel mode.

(5) Supervisor address space accesses

Access to the supervisor address space is allowed when the processor is in Supervisor or Kernel mode.

(6) User address space accesses

Access to the user address space is allowed in any of the three operating modes.

(7) Status after reset

The contents of the Status register are undefined after resets, except for the following bits.

x TS and SR are cleared to 0.

x ERL and BEV are set to 1.

x SR is 0 after Cold reset, and is 1 after Soft reset or NMI interrupt.

Remark Cold reset and Soft reset are CPU core reset (see 7.4 RESET OF THE CPU CORE). For the reset of

all the VR4102 including peripheral units, refer to CHAPTER 7 INITIALIZATION INTERFACE and

CHAPTER 15 PMU.

CHAPTER 6 EXCEPTION PROCESSING

165

6.3.6 Cause Register (13)

The 32-bit read/write Cause register holds the cause of the most recent exception. A 5-bit exception code

indicates one of the causes (see Table 6-2). Other bits holds the detailed information of the specific exception. All

bits in the Cause register, with the exception of the IP1 and IP0 bits, are read-only; IP1 and IP0 are used for software

interrupts. Figure 6-7 shows the fields of this register; Table 6-2 describes the Cause register codes.

Figure 6-7. Cause Register Format

827 16 15 67 2 1 0

12 8 1 5 2

31 30 29 28

BD 0 CE

211

0 IP(7..0) 0 ExcCode 0

BD : Indicates whether the most recent exception occurred in the branch delay slot (1 → In delay slot, 0

→ Normal).

CE : Indicates the coprocessor number in which a Coprocessor Unusable exception occurred.

This field will remain undefined for as long as no exception occurs.

IP : Indicates whether an interrupt is pending (1 → Interrupt pending, 0 → No interrupt pending).

IM7 : A timer interrupt.

IM(6:2) : Ordinary interrupts (Int(4:0)Note). However, Int4Note never occurs in the VR4102.

IM(1:0) : Software interrupts. Only these bits cause an interrupt exception, when they are set to 1

by means of software.

Note Int(4:0) are internal signals of the VR4100 CPU core. For details about connection to the on-

chip peripheral units, refer to Chapter 14.

ExcCode: Exception code field (refer to Table 6-2 for details)

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 6 EXCEPTION PROCESSING

166

Table 6-2. Cause Register Exception Code Field

Exception code Mnemonic Description

0 Int Interrupt exception

1 Mod TLB Modified exception

2 TLBL TLB Refill exception (load or fetch)

3 TLBS TLB Refill exception (store)

4 AdEL Address Error exception (load or fetch)

5 AdES Address Error exception (store)

6 IBE Bus Error exception (instruction fetch)

7 DBE Bus Error exception (data load or store)

8 Sys System Call exception

9 Bp Breakpoint exception

10 RI Reserved Instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Integer Overflow exception

13 Tr Trap exception

14 to 22 � Reserved for future use

23 WATCH Watch exception

24 to 31 � Reserved for future use

The VR4102 has eight interrupt request sources, IP7 to IP0.

For the detailed description of interrupts, refer to Chapter 9.

(1) IP7

This bit indicates whether there is a timer interrupt request.

It is set when the values of Count register and Compare register match.

(2) IP6 to IP2

IP6 to IP2 reflect the state of the interrupt request signal of the CPU core.

(3) IP1 and IP0

These bits are used to set/clear a software interrupt request.

CHAPTER 6 EXCEPTION PROCESSING

167

6.3.7 Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing

resumes after an exception has been serviced.

The EPC register contains either:

� Virtual address of the instruction that was the direct cause of the exception

� Virtual address of the immediately preceding branch or jump instruction (when the instruction associated with

the exception is in a branch delay slot, and the BD bit in the Cause register is set to 1).

The EXL bit in the Status register is set to 1 to keep the processor from overwriting the address of the exception-

causing instruction contained in the EPC register in the event of another exception.

Figure 6-8 shows the format of the EPC register.

Figure 6-8. EPC Register Format

(a) 32-bit mode

32

031

EPC

(b) 64-bit mode

64

063

EPC

EPC: Restart address after exception processing

CHAPTER 6 EXCEPTION PROCESSING

168

6.3.8 WatchLo (18) and WatchHi (19) Registers

The VR4102 processor provides a debugging feature to detect references to a selected physical address; load

and store instructions to the location specified by the WatchLo and WatchHi registers cause a Watch exception.

Figures 5-9 and 5-10 show the format of the WatchLo and WatchHi registers.

Figure 5-9. WatchLo and WatchHi Register Format

29

3 2 1 031

PAddr0 0 R W

1 1 1

32

031

0

WatchLo Register

WatchHi Register

PAddr0 : Specifies physical address bits 31 to 3.

R : If this bit is set to 1, an exception will occur when a load instruction is executed.

W : If this bit is set to 1, an exception will occur when a store instruction is executed.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 6 EXCEPTION PROCESSING

169

6.3.9 XContext Register (20)

The read/write XContext register contains a pointer to an entry in the page table entry (PTE) array, an operating

system data structure that stores virtual-to-physical address translations. If a TLB miss occurs, the operating system

loads the untranslated data from the PTE into the TLB to handle the software error.

The XContext register is used by the XTLB Refill exception handler to load TLB entries in 64-bit addressing

mode.

The XContext register duplicates some of the information provided in the BadVAddr register, and puts it in a form

useful for the XTLB exception handler.

This register is included solely for operating system use. The operating system sets the PTEBase field in the

register, as needed. Figure 6-10 shows the format of the XContext register.

Figure 6-10. XContext Register Format

32

42 2929

035 34 3363 4 3

PTEBase R BadVPN2 0

PTEBase : The PTEBase field is a read/write field, and is used by software as the pointer to the base

address of the PTE table in the current user address space.

BadVPN2 : The BadVPN2 field is written by hardware if a TLB miss occurs. This field holds the value (VPN2)

obtained by halving the virtual page number of the most recent virtual address for which

translation failed.

R : Space type (00 o User, 01o Supervisor, 11 o Kernel). The setting of this field matches virtual

address bits 63 and 62.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The 29-bit BadVPN2 field has bits 39 to 11 of the virtual address that caused the TLB miss; bit 10 is excluded

because a single TLB entry maps to an even-odd page pair. For a 1-Kbyte page size, this format may be used

directly to address the pair-table of 8-byte PTEs. For 4-Kbyte-or-more page and PTE sizes, shifting or masking this

value produces the appropriate address.

CHAPTER 6 EXCEPTION PROCESSING

170

6.3.10 Parity Error Register (26)

The read/write Parity Error (PErr) register contains the cache data parity bits for cache initialization, cache

diagnostics, or cache error processing.

The PErr register is loaded by the Index_Load_Tag CACHE instruction. All bits of the parity field are valid on the

data cache operation because data cache employs byte parity (1-bit parity for 1 byte). But a LSB of the parity field is

valid on the instruction cache operation because instruction cache employs word parity (1-bit parity for 1 word).

The contents of the PErr register are:

� written into the on-chip data cache on store instructions (instead of the computed parity) when the CE bit of

the Status register is set to 1

� substituted for the computed parity for the CACHE Fill instruction

In the VR4102, parity check is performed only for cache memory.

It is not performed for main memory or peripheral units.

Figure 6-11 shows the format of the PErr register.

Figure 6-11. Parity Error Register Format

824

031 8 7

0 Parity

Parity : Specifies the 8-bit parity data to be read from or written to the on-chip cache.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 6 EXCEPTION PROCESSING

171

6.3.11 Cache Error Register (27)

The 32-bit read/write Cache Error (CacheErr) register processes parity errors in the on-chip cache. Parity errors

cannot be corrected by on-chip hardware.

The CacheErr register holds cache index and status bits that indicate the cause of the error.

In the VR4102, parity check is performed only for cache memory.

It is not performed for main memory or peripheral units.

Figure 6-12 shows the format of the CacheErr register.

Figure 6-12. CacheErr Register Format

31 30 29 28 27 26 25 24 11 10 0

14 11

ER 0 ED ET 0 EE EB 0 PIdx

1 1 1 1 1 1 1

ER : Reference type (0 o Instruction, 1 o Data)

ED : Indicates whether an error occurred in the data field (0 o Normal, 1 o Error).

ET : Indicates whether an error occurred in the tag field (0 o Normal, 1 o Error).

EE : This bit is set if an error occurs on the SysAD bus.

EB : This bit is set if a data error occurs subsequent to an instruction error. (The error status is indicated by

the remaining bit positions.) In this case, the data cache must be flushed upon the completion of

instruction error processing.

PIdx: Cache index

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

6.3.12 ErrorEPC Register (30)

The Error Exception Program Counter (ErrorEPC) register is similar to the EPC register. It is used to store the

Program Counter value at which the Cache Error, Cold Reset, Soft Reset, or NMI exception has been serviced.

The read/write ErrorEPC register contains the virtual address at which instruction processing can resume after

servicing an error. This address can be:

� the virtual address of the instruction that caused the error exception

� the virtual address of the immediately preceding branch or jump instruction, when the instruction associated

with the error exception is in a branch delay slot.

The contents of the ErrorEPC register do not change when the ERL bit of the Status register is set to 1. This

prevents the processor when other exceptions occur from overwriting the address of the instruction in this register

which causes an error exception.

There is no branch delay slot indication for the ErrorEPC register.

Figure 6-13 shows the format of the ErrorEPC register.

CHAPTER 6 EXCEPTION PROCESSING

172

Figure 6-13. The ErrorEPC Register Format

(a) 32-bit mode

32

031

ErrorEPC

(b) 64-bit mode

64

063

ErrorEPC

ErrorEPC: Restart address after parity error exception processing. Also indicates the value of the program counter

when Cold reset, Soft reset, or NMI exceptions occurred.

CHAPTER 6 EXCEPTION PROCESSING

173

6.4 DETAILS OF EXCEPTIONS

This section describes causes, processes, and services of the VR4102’s exceptions.

6.4.1 Exception Types

This section gives sample exception handler operations for the following exception types:

� Cold Reset

� Soft Reset

� NMI

� Cache error

� Remaining processor exceptions

When the EXL and ERL bits in the Status register are 0, either User, Supervisor, or Kernel operating mode is

specified by the KSU bits in the Status register. When either the EXL or ERL bit is set to 1, the processor is in

Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, meaning the system is in Kernel mode. After

saving the appropriate state, the exception handler typically resets the EXL bit back to 0. The exception handler

sets the EXL bit to 1 so that the saved state is not lost upon the occurrence of another exception while the saved

state is being restored.

Returning from an exception also resets the EXL bit to 0. For details, see Chapter 27.

6.4.2 Exception Vector Locations

The Cold Reset, Soft Reset, and NMI exceptions are always branched to the following reset exception vector

address (virtual). This address is in an uncached, unmapped space.

� 0xBFC0 0000 in 32-bit mode

� 0xFFFF FFFF BFC0 0000 in 64-bit mode

Addresses for the remaining exceptions are a combination of a vector offset and a base address.

64-/32-bit mode exception vectors and their offsets are shown below.

CHAPTER 6 EXCEPTION PROCESSING

174

Table 6-3. 64-Bit Mode Exception Vector Base Addresses

Vector base address (virtual) Vector offset

Cold Reset

Soft Reset

NMI

0xFFFF FFFF BFC0 0000

(BEV is automatically set to 1)

0x0000

Cache Error 0xFFFF FFFF A000 0000 (BEV = 0)

0xFFFF FFFF BFC0 0200 (BEV = 1)

0x0100

TLB Refill (EXL = 0) 0xFFFF FFFF 8000 0000 (BEV = 0) 0x0000

XTLB Refill (EXL = 1) 0xFFFF FFFF BFC0 0200 (BEV = 1) 0x0080

Other exceptions 0x0180

Table 6-4. 32-Bit Mode Exception Vector Base Addresses

Vector base address (virtual) Vector offset

Cold Reset

Soft Reset

NMI

0xBFC0 0000

(BEV is automatically set to 1)

0x0000

Cache Error 0xA000 0000 (BEV = 0)

0xBFC0 0200 (BEV = 1)

0x0100

TLB Refill (EXL = 0) 0x8000 0000 (BEV = 0) 0x0000

XTLB Refill (EXL = 1) 0xBFC0 0200 (BEV = 1) 0x0080

Other exceptions 0x0180

Examples 1. TLB Refill Exception Vector

When BEV bit = 0, the vector base address (virtual) for the TLB Refill exception is in kseg0

(unmapped) space.

� 0x8000 0000 in 32-bit mode

� 0xFFFF FFFF 8000 0000 in 64-bit mode

When BEV bit = 1, the vector base address (virtual) for the TLB Refill exception is in kseg1 (uncached,

unmapped) space.

� 0xBFC0 0200 in 32-bit mode

� 0xFFFF FFFF BFC0 0200 in 64-bit mode

This is an uncached, non-TLB-mapped space, allowing the exception handler to bypass the cache and

TLB.

CHAPTER 6 EXCEPTION PROCESSING

175

Example 2. Cache Error Exception Vector

When BEV bit = 0, the vector base address (virtual) for the Cache Error exception is in kseg1

(uncached, unmapped) space.

� 0xA000 0000 in 32-bit mode

� 0xFFFF FFFF A000 0000 in 64-bit mode

When BEV bit = 1, the vector base address (virtual) for the Cache Error exception is in kseg1

(uncached, unmapped) space.

� 0xBFC0 0200 in 32-bit mode

� 0xFFFF FFFF BFC0 0200 in 64-bit mode

This is an uncached, non-TLB-mapped space, allowing the exception handler to bypass the cache and

TLB.

CHAPTER 6 EXCEPTION PROCESSING

176

6.4.3 Priority of Exceptions

While more than one exception can occur for a single instruction, only the exception with the highest priority is

reported. Table 6-5 lists the priorities.

Table 6-5. Exception Priority Order

Priority Exceptions

High

n

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

p

Low

Cold Reset

Soft Reset

NMI

Address Error (instruction fetch)

TLB/XTLB Refill (instruction fetch)

TLB Invalid (instruction fetch)

Cache Error (instruction fetch)

Bus Error (instruction fetch)

System Call

Breakpoint

Coprocessor Unusable

Reserved Instruction

Trap

Integer Overflow

Address Error (data access)

TLB/XTLB Refill (data access)

TLB Invalid (data access)

TLB Modified (data write)

Cache Error (data access)

Watch

Bus Error (data access)

Interrupt (other than NMI)

Hereafter, handling exceptions by hardware is referred to as “process”, and handling exception by software is

referred to as “service”.

CHAPTER 6 EXCEPTION PROCESSING

177

6.4.4 Cold Reset Exception

Cause

The Cold Reset exception occurs when the ColdReset# signal (internal) is asserted and then deasserted. This

exception is not maskable. The Reset# signal (internal) must be asserted along with the ColdReset# signal (for

details, see Chapter 7).

Processing

The CPU provides a special interrupt vector for this exception:

0xBFC0 0000 (virtual) in 32-bit mode

0xFFFF FFFF BFC0 0000 (virtual) in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so the hardware need not

initialize the TLB or the cache to process this exception. It also means the processor can fetch and execute

instructions while the caches and virtual memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception occurs, except for the following

register fields:

When ERL bit of the Status register is 0, the program counter’s value at the exception occurrence is saved

to the EPC register.

TS and SR of the Status register are cleared to 0.

ERL and BEV of the Status register are set to 1.

The Random register is initialized to the value of its upper bound (31) (refer to 5.4.2 Random Register (1)).

The Wired register is initialized to 0.

Bits 31 to 28 of the Config register are set to 0, and bits 22 to 3 to 0x04800.

All other bits are undefined.

Servicing

The Cold Reset exception is serviced by:

Initializing all processor registers, coprocessor registers, TLB, caches, and the memory system

Performing diagnostic tests

Bootstrapping the operating system

CHAPTER 6 EXCEPTION PROCESSING

178

6.4.5 Soft Reset Exception

Cause

A Soft Reset (sometimes called Warm Reset) occurs when the ColdReset# signal remains deasserted while the

Reset# signal goes from assertion to deassertion (for details, see Chapter 7).

A Soft Reset immediately resets all state machines, and sets the SR bit of the Status register. Execution begins

at the reset vector when the reset is deasserted. This exception is not maskable.

Caution In the V R4102, a soft reset never occurs.

Processing

The CPU provides a special interrupt vector for this exception (same location as Cold Reset):

✧ 0xBFC0 0000 (virtual) in 32-bit mode

✧ 0xFFFF FFFF BFC0 0000 (virtual) in 64-bit mode

This vector is located within unmapped and uncached address space, so that the cache and TLB need not be

initialized to process this exception. The SR bit of the Status register is set to 1 to distinguish this exception from

a Cold Reset exception.

When this exception occurs, the contents of all registers are preserved except for the following registers:

✧ When ERL bit of the Status register is 0, the program counter’s value at the exception occurrence is saved

to the EPC register.

✧ TS bit of the Status register is cleared to 0.

✧ ERL, SR, and BEV bits of the Status register are set to 1.

During a soft reset, access to the operating cache or system interface is aborted. This means that the contents of

the cache and memory will be undefined if a Soft Reset occurs.

Servicing

The Soft Reset exception is serviced by:

✧ Preserving the current processor states for diagnostic tests

✧ Reinitializing the system in the same way as for a Cold Reset exception

CHAPTER 6 EXCEPTION PROCESSING

179

6.4.6 NMI Exception

Cause

The Nonmaskable Interrupt (NMI) exception occurs in response to the input of the NMI signal (internal). This

interrupt is not maskable; it occurs regardless of the settings of the EXL, ERL, and the IE bits in the Status

register (for details, see Chapters 9 and 14).

Processing

The CPU provides a special interrupt vector for this exception:

✧ 0xBFC0 0000 (virtual) in 32-bit mode

✧ 0xFFFF FFFF BFC0 0000 (virtual) in 64-bit mode

This vector is located within unmapped and uncached address space so that the cache and TLB need not be

initialized to process an NMI interrupt. The SR bit of the Status register is set to 1 to distinguish this exception

from a Cold Reset exception.

Unlike Cold Reset and Soft Reset, but like other exceptions, NMI is taken only at instruction boundaries. The

states of the caches and memory system are preserved by this exception.

When this exception occurs, the contents of all registers are preserved except for the following registers:

✧ When ERL bit of the Status register is 0, the program counter’s value at the exception occurrence is saved

to the EPC register.

✧ The TS bit of the Status register is cleared to 0.

✧ The ERL, SR, and BEV bits of the Status register are set to 1.

Servicing

The NMI exception is serviced by:

✧ Preserving the current processor states for diagnostic tests

✧ Reinitializing the system in the same way as for a Cold Reset exception

CHAPTER 6 EXCEPTION PROCESSING

180

6.4.7 Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of the following. This exception is

not maskable.

Execution of the LW, LWU, SW, or CACHE instruction for word data that is not located on a word boundary

Execution of the LH, LHU, or SH instruction for half-word data that is not located on a half-word boundary

Execution the LD or SD instruction for double-word data that is not located on a double-word boundary

Referencing the kernel address space in User or Supervisor mode

Referencing the supervisor space in User mode

Referencing an address that does not exist in the kernel, user, or supervisor address space in 64-bit Kernel,
User, or Supervisor mode

Branching to an address that is not located on a word boundary

Processing

The common exception vector is used for this exception. The AdEL or AdES code in the Cause register is set. If

this exception has been caused by an instruction reference or load operation, AdEL is set. If it has been caused

by a store operation, AdES is set.

When this exception occurs, the BadVAddr register stores the virtual address that was not properly aligned or

was referenced in protected address space. The contents of the VPN field of the Context and EntryHi registers

are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless this instruction is in a

branch delay slot. If it is in a branch delay slot, the EPC register contains the address of the preceding branch

instruction and the BD bit of the Cause register is set to 1.

Servicing

The kernel reports the UNIXTM SIGSEGV (segmentation violation) signal to the current process, and this exception

is usually fatal.

CHAPTER 6 EXCEPTION PROCESSING

181

6.4.8 TLB Exceptions

Three types of TLB exceptions can occur:

TLB Refill exception occurs when there is no TLB entry that matches a referenced address.

A TLB Invalid exception occurs when a TLB entry that matches a referenced virtual address is marked as

being invalid (with the V bit set to 0).

The TLB Modified exception occurs when a TLB entry that matches a virtual address referenced by the

store instruction is marked as being valid (with the V bit set to 1).

The following three sections describe these TLB exceptions.

(1) TLB Refill Exception (32-bit Space Mode)/XTLB Refill Exception (64-bit Space Mode)

Cause

The TLB Refill exception occurs when there is no TLB entry to match a reference to a mapped address space.

This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for references to 32-bit address spaces, and one

for references to 64-bit address spaces. The UX, SX, and KX bits of the Status register determine whether the

user, supervisor or kernel address spaces referenced are 32-bit or 64-bit spaces. When the EXL bit of the Status

register is set to 0, either of these two special vectors is referenced. When the EXL bit is set to 1, the common

exception vector is referenced.

This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register. If this exception has been

caused by an instruction reference or load operation, TLBL is set. If it has been caused by a store operation,

TLBS is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers hold the virtual address that

failed address translation. The EntryHi register also contains the ASID from which the translation fault occurred.

The Random register normally contains a valid location in which to place the replacement TLB entry. The

contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception, unless this instruction is in a

branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and

the BD bit of the Cause register is set to 1.

Servicing

To service this exception, the contents of the Context or XContext register are used as a virtual address to fetch

memory words containing the physical page frame and access control bits for a pair of TLB entries. The memory

word is written into the TLB entry by using the EntryLo0, EntryLo1, or EntryHi register.

It is possible that the physical page frame and access control bits are placed in a page where the virtual address

is not resident in the TLB. This condition is processed by allowing a TLB Refill exception in the TLB Refill

exception handler. In this case, the common exception vector is used because the EXL bit of the Status register

is set to 1.

CHAPTER 6 EXCEPTION PROCESSING

182

(2) TLB Invalid Exception

Cause

The TLB Invalid exception occurs when the TLB entry that matches with the virtual address to be referenced is

invalid (the V bit is set to 0). This exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBS code in the ExcCode field of the

Cause register is set. If this exception has been caused by an instruction reference or load operation, TLBL is

set. If it has been caused by a store operation, TLBS is set.

When this exception occurs, the BadVAddr, Context, Xcontext, and EntryHi registers contain the virtual address

that failed address translation. The EntryHi register also contains the ASID from which the translation fault

occurred. The Random register normally stores a valid location in which to place the replacement TLB entry.

The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception unless this instruction is in a

branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and

the BD bit of the Cause register is set to 1.

Servicing

Usually, the V bit of a TLB entry is cleared in the following cases:

When a virtual address does not exist

When the virtual address exists, but is not in main memory (a page fault)

When a trap is required on any reference to the page (for example, to maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with a TLBP (TLB Probe) instruction,

and replaced by an entry with its Valid bit set to 1.

CHAPTER 6 EXCEPTION PROCESSING

183

(3) TLB Modified Exception

Cause

The TLB Modified exception occurs when the TLB entry that matches with the virtual address referenced by the

store instruction is valid (bit V is 1) but is not writable (bit D is 0). This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Mod code in the ExcCode field of the Cause

register is set.

When this exception occurs, the BadVAddr, Context, Xcontext, and EntryHi registers contain the virtual address

that failed address translation. The EntryHi register also contains the ASID from which the translation fault

occurred. The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception unless that instruction is in a

branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and

the BD bit of the Cause register is set to 1.

Servicing

The kernel uses the failed virtual address or virtual page number to identify the corresponding access control bits.

The page identified may or may not permit write accesses; if writes are not permitted, a write protection violation

occurs.

If write accesses are permitted, the page frame is marked dirty (/writable) by the kernel in its own data structures.

The TLBP instruction places the index of the TLB entry that must be altered into the Index register. The word

data containing the physical page frame and access control bits (with the D bit set to 1) is loaded to the EntryLo

register, and the contents of the EntryHi and EntryLo registers are written into the TLB.

CHAPTER 6 EXCEPTION PROCESSING

184

6.4.9 Cache Error Exception

Cause

The Cache Error exception occurs when a cache parity error is detected. This exception is not maskable, but

error detection can be disabled by setting the DE bit of the Status register.

If a parity error is detected when the DE bit of Status register is not set, a cache error exception is taken during

one of the following operations:

An instruction fetch from instruction cache

A load from the data cache

Tag parity check on a store

Main memory read by the processor

Most of the CACHE instructions (no exception is taken for the Index_Load_Tag and Index_Store_Tag

CACHE instructions)

In the VR4102, the parity error from the external bus and on-chip peripheral buses is not checked.

Processing

The processor sets the ERL bit in the Status register, saves the address to recover from the exception to the

ErrorEPC register, and then transfers to a special vector in uncached space.

If the BEV bit = 0, the vector is one of the following:

� 0xA000 0100 (virtual) in 32-bit mode

� 0xFFFF FFFF A000 0100 (virtual) in 64-bit mode

If the BEV bit = 1, the vector is one of the following:

� 0xBFC0 0300 (virtual) in 32-bit mode

� 0xFFFF FFFF BFC0 0300 (virtual) in 64-bit mode

Servicing

All errors should be logged. To correct cache parity errors, the system uses the CACHE instruction to invalidate

the cache block, overwrites the old data through a cache miss, and resumes execution with an ERET instruction.

Other errors are not correctable and are likely to be fatal to the current process.

CHAPTER 6 EXCEPTION PROCESSING

185

6.4.10 Bus Error Exception

Cause

A Bus Error exception is raised by board-level circuitry for events such as bus time-out, local bus parity errors,

and invalid physical memory addresses or access types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached reference, or unbuffered write occurs

synchronously. In other words, it occurs when an illegal access is detected during BCU read.

For details of illegal accesses, refer to 10.4.6 Illegal Access Notification .

Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE code in the ExcCode field of the

Cause register is set, signifying whether the instruction caused the exception by an instruction reference, load

operation, or store operation.

The EPC register contains the address of the instruction that caused the exception, unless it is in a branch delay

slot, in which case the EPC register contains the address of the preceding branch instruction and the BD bit of the

Cause register is set to 1.

Servicing

The physical address at which the fault occurred can be computed from information available in the System

Control Coprocessor (CP0) registers.

If the IBE code in the Cause register is set (indicating an instruction fetch), the virtual address is contained

in the EPC register (or 4 + the contents of the EPC register if the BD bit of the Cause register is set to 1).

If the DBE code is set (indicating a load or store), the virtual address of the instruction that caused the

exception (the address of the preceding branch instruction if the BD bit of the Cause register is set to 1) is

saved to the EPC register (or 4 + the contents of the EPC register if the BD bit of the Cause register is set to

1).

The virtual address of the load and store instruction can then be obtained by interpreting the instruction. The

physical address can be obtained by using the TLBP instruction and reading the EntryLo register to compute the

physical page number.

At the time of this exception, the kernel reports the UNIX SIGBUS (bus error) signal to the current process, but

the exception is usually fatal.

CHAPTER 6 EXCEPTION PROCESSING

186

6.4.11 System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL instruction. This exception is not

maskable.

Processing

The common exception vector is used for this exception, and the Sys code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in a branch delay slot, in which

case the EPC register contains the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register is set to 1; otherwise this bit

is cleared.

Servicing

When this exception occurs, control is transferred to the applicable system routine.

To resume execution, the EPC register must be altered so that the SYSCALL instruction does not re-execute; this

is accomplished by adding a value of 4 to the EPC register before returning.

If a SYSCALL instruction is in a branch delay slot, interpretation of the branch instruction is required to resume

execution.

6.4.12 Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction. This exception is not

maskable.

Processing

The common exception vector is used for this exception, and the BP code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the BREAK instruction unless it is in a branch delay slot, in which case

the EPC register contains the address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the Status register is set to 1; otherwise this bit is

cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the applicable system routine. Additional

distinctions can be made by analyzing the unused bits of the BREAK instruction (bits 25 to 6), and loading the

contents of the instruction whose address the EPC register contains. A value of 4 must be added to the contents

of the EPC register to locate the instruction if it resides in a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction does not re-execute; this is

accomplished by adding a value of 4 to the EPC register before returning.

If a BREAK instruction is in a branch delay slot, interpretation (decoding) of the branch instruction is required to

resume execution.

CHAPTER 6 EXCEPTION PROCESSING

187

6.4.13 Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a coprocessor instruction for

either:

a corresponding coprocessor unit that has not been marked usable (Status register bit, CU[0] = 0), or

CP0 instructions, when the unit has not been marked usable (Status register bit, CU[0] = 0) and the process

executes in User or Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU code in the ExcCode field of the Cause

register is set. The CE bit of the Cause register indicates which of the four coprocessors was referenced.

The EPC register contains the address of the coprocessor instruction that causes an exception unless it is in a

branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and

the BD bit of the Cause register is set to 1.

Servicing

The coprocessor unit to which an attempted reference was made is identified by the CE bit of the Cause register.

One of the following processing is performed by the handler:

If the process is entitled access to the coprocessor, the coprocessor is marked usable and the

corresponding state is restored to the coprocessor.

If the process is entitled access to the coprocessor, but the coprocessor does not exist or has failed,

interpretation of the coprocessor instruction is possible.

If the BD bit in the Cause register is set to 1, the branch instruction must be interpreted; then the

coprocessor instruction can be emulated and execution resumed with the EPC register advanced past the

coprocessor instruction.

If the process is not entitled access to the coprocessor, the kernel reports UNIX SIGILL/ILL_PRIVIN_FAULT

(illegal instruction/privileged instruction fault) signal to the current process, and this exception is fatal.

CHAPTER 6 EXCEPTION PROCESSING

188

6.4.14 Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when an attempt is made to execute one of the following instructions:

� Instruction with an undefined major opcode (bits 31 to 26)

� SPECIAL instruction with an undefined minor opcode (bits 5 to 0)

� REGIMM instruction with an undefined minor opcode (bits 20 to 16)

� 64-bit instructions in 32-bit User or Supervisor mode

64-bit operations are always valid in Kernel mode regardless of the value of the KX bit in the Status register. This

exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the reserved instruction unless it is in a branch delay slot, in which case

the EPC register contains the address of the preceding branch instruction and the BD bit of the Cause register is

set to 1.

Servicing

All currently defined MIPS ISA instructions can be executed. The process executing at the time of this exception

is handled by a UNIX SIGILL/ILL_RESOP_FAULT (illegal instruction/reserved operand fault) signal. This error is

usually fatal.

6.4.15 Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI, TLTUI, TEQI, or

TNEI instruction results in a TRUE condition. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the trap instruction causing the exception unless the instruction is in a

branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and

the BD bit of the Cause register is set to 1.

Servicing

At the time of a Trap exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point

exception/integer overflow) signal to the current process, but the exception is usually fatal.

CHAPTER 6 EXCEPTION PROCESSING

189

6.4.16 Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI or DSUB instruction results in a

2’s complement overflow. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Ov code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the instruction that caused the exception unless the instruction is in a

branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and

the BD bit of the Cause register is set to 1.

Servicing

At the time of the exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point

exception/integer overflow) signal to the current process, and this exception is usually fatal.

6.4.17 Watch Exception

Cause

A Watch exception occurs when a load or store instruction references the physical address specified by the

WatchLo/WatchHi registers. The WatchLo/WatchHi registers specify whether a load or store or both could have

initiated this exception.

When the R bit of the WatchLo register is set to 1: Load instruction

When the W bit of the WatchLo register is set to 1: Store instruction

When both the R bit and W bit of the WatchLo register are set to 1: Load instruction or store instruction

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed while the EXL bit in the Status register is set to 1, and Watch exception is only

maskable by setting the EXL bit in the Status register to 1.

Processing

The common exception vector is used for this exception, and the WATCH code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the load or store instruction that caused the exception unless it is in a

branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and

the BD bit of the Cause register is set to 1.

CHAPTER 6 EXCEPTION PROCESSING

190

Servicing

The Watch exception is a debugging aid; typically the exception handler transfers control to a debugger, allowing

the user to examine the situation. To continue, once the Watch exception must be disabled to execute the

faulting instruction. The Watch exception must then be reenabled. The faulting instruction can be executed

either by the debugger or by setting breakpoints.

6.4.18 Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditionsNote is asserted. In the VR4102, interrupt

requests from internal peripheral units first enter the ICU and are then notified to the CPU core via one of four

interrupt sources (Int [3:0]) or NMI.

Each of the eight interrupts can be masked by clearing the corresponding bit in the IM field of the Status register,

and all of the eight interrupts can be masked at once by clearing the IE bit of the Status register or setting the

EXL/ERL bit.

Note: They are 1 timer interrupt, 5 ordinary interrupts, and 2 software interrupts.

Of the five ordinary interrupts, Int4 is never asserted active.

Processing

The common exception vector is used for this exception, and the Int code in the ExcCode field of the Cause

register is set.

The IP field of the Cause register indicates current interrupt requests. It is possible that more than one of the bits

can be simultaneously set (or cleared) if the interrupt request signal is asserted and then deasserted before this

register is read.

The EPC register contains the address of the instruction that caused the exception unless it is in a branch delay

slot, in which case the EPC register contains the address of the preceding branch instruction and the BD bit of the

Cause register is set to 1.

Servicing

If the interrupt is caused by one of the two software-generated exceptions (SW0 or SW1), the interrupt condition

is cleared by setting the corresponding Cause register bit to 0.

If the interrupt is caused by hardware, the interrupt condition is cleared by deactivating the corresponding

interrupt request signal.

CHAPTER 6 EXCEPTION PROCESSING

191

6.5 EXCEPTION PROCESSING AND SERVICING FLOWCHARTS

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

� Common exceptions and a guideline to their exception handler

� TLB/XTLB Refill exception and a guideline to their exception handler

� Cache Error exception

� Cold Reset, Soft Reset and NMI exceptions, and a guideline to their handler.

Generally speaking, the exceptions are "processed” by hardware (HW); the exceptions are then “serviced” by

software (SW).

CHAPTER 6 EXCEPTION PROCESSING

192

Figure 6-14. Common Exception Handler (1/2)

(a) Processing exceptions other than Cold reset, Soft reset, NMI,
TLB/XTLB Mismatch, and Cache Error exceptions (hardware)

Instruction
in branch delay

slot?

BD bit ← 0
EPC ← PC

EXL ← 1

BEV

 EntryHi ← VPN2, ASID
X/Context ← VPN2

Set Cause Register (ExcCode, CE)

BD bit ← 1
EPC ← PC – 4

No

Yes

; Kernel mode is set, and interrupts
 are disabled.

PC ← 0xFFFF FFFF BFC0 0200 + 180
(Unmapped, uncached space)

PC ← 0xFFFF FFFF 8000 0000 + 180
(Unmapped, cacheable space)

To guideline of general exception handler

= 0 (normal) = 1 (bootstrap)

EXL = 1?
(SR1)

Yes

No

Start

; Check for multiple exceptions

; BadVAddr is set only when a TLB
 Mismatch, TLB Invalid, or TLB Modified
 exception occurs. (BadVAddr is not set
 when a Bus Error exception occurs.

; The EntryHi and X/Context registers are set
 only when a TLB Mismatch, TLB Invalid, or
 TLB Modified exception occurs.

Remark The exceptions can be masked by the IE or IM bit. The Watch exception can be set to pending status by
setting the EXL bit.

CHAPTER 6 EXCEPTION PROCESSING

193

Figure 6-14. Common Exception Handler (2/2)

(b) Guideline of general exception handler (software)

TS bit = 0?
(SR21)

Execute MFC0 instruction
X/Context register

EPC register
Status register
Cause register

Execute MTC0 instruction
(Status bit setting)

KSU bit ← 00
EXL bit ← 0

IE bit = 1

Servicing by each
exception routine

EXL = 1

Execute MTC0 instruction
EPC register

Status register

ERET

No

YesThe processor is reset

(In Kernel mode, interrupts are enabled.)

; The register files are saved.

Check the Cause register,
and jump to each routine

Guideline of general
exception handler

; The occurance of TLB Mismatch, TLB Invalid, and TLB
 Modified exceptions is disabled by using an unmapped space.
; The occurance of the Watch and Interrupt exceptions is
 disabled by setting EXL = 1.
; Other exceptions are avoided in the OS programs
; However, the Cache error, Cold reset, Soft reset, and NMI
 exceptions are enabled.

; After EXL = 0 is set, all exceptions are enabled (except for
 the interrupt exception masked by IE or IM and the Cache
 Error exception masked by DE.

; The execution of the ERET instruction is disabled in the
 branch delay slots of the other jump instructions.
; The processor does not execute an instruction in the branch
 delay slot of the ERET instruction.
: PC ← EPC, EXL ← 0

CHAPTER 6 EXCEPTION PROCESSING

194

Figure 6-15. TLB/XTLB Refill Exception Handler (1/2)

(a) Hardware

Instruction in
branch delay slot?

EXL ← 1

BEV
(SR22)

EXL = 0?
(SR1)

EXL = 0?
(SR1)

No

Yes

; Check for multiple exceptions.

XTLB exception?

XTLB Mismatch
vector offset = 0x080

TLB Mismatch
vector offset = 0x000

General Exception
vector offset = 0x180

; Kernel mode is set and interrpts
 are disabled.

= 0 (normal) = 1 (bootstrap)

Yes

No

No

Yes

NoYes

Start

 EntryHi ← VPN2, ASID
X/Context ← VPN2
Set Cause Register

(ExcCode)

 EntryHi ← VPN2, ASID
X/Context ← VPN2
Set Cause Register

(ExcCode)

BD bit ← 1
EPC ← PC – 4

BD bit ← 0
EPC ← PC

PC ← 0xFFFF FFFF 8000 0000 + vector offset
(Unmapped, cacheable space)

PC ← 0xFFFF FFFF BFC0 0200 + vector offset
(Unmapped, uncached space)

To guideline of TLB/XTLB exception hadler

CHAPTER 6 EXCEPTION PROCESSING

195

Figure 6-15. TLB/XTLB Refill Exception Handler (2/2)

(b) Guideline of TLB/XTLB exception handler (software)

Execute MFC0 instruction
X/Context register

ERET

Servicing by each exceoption routine

Guideline of TLB/XTLB exception handler

; The occurence of TLB Mismatch, TLB Invalid, and TLB Modified
 exception is disabled by using an unmapped space.
; The occurence of the Watch and Interrupt exceptions is disabled by
 setting EXL = 1.
; Other exceptions are avoided in the OS programs.
; However, the Cache error, Cold reset, Soft reset, and NMI exceptions
 are enabled.

; The physical address for a virtual address loaded into the X/Context
 register is loaded into the EntryLo register and written to the TLB.
; As long as a data/instruction address exists in the mapping space,
 another TLB Mismatch exception may occur. In such a case, EXL = 1 is
 set, causing a jump to the common exception vector. (In this case, the
 common exception handler handles the TLB miss or the ERET instruction
 returns control to the user program, then a TLB Mismatch exception is
 generated again.)

; The execution of the ERET instruction is disabled in the branch delay
 slots of other jump instructions.
; The processor does not execute an instruction in the branch delay slot
 of the ERET instruction.
; PC ← EPC, EXL ← 0

CHAPTER 6 EXCEPTION PROCESSING

196

Figure 6-16. Cache Error Exception Handler

The Cache Error exception can be masked by setting the DE (SR16) bit to 1. When ERL = 1, Cache
Error exceptions are masked.

Instruction
in branch delay

slot?

Set cache
error register

No

Yes

BD bit ← 1
Error EPC ← PC – 4

BD bit ← 0
Error EPC ← PC

BEV
(SR22)

PC ← 0xFFFF FFFF A000 0000 + 100
(Unmapped, uncached space)

= 0 (normal) = 1 (bootstrap)

ERL ← 1

Servicing by exception routine

ERET

Remark

PC ← 0xFFFF FFFF BFC0 0200 + 100
(Unmapped, uncached space)

StartHardware

Software

No

YesERL = 1?
(SR2)

; Check for multple exceptions

; The execution of the ERET instruction is disabled in the branch delay
 slots of other jump instructions.
; The processor does not execute an instruction in the branch delay slot
 of the ERET instruction.
; PC ← Error EPC, ERL ← 0

; The Cache Error and TLB-related Error exceptions do not occur because
 of unmapped/uncache vector.
; The occurence of the Watch and Interrupt exceptions is disabled by
 setting ERL = 1.
; Other exceptions are avoided in the OS programs.
; However, the Cold reset, Soft reset, and NMI exceptions are enabled.

CHAPTER 6 EXCEPTION PROCESSING

197

Figure 6-17. Cold Reset, Soft Reset, and NMI Exception Handler

Set Status register
BEV bit ← 1
TS bit ← 0
SR bit ← 1

ERL bit ← 1

Random register ← 31
Wired register ← 0

Update Config register
bits 31:28  22:6

Set Status register
BEV bit ← 1
TS bit ← 0
SR bit ← 0

ERL bit ← 1

Soft reset or
NMI exception

PC ← 0xFFFF FFFF BFC0 0000

NMI?
Yes

SR = 1?
(SR20)

No

Yes

Servicing by Soft reset
exception routine

Servicing by Cold reset
exception routine

Servicing by NMI
exception routine

ERET

No

; The processor provides no means of
 distinguishing between an NMI
 exception and Soft reset exception,
 such that this must be determined at
 the system level.

Software

Hardware

No

YesERL = 1?
(SR2)

No

Yes

No

Yes

No

YesInstruction
in branch delay

slot?

BD bit ← 1
Error EPC ← PC – 4

BD bit ← 0
Error EPC ← PC

Cold reset
exception

ERL = 1?
(SR2)

Instruction
in branch delay

slot?

BD bit ← 1
Error EPC ← PC – 4

BD bit ← 0
Error EPC ← PC

198

[MEMO]

199

CHAPTER 7 INITIALIZATION INTERFACE

This chapter describes the initialization interface and processor modes. It also explains the reset signal

descriptions and types, signal- and timing-related dependence, and the initialization sequence during each mode

that can be selected by the user.

Remark # that follows signal names indicates active low.

7.1 RESET FUNCTION

There are five ways to reset the VR4102. Each is summarized below.

7.1.1 RTC Reset

During power-on, set the RTCRST# pin as active. After waiting (about 600 ms) for the 32.768-kHz oscillator to

begin oscillating when the power supply is stable at 3.0 V or above, setting the RTCRST# pin as inactive causes the

RTC unit to begin counting. Next, when the POWER pin, DCD# pin, or GPIO[3] pin becomes inactive, the VR4102

asserts the POWERON pin and uses the BATTINH/BATTINT# signal to perform a battery level check. If the battery

check’s result is OK, the VR4102 asserts the MPOWER pin and waits for the stabilization time period (about 350 ms)

for the external agent’s DC/DC converter, then begins PLL oscillation and starts all clocks (a period of about 16 ms

following the start of PLL oscillation is required for stabilization of PLL oscillation).

An RTC reset does not save any of the status information and it completely initializes the processor’s internal

state. Since the DRAM is not switched to self refresh mode, the contents of DRAM after an RTC reset are not at all

guaranteed.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to

access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the

VR4102, the processor should be completely initialized by software.

CHAPTER 7 INITIALIZATION INTERFACE

200

Figure 7-1. RTC Reset

Reset#(internal)

ColdReset#(internal)

MPOWER(o)

POWER(i)

RTCRST#(i)

RTC

(internal, 32kHz)

Stable oscillation
16ms

350ms>600ms

Undefined

PLL(internal)

16MasterClockNote

>32ms

POWERON(o)

Undefined Stable oscillation

Note MasterClock is the basic clock used in the CPU core.

CHAPTER 7 INITIALIZATION INTERFACE

201

7.1.2 RSTSW

After the RSTSW# pin becomes active and then becomes inactive 100 Ps later, the VR4102 starts PLL oscillation

and starts all clocks (a period of about 16 ms following the start of PLL oscillation is required for stabilization of PLL

oscillation).

A reset by RSTSW initializes the entire internal state except for the RTC timer and the PMU. Since the DRAM is

not switched to self refresh mode, the contents of DRAM after an RTC reset are not at all guaranteed.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to

access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the

VR4102, the processor should be completely initialized by software.

Figure 7-2. RSTSW

H

L

Reset#(internal)

ColdReset#(internal

MPOWER(o)

POWER(i)

RTC

(internal, 32kHz)

Stable oscillation

16MasterClockNote

16ms

>3RTC

PLL(internal) Undefined

RSTSW#(i)

MRAS(0:3)#(o)

UCAS#/LCAS#(o)

Stable oscillation

Stable oscillation

Note MasterClock is the basic clock used in the CPU core.

CHAPTER 7 INITIALIZATION INTERFACE

202

7.1.3 Deadman’s Switch

After the Deadman’s switch unit is enabled, if the Deadman’s switch is not cleared within the specified time

period, the VR4102 is immediately returned to reset status. Setting and clearing of the Deadman’s switch is

performed by software.

A reset by the Deadman’s switch initializes the entire internal state except for the RTC timer and the PMU. Since

the DRAM is not switched to self refresh mode, the contents of DRAM after a Deadman’s switch reset are not at all

guaranteed.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to

access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the

VR4102, the processor should be completely initialized by software.

Figure 7-3. Deadman’s Switch

L

H

H

Reset#(internal)

ColdReset#(internal)

MPOWER(o)

POWER(i)

RSTSW#(i)

RTC

(internal, 32kHz)

16MasterClockNote

16ms

PLL(internal)

Undefined

Stable oscillation

Stable oscillation

Stable oscillation

Note MasterClock is the basic clock used in the CPU core.

CHAPTER 7 INITIALIZATION INTERFACE

203

7.1.4 Software Shutdown

When the software executes the HIBERNATE instruction, the VR4102 sets the DRAM to self refresh mode and

sets the MPOWER pin as inactive, then enters reset status. Recovery from reset status occurs when the POWER

pin is asserted, when a WakeUpTimer interrupt occurs, or when the DCD# pin is asserted.

A reset by software shutdown initializes the entire internal state except for the RTC timer and the PMU.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to

access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the

VR4102, the processor should be completely initialized by software.

Figure 7-4. Software Shutdown

Reset#(internal)

ColdReset#(internal)

MPOWER(o)

POWER(i)

MRAS(0:3)#/
UCAS#/LCAS#

(o)

RTC

(internal, 32kHz)
Stable oscillation

16MasterClockNote

16ms

350ms

Undefined

PLL(internal)

>32ms

POWERON(o)

Stopped

Stable oscillation

Note MasterClock is the basic clock used in the CPU core.

CHAPTER 7 INITIALIZATION INTERFACE

204

7.1.5 HALTimer Shutdown

After an RTC reset is canceled, if the HAL timer is not canceled by software within about four seconds (the

HALTIMERRST bit of the PMUCNTREG register is not set to 1), the VR4102 enters reset status. Recovery from

reset status occurs when the POWER pin is asserted or when a WakeUpTimer interrupt occurs.

A reset by HAL timer initializes the entire internal state except for the RTC timer and the PMU.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to

access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the

VR4102, the processor should be completely initialized by software.

Figure 7-5. HALTimer Shutdown

Reset#(internal)

ColdReset#(internal

MPOWER(o)

POWER(i)

MRAS(0:3)#/
UCAS#/LCAS#

(o)

RTC

(internal, 32kHz)

16MasterClockNote

16ms

350ms
4s

Undefined

PLL(internal)

>32ms
Stable oscillation

POWERON(o)

Stopped

Stable oscillation

Note MasterClock is the basic clock used in the CPU core.

CHAPTER 7 INITIALIZATION INTERFACE

205

7.2 POWERON SEQUENCE

The factors that cause the VR4102 to switch from hibernate mode or shutdown mode to full speed mode are

called power-on factors. There are four power-on factors: assertion of the POWERON pin, assertion of the DCD#

pin, activation of the wakeup timer, and assertion of the GPIO pins (GPIO[3..0], GPIO[12..9]). When an activation

factor occurs, the VR4102 asserts the POWERON pin, then provides notification to external agents that the VR4102

is ready for power-on. Three RTC clocks after the POWERON pin is asserted, the VR4102 checks the state of the

BATTINH/BATTINT# pin. If the BATTINH/BATTINT# pin’s state is low, the POWERON pin is deasserted one RTC

clock after the BATTINH/BATTINT# pin check is completed, then the VR4102 is not activated. If the

BATTINH/BATTINT# pin’s state is high, the POWERON pin is deasserted three RTC clocks after the

BATTINH/BATTINT# pin check is completed, then the MPOWER pin is asserted and the VR4102 is activated.

Figure 7-6 shows a timing chart of VR4102 activation and Figure 7-7 shows a timing chart of when activation fails

due to the BATTINH/BATTINT# pin’s “low” state.

For details of poweron sequence according to each power-on factor, refer to chapter 15.

CHAPTER 7 INITIALIZATION INTERFACE

206

Figure 7-6. V R4102 Activation Sequence (when Battery Check Is OK)

Reset#(internal)

ColdReset#(internal)

MPOWER(o)

Activation of

CPU

Check BATTINH/

BATTINT# pin
Detection of

activation factor

RTC

(internal, 32kHz)

PLL(internal)

POWERON(o)

BATTINH/BATTINT#(i)

Stopped

Undefined Stable oscillation

Figure 7-7. V R4102 Activation Sequence (when Battery Check Is NG)

Reset#(internal)

ColdReset#(internal)

MPOWER(o)

CPU not

activated

Check BATTINH/

BATTINT# pin
Detection of

activation

RTC

(internal, 32kHz)

PLL(internal)

POWERON(o)

BATTINH/BATTINT#(i)

L

L

L

H

CHAPTER 7 INITIALIZATION INTERFACE

207

7.3 RESET OF THE CPU CORE

This section describes the reset sequence of the VR4100 CPU core. For details about factors of reset or reset of

the whole VR4102, refer to 7.1 and Chapter 15.

7.3.1 Cold Reset

In the VR4102, a cold reset sequence is executed in the CPU core in the following cases:

x RTC reset

x RSTSW reset

x Deadman’s SW shutdown

x Software shutdown

x HAL Timer shutdown

x Battery low shutdown

x Battery lock release shutdown

A Cold Reset completely initializes the CPU core, except for the following register bits.

x The TS and SR bits of the Status register are cleared to 0.

x The ERL and BEV bits of the Status register are set to 1.

x The upper limit value (31) is set in the Random register.

x The Wired register is initialized to 0.

x Bits 31 to 28 of the Config register are set to 0 and bits 22 to 3 to 0x04800; the other bits are undefined.

x The values of the other registers are undefined.

Once power to the processor is established, the ColdReset# (internal) and the Reset# (internal) signals are

asserted and a Cold Reset is started. After approximately 2 ms assertion, the ColdReset# signal is deasserted

synchronously with MasterOut. Then the Reset# signal is deasserted synchronously with MasterOut, and the Cold

Reset is completed.

Upon reset, the CPU core becomes bus master and drives the SysAD bus (internal). After Reset# is deasserted,

the CPU core branches to the Reset exception vector and begins executing the reset exception code.

CHAPTER 7 INITIALIZATION INTERFACE

208

7.3.2 Soft Reset

Caution Soft Reset is not supported in the present V R4102.

A Soft Reset initializes the CPU core without affecting the clocks; in other words, a Soft Reset is a logic reset. In a

Soft Reset, the CPU core retains as much state information as possible; all state information except for the following

is retained:

x The TS bit of the Status register is cleared to 0.

x The SR, ERL and BEV bits of the Status register are set to 1.

x The Count register is initialized to 0.

x The IP7 bit of the Cause register is cleared to 0.

x Any Interrupts generated on the SysAD bus are cleared.

x NMI is cleared.

x The Config register is initialized.

A Soft Reset is started by assertion of the Reset# signal, and is completed at the deassertion of the Reset# signal

synchronized with MasterOut. In general, data in the CPU core is preserved for debugging purpose.

Upon reset, the CPU core becomes bus master and drives the SysAD bus (internal). After Reset# is deasserted,

the CPU core branches to the Reset exception vector and begins executing the reset exception code.

CHAPTER 7 INITIALIZATION INTERFACE

209

Figure 7-8. Cold Reset

Reset#
(Internal)

ColdReset#
(Internal)

TClock
(Internal)

MasterOut
(Internal)

VDD

MasterClock Note

(Internal)

Undefined

Undefined

Note MasterClock is the basic clock used in the CPU core.

Figure 7-9. Soft Reset

Reset#
(Internal)

TClock
(Internal)

MasterOut
(Internal)

VDD

MasterClock Note

(Internal)

H

Note MasterClock is the basic clock used in the CPU core.

CHAPTER 7 INITIALIZATION INTERFACE

210

7.4 VR4102 PROCESSOR MODES

The VR4102 supports various modes, which can be selected by the user. The CPU core mode is set each time a

write occurs in the Status register and Config register. The on-chip peripheral unit mode is set by writing to the I/O

register.

This section describes the CPU core’s operation modes. For operation modes of on-chip peripheral units, see the

chapters describing the various units.

7.4.1 Power Modes

The VR4102 supports four power modes: Fullspeed mode, Standby mode, Suspend mode, and Hibernate mode.

(1) Fullspeed Mode

This is the normal operation mode.

The VR4102’s default status sets operation under Fullspeed mode. After the processor is reset, the VR4102

returns to Fullspeed mode.

(2) Standby Mode

When a STANDBY instruction has been executed, the processor can be set to Standby mode. During Standby

mode, all of the internal clocks in the CPU core except for the timer and interrupt clocks are held at high level.

The peripheral units all operate as they do during Fullspeed mode. This means that DMA operations are

enabled during Standby mode.

When the STANDBY instruction completes the WB stage, the VR4102 remains idle until the SysAD internal bus

enters the idle state. Next, the clocks in the CPU core are shut down and pipeline operation is stopped.

However, the PLL, timer, and interrupt clocks continue to operate, as do the internal bus clocks (TClock and

MasterOut).

During Standby mode, the processor is returned to Fullspeed mode if any interrupt occurs, including a timer

interrupt that occurs internally.

(3) Suspend Mode

When the SUSPEND instruction has been executed, the processor can be set to Suspend mode. During

Suspend mode, the processor stalls the pipeline and supplying all of the internal clocks in the CPU core except

for PLL timer and interrupt clocks are stopped. The VR4102 stops supplying TClock to peripheral units.

Accordingly, during Suspend mode peripheral units can only be activated by a special interrupt unit (DCD#

control, etc.). While in this mode, the register and cache contents are retained.

When the SUSPEND instruction completes the WB stage, the VR4102 switches the DRAM to self refresh mode

and then waits for the SysAD internal bus to enter the idle state. Next, the clocks in the CPU core are shut down

and pipeline operation is stopped. The VR4102 then stops supplying TClock to peripheral units. However, the

PLL, timer, and interrupt clocks continue to operate, as do the MasterOut.

The processor remains in Suspend mode until an interrupt is received, at which time it returns to Fullspeed

mode.

CHAPTER 7 INITIALIZATION INTERFACE

211

(4) Hibernate Mode

When the HIBERNATE instruction has been executed, the processor can be set to Hibernate mode. During

Hibernate mode, the processor stops supplying clocks to all units. The register and cache contents are retained

and output of TClock and MasterOut is stopped. The processor remains in Hibernate mode until the POWER

pin is asserted, a WakeUpTimer interrupt occurs, DCD# pin is asserted, or GPIO[3] is asserted, at which the

processor returns to Fullspeed mode.

Power consumption during Hibernate mode is about 0 W (it does not go completely to 0 W due to the existence

of a 32.768-kHz oscillator, on-chip peripheral units that operate at 32.768 kHz, or DRAM self refresh).

7.4.2 Privilege Mode

The VR4102 supports three system modes: kernel expanded addressing mode, supervisor expanded addressing

mode, and user expanded addressing mode. These three modes are described below.

(1) Kernel Expanded Addressing Mode

When the Status register’s KX bit has been set, an expanded TLB miss exception vector is used when a TLB

miss occurs for the kernel address. While in kernel mode, the MIPS III operation code can always be used,

regardless of the KX bit.

(2) Supervisor Expanded Addressing Mode

When the Status register’s SX bit has been set, the MIPS III operation code can be used when in supervisor

mode and an expanded TLB miss exception vector is used when a TLB miss occurs for the supervisor address.

(3) User Expanded Addressing Mode

When the Status register’s UX bit has been set, the MIPS III operation code can be used when in user mode,

and an expanded TLB miss exception vector is used when a TLB miss occurs for the user address. When this

bit is cleared, the MIPS I and II operation codes can be used, as can 32-bit virtual addresses.

7.4.3 Reverse Endian

When the Status register’s RE bit has been set, the endian ordering is reversed to adopt the user software’s

perspective. However, the RE bit of the Status register must be set to 0 since the VR4102 supports the little-endian

order only.

7.4.4 Bootstrap Exception Vector (BEV)

The BEV bit is used to generate an exception during operation testing (diagnostic testing) of the cache and main

memory system. This bit is automatically set to 1 after reset or NMI exception.

When the Status register’s BEV bit has been set, the address of the TLB miss exception vector is changed to the

virtual address 0xFFFF FFFF BFC0 0200 and the ordinary execution vector is changed to address 0xFFFF FFFF

BFC0 0380.

When the BEV bit is cleared, the TLB miss exception vector’s address is changed to 0xFFFF FFFF 8000 0000

and the ordinary execution vector is changed to address 0xFFFF FFFF 8000 0180.

CHAPTER 7 INITIALIZATION INTERFACE

212

7.4.5 Cache Error Check

When the Status register’s CE bit has been set, the contents of the PErr register can be written to the data

cache’s parity bit instead of the parity generated by the STORE instruction. If the CACHE instruction’s “Fill” option is

executed, the contents of the PErr register can be written to the instruction cache’s parity bit instead of the

instruction parity.

7.4.6 Parity Error Prohibit

When the Status register’s DE bit has been set, the processor does not issue any cache parity error exceptions.

7.4.7 Interrupt Enable (IE)

When the Status register’s IE bit has been cleared, no interrupts can be received except for reset interrupts and

nonmaskable interrupts.

213

CHAPTER 8 CACHE MEMORY

This chapter describes in detail the cache memory: its place in the VR4100 CPU core memory organization, and

individual organization of the caches.

This chapter uses the following terminology:

� The data cache may also be referred to as the D-cache.

� The instruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

8.1 MEMORY ORGANIZATION

Figure 8-1 shows the VR4100 CPU core system memory hierarchy. In the logical memory hierarchy, the caches

lie between the CPU and main memory. They are designed to make the speedup of memory accesses transparent

to the user.

Each functional block in Figure 8-1 has the capacity to hold more data than the block above it. For instance,

physical main memory has a larger capacity than the caches. At the same time, each functional block takes longer

to access than any block above it. For instance, it takes longer to access data in main memory than in the CPU on-

chip registers.

Figure 8-1. Logical Hierarchy of Memory

VR4100 CPU core

Register Register

I-cache D-cache

Cache

Main memory

Disc, CD-ROM,
tape, etc.

Register

Cache

Memory

Memory
media

Faster
access time

Increasing
data capacity

CHAPTER 8 CACHE MEMORY

214

The VR4100 CPU core has two on-chip caches: one holds instructions (the instruction cache), the other holds

data (the data cache). The instruction and data caches can be read in one PClock cycle.

Data writes are pipelined and can complete at a rate of one per PClock cycle. In the first stage of the cycle, the

store address is translated and the tag is checked; in the second stage, the data is written into the data RAM.

8.2 CACHE ORGANIZATION

This section describes the organization of the on-chip data and instruction caches. Figure 8-2 provides a block

diagram of the VR4100 CPU core cache and memory model.

Figure 8-2. Cache Support

VR4100 CPU core

Cache controller

I-cache

D-cache

Caches

Main memory

I-cache: Instruction cache
D-cache: Data cache

(1) Cache Line Lengths

A cache line is the smallest unit of information that can be fetched from main memory for the cache, and that is

represented by a single tag.

The line size for the instruction/data cache is 4 words (16 bytes).

For cache tag, refer to 8.2.1 and 8.2.1.

(2) Cache Sizes

The instruction cache in the VR4100 CPU core is 4 Kbytes; the data cache is 1 Kbytes.

8.2.1 Organization of the Instruction Cache (I-Cache)

Each line of I-cache data (although it is actually an instruction, it is referred to as data to distinguish it from its tag)

has an associated 24-bit tag that contains a 22-bit physical address, a single Valid bit, and a single Parity bit. Word

parity is used on I-cache data (1 bit of parity per word).

The VR4100 CPU core I-cache has the following characteristics:

� direct-mapped

� indexed with a virtual address

� checked with a physical tag

� organized with a 4-word (16-byte) cache line.

Figure 8-3 shows the format of a 4-word (16-byte) I-cache line.

CHAPTER 8 CACHE MEMORY

215

Figure 8-3. Cache Line Format

P V PTag

DataP Data

DataP Data

DataP Data

DataP Data

23 22 21 0

221 1

32 31 0
PTag Physical tag

(bits 31 to 10 of the physical address)
When a tag is specified by the Cache
instruction, however, the high-order 20
bits are used.

V Valid bit
P Even parity for the Ptag and V bit
Data I-cache data
DataP Even parity for the data

(1-bit parity for 4-byte data)

8.2.2 Organization of the Data Cache (D-Cache)

Each line of D-cache data has an associated 26-bit tag that contains a 22-bit physical address, a Valid bit, a

Parity bit, a Write-back bit, and a parity bit for Write-back.

The VR4100 CPU core D-cache has the following characteristics :

� write-back

� direct-mapped

� indexed with a virtual address

� checked with a physical tag

� organized with a 4-word (16-byte) cache line.

Figure 8-4 shows the format of a 4-word (16-byte) D-cache line.

Figure 8-4. Data Cache Line Format

W’ W

DataP Data

DataP Data

23 22 21 0

221 1

71 63 0PTag Physical tag
(bits 31 to 10 of the physical address)

V Valid bit
P Even parity for the Ptag and V bit
W Write-back bit

(set if cache line has been written)
W’ Even parity for the write-back bit
Data D-cache data
DataP Even parity for the data (1-bit parity for

4-byte data)

P V PTag

25 24

1 1

64

CHAPTER 8 CACHE MEMORY

216

8.2.3 Accessing the Caches

Figure 8-5 shows the virtual address (VA) index into the caches. The number of virtual address bits used to index

the instruction and data caches depends on the cache size.

(1) Data cache addressing

This addressing uses bits VA [9:4]. The most significant bit is VA9 because the cache size is 1 Kbyte. The least

significant bit is VA4 because the line size is 4 words (16 bytes).

(2) Instruction cache addressing

This addressing uses bits VA [11:4]. The most significant bit is VA11 because the cache size is 4 Kbytes. The

least significant bit is VA4 because the line size is 4 words (16 bytes).

Figure 8-5. Cache Data and Tag Organization

Tags

Tag line

Tags

Tags

Tags Data

Tag line Data line

P V Tag W Data

64

VA (9:4) for 1-Kbyte D-cache
and

VA (11:4) for 4-Kbyte I-cache

CHAPTER 8 CACHE MEMORY

217

8.3 CACHE OPERATIONS

As described earlier, caches provide fast temporary data storage, and they make the speedup of memory

accesses transparent to the user. In general, the CPU core accesses cache-resident instructions or data through

the following procedure:

1. The CPU core, through the on-chip cache controller, attempts to access the next instruction or data in the
appropriate cache.

2. The cache controller checks to see if this instruction or data is present in the cache.

� If the instruction/data is present, the CPU core retrieves it. This is called a cache hit.

� If the instruction/data is not present in the cache, the cache controller must retrieve it from memory. This is
called a cache miss.

3. The CPU core retrieves the instruction/data from the cache and operation continues.

It is possible for the same data to be in two places (main memory and cache) simultaneously. This data is kept

consistent through the use of a write-back methodology; that is, modified data is not written back to memory until the

cache line is to be replaced.

Instruction and data cache line replacement operations are described in the following sections.

8.3.1 Cache Write Policy

The VR4100 CPU core manages its data cache by using a write-back policy; that is, it stores write data into the

cache, instead of writing it directly to memoryNote. Some time later this data is independently written into memory. In

the VR4102 implementation, a modified cache line is not written back to the main memory until the cache line is to be

replaced either in the course of satisfying a cache miss, or during the execution of a write-back CACHE instruction.

When the CPU core writes a cache line back to the main memory, it does not ordinarily retain a copy of the cache

line, and the state of the cache line is changed to invalid.

Note Write-through cache policy performs the function contrary to the write-back policy. Data written into memory

is also written into cache simultaneously.

CHAPTER 8 CACHE MEMORY

218

8.4 CACHE STATES

(1) Cache line

The three terms below are used to describe the state of a cache line:

� Dirty: a cache line containing data that has changed since it was loaded from memory.

� Clean: a cache line that contains data that has not changed since it was loaded from memory.

� Invalid: a cache line that does not contain valid information must be marked invalid, and cannot be used. For
example, after a Soft Reset, software sets all cache lines to invalid. A cache line in any other state than
invalid is assumed to contain valid information. Neither Cold reset nor Soft reset sets caches invalid.
Software can invalidate caches.

(2) Data cache

The data cache supports three cache states:

� invalid

� valid clean

� valid dirty

(3) Instruction cache

The instruction cache supports two cache states:

� invalid

� valid

The state of a valid cache line may be modified when the processor executes a CACHE operation. CACHE

operations are described in Chapter 27.

CHAPTER 8 CACHE MEMORY

219

8.5 CACHE STATE TRANSITION DIAGRAMS

The following section describes the cache state diagrams for the data and instruction caches. These state

diagrams do not cover the initial state of the system, since the initial state is system-dependent.

8.5.1 Data Cache State Transition

The following diagram illustrates the data cache state transition sequence. A load or store operation may include

one or more of the atomic read and/or write operations shown in the state diagram below, which may cause cache

state transitions.

� Read (1) indicates a read operation from memory to cache, inducing a cache state transition.

� Write (1) indicates a write operation from CPU core to cache, inducing a cache state transition.

� Read (2) indicates a read operation from cache to the CPU core, which induces no cache state transition.

� Write (2) indicates a write operation from CPU core to cache, which induces no cache state transition.

Figure 8-6. Data Cache State Diagram

CACHE op CACHE op

Write (1)

Write (1)

CACHE op

Write-back

Read (2)Read (2)
Write (2)

Read (1)

Invalid

Valid
Dirty

Valid
Clean

8.5.2 Instruction Cache State Transition

The following diagram illustrates the instruction cache state transition sequence.

� Read (1) indicates a read operation from memory to cache, inducing a cache state transition.

� Read (2) indicates a read operation from cache to the CPU core, which induces no cache state transition.

Figure 8-7. Instruction Cache State Diagram

Read (1)

CACHE op
Read (2) Valid Invalid

CHAPTER 8 CACHE MEMORY

220

8.6 CACHE DATA INTEGRITY

The D- and I-cache data RAM arrays are protected by parity (byte parity for D-cache, word parity for I-cache). D-

and I-cache tag RAM arrays are also protected by parity.

These parity bits are checked for errors on every cache read access. Cache error exception occurs if the CPU

core encounters a parity error during an instruction cache access, a data cache access, or memory read access.

The CacheErr register indicates the source of the error.

Figure 8-8 to Figure 8-22 shows the parity generation and checking operations for various cache accesses.

Figure 8-8. Data flow on Instruction Fetch

OK, DE = 1
or ERL = 1

Start

Error
TagParity

Cache Error
Exception

TagCheck

Refill

Desigerd
Data Parity

Miss or
Invalid

(See Figure 8-21)

OK, DE = 1
or ERL = 1

TagCheck

Data Fetch

END

Cache Error
Exception

Hit

Error

CHAPTER 8 CACHE MEMORY

221

Figure 8-9. Data Integrity on Load Operations

OK, DE = 1
or ERL = 1

Start

Error
TagParity

TagCheck

Writeback
& Refill

Desigerd
Data Parity

Miss or
Invalid

(See Figure 8-22)

OK, DE = 1
or ERL = 1

TagCheck

Data Load
to register

END

Cache Error
Exception

Hit

Error

Valid bit &
Wbit

Wbit
Parity

Error

Cache Error
Exception

Error

Cache Error
Exception

Refill (See Figure 8-21)

OK, DE = 1
or ERL = 1

V = 1 (valid) and
W = 1 (dirty)

V = 0 (invalid) or
W = 0 (clean)

CHAPTER 8 CACHE MEMORY

222

Figure 8-10. Data Integrity on Store Operations

OK, DE = 1
or ERL = 1

Start

Error
TagParity

TagCheck

Writeback
& Refill

CEbit of
SR

Miss

(See Figure 8-22)

= 0

TagCheck

Data Write to
D-Cache

END

Hit

= 1

Valid bit &
Wbit

Wbit
Parity

Error

Cache Error
Exception

Error

Cache Error
Exception

Refill (See Figure 8-21)

OK, DE = 1
or ERL = 1

V = 1 (valid) and
W = 1 (dirty)

V = 0 (invalid) or
W = 0 (clean)

Data Parity
Generate

Data Parity
from PErr reg.

CHAPTER 8 CACHE MEMORY

223

Figure 8-11. Data Integrity on Index_Invalidate Operations

OK, DE = 1
or ERL = 1

Start

Error
TagParity

Cache Error
Exception

Valid bit clear

END

Figure 8-12. Data Integrity on Index_Writeback_Invalidate Operations

OK, DE = 1
or ERL = 1

Start

ErrorTag Parity,
Wbit Parity

Cache Error
Exception

Valid bit

Writeback Data
Parity

(See Figure 8-20)

Wbit

Valid bit and
Wbit clear

END

Cache Error
Exception

= 0

Error

= 1 (valid)

= 1 (dirty)

OK, DE = 1
or ERL = 1

= 0 (clean)

CHAPTER 8 CACHE MEMORY

224

Figure 8-13. Data Integrity on Index_Load_Tag Operations

Start

D-Cache
only

END

Tag and Tag Parity
Read to TagLo

Wbit and Wbit Parity
Read to TagLo

Figure 8-14. Data Integrity on Index_Store_Tag Operations

D-Cache
only

Start

= 1CEbit of
SR

Tag Parity
Generate

END

Wbit Parity
Generate

Tag Write
from TagLo

Tag Parity
from TagLo

Wbit Parity
from TagLo

= 0

CHAPTER 8 CACHE MEMORY

225

Figure 8-15. Data Integrity on Create_Dirty Operations

OK, DE = 1
or ERL = 1

Start

ErrorTag Parity,
Wbit Parity

Cache Error
Exception

TagCheck

Writeback

Data
Parity

(See Figure 8-20)

Valid bit &
Wbit

Valid bit and
Wbit set.
Tag write.
Wbit parity

and Tag parity
generate.

END

Cache Error
Exception

Miss or Invalid

Error

Hit

= 1 (dirty)

OK, DE = 1
or ERL = 1

= 0
(clean)

Figure 8-16. Data Integrity on Hit_Invalidate Operations

Hit

Start

Error
TagParity

Cache Error
Exception

Valid bit clear.

Tag parity generate.

END

TagCheck

OK, DE = 1
or ERL = 1

Miss or
Invalid

CHAPTER 8 CACHE MEMORY

226

Figure 8-17. Data Integrity on Hit_Writeback_Invalidate Operations

OK, DE = 1
or ERL = 1

Start

ErrorTag Parity,
Wbit Parity

Cache Error
Exception

TagCheck

Writeback

Data

(See Figure 8-20)

Wbit

Valid bit clear.
Tag parity generate.

END

Cache Error
Exception

Miss or Invalid

Error

Hit

= 1 (dirty)

OK, DE = 1
or ERL = 1

= 0 (clean)

Data

Cache Error
Exception

Error

OK, DE = 1
or ERL = 1

Figure 8-18. Data Integrity on Fill Operations

Start

Refill(See Figure 8-21)

END

CHAPTER 8 CACHE MEMORY

227

Figure 8-19. Data Integrity on Hit_Writeback Operations

OK, DE = 1
or ERL = 1

OK, DE = 1
or ERL = 1

Start

ErrorTag Parity,
Wbit Parity

Cache Error
Exception

TagCheck

Writeback Data
Parity(See Figure 8-20)

Wbit

Wbit clear

END

Cache Error
Exception

Miss or Invalid

Error

Hit

= 1 (dirty)

= 0 (clean)

Wbit Parity check is
D-Cache only

D-Cache only

D-Cache only

CHAPTER 8 CACHE MEMORY

228

Figure 8-20. Data Integrity on Writeback Flow

OK, DE = 1
or ERL = 1

ErrorWriteback
Data Parity

EOD?

Yes

Erroneous
bit = 0

OK, DE = 1
or ERL = 1

Error existed in
writeback dataWriteback

Data Parity

Cache Error
Exception

Erroneous
bit = 1

Writeback
to memory

No

Figure 8-21. Data Integrity on Refill Flow

OK

Erroneous bit

EOD?

Yes

Write data
to cache

No

Bus Error
Exception

Cache line
Invalidate

Error existed in
refill data

CHAPTER 8 CACHE MEMORY

229

Figure 8-22. Data Integrity on Writeback & Refill Flow

OK

Erroneous bit

EOD?

Writeback
Data Parity

OK, DE = 1 or
ERL = 1

OK, DE = 1
or ERL = 1

ErrorWriteback
Data Parity

EOD?

Yes

Writeback
to memory

No

Bus Error
Exception

Cache line
Invalidate

Error existed in
refill data

Erroneous
bit = 0

Erroneous
bit = 1

Refill start

Writeback
Data Parity

Write data
to cache

Yes

Error existed in
writeback data

OK, DE = 1
or ERL = 1

Cache Error
Exception

Error existed in
writeback data

No

Remark Write-back Procedure:

On a store miss write-back, data tag and tag parity are checked and data parity is transferred to the write

buffer. Byte parity is generated for the physical address and transferred to write buffer. If an error is

detected on the data field, the write back is not terminated; the erroneous data is still written out. If an

error is detected in the tag field, the write-back bus cycle is not issued. In both cases a cache error

exception is taken.

During a Cache operation, cache data may not be checked in some cases, but tag parity is always

checked. At that time, if a tag parity error occurs, the Cache Error exception is taken and the operation is

not permitted to complete.

CHAPTER 8 CACHE MEMORY

230

8.7 MANIPULATION OF THE CACHES BY AN EXTERNAL AGENT

The VR4102 does not provide any mechanisms for an external agent to examine and manipulate the state and

contents of the caches.

231

CHAPTER 9 CPU CORE INTERRUPTS

Four types of interrupt are available on the CPU core. These are:

� one non-maskable interrupt, NMI

� five ordinary interrupts

� two software interrupts

� one timer interrupt

These are described in this chapter.

9.1 NON-MASKABLE INTERRUPT (NMI)

The non-maskable interrupt request signal is acknowledged by asserting the NMI signal (internal), forcing the

processor to branch to the Reset Exception vector. This NMI signal is latched into an internal register at the rising

edge of MasterOut, as shown in Figure 9-1.

NMI only takes effect when the processor pipeline is running.

This interrupt cannot be masked.

Figure 9-1 shows the internal derivation of the NMI signal. The NMI signal is latched into an internal register at

the rising edge of MasterOut. The latched NMI signal is inverted and then transmitted as an NMI request.

Figure 9-1. Non-maskable Interrupt Signal

NMI requestNMI signal

MasterOut

(Internal register)

9.2 ORDINARY INTERRUPTS

Ordinary interrupts are set by asserting the Int(4:0) signals (internal). However, Int4 never occur on the

VR4102.

These interrupts can be masked with the IM(6..2), IE, and EXL fields of the Status register.

CHAPTER 9 CPU CORE INTERRUPTS

232

9.3 SOFTWARE INTERRUPTS GENERATED IN CPU CORE

Software interrupts generated in the CPU core are acknowledged by setting bits 1 and 0 of the IP (interrupt

pending) field in the Cause register. These may be written by software, but there is no hardware mechanism to set

or clear these bits.

After the processing of a software interrupt exception, corresponding bit of the IP field in the Cause register must

be cleared before returning to ordinary routine or enabling multiple interrupts.

These interrupts are maskable through the IM(1:0), IE, and EXL fields of the Status register.

9.4 TIMER INTERRUPT

The timer interrupt uses bit 15 of the Cause register, which is bit 7 of the IP (interrupt pending) field. This bit is

automatically set whenever the value of the Count register equals the value of the Compare register, to acknowledge

an interrupt request. This interrupt is maskable by setting IM7 of the Status register.

9.5 ASSERTING INTERRUPTS

9.5.1 Detecting Hardware Interrupts

Figure 9-2 shows how the hardware interrupt request is detected through the Cause register.

� The timer interrupt signal, IP7, is directly readable as bit 15 of the Cause register.

� Bits 4:0 of the Interrupt register are bit-wise ORed with the current value of the Int(4:0) signals and the result is

directly readable as bits 14:10 of the Cause register.

IP(1:0) of the Cause register, which are described in Chapter 6, are software interrupts. There is no hardware

mechanism for setting or clearing the software interrupts.

CHAPTER 9 CPU CORE INTERRUPTS

233

Figure 9-2. Hardware Interrupt Signals

IP2

IP3

IP4

IP5

IP6

IP7

10

11

12

13

14

15

01234

01234

Cause register
(15:10)

(Internal register)

Interrupt register (4:0)

MasterOut

Timer interrupt

Int4

Int3

Int2

Int1

Int0

See Figure 9-3

Remark Int4 never occurs in the VR4102.

CHAPTER 9 CPU CORE INTERRUPTS

234

9.5.2 Masking Interrupt Signals

Figure 9-3 shows the masking of the CPU core interrupt signals.

� Cause register bits 15 to 8 (IP7 to IP0) are AND-ORed with Status register interrupt mask bits 15 to 8 (IM7 to

IM0) to mask individual interrupts.

� Status register bit 0 is a global Interrupt Enable bit (IE). It is ANDed with the output of the AND-OR logic to

produce the CPU core interrupt signal. The EXL bit in the Status register also enables these interrupts.

Figure 9-3. Masking of the CPU Core Interrupts

IE

IM0

IM1

IM2

IM3

IM4

IM5

IM6

IM7

IP0

IP1

IP2

IP3

IP4

IP5

IP6

IP7

Status register
SR (0)

Status register
SR (15:8)

Cause register
(15:8)

Software interrupts
generated in CPU core

Ordinary
interrupts

Timer interrupt

AND-OR
logic

AND logic

CPU core
interrupt

8

9

10

11

12

13

14

15

8

9

10

11

12

13

14

15

8

8

1

1

Bit Function Setting

IE Interrupt enable for all interrupts 1: Enable

0: Disable

IM (7:0) Interrupt mask 1: Enable for individual bits

0: Disable for individual bits

IP (7:0) Interrupt request 1: Pending request for individual bits

0: No pending for individual bits

235

CHAPTER 10 BCU (BUS CONTROL UNIT)

This chapter describes the BCU’s operations and register settings.

10.1 GENERAL

In the VR4102, the BCU receives data that has passed via the VR4100 CPU core and the SysAD bus. The BCU

also controls external agents via the system bus, such as an LCD controller, DRAM, ROM (Flash memory or masked

ROM), or PCMCIA controller, and it transmits and receives data with these external agents via the ADD bus and

DATA bus.

10.2 REGISTER SET

The BCU registers are listed below.

Table 10-1. BCU Registers

Address R/W Register symbols Function

0x0B00 0000 R/W BCUCNTREG 1 BCU Control Register 1

0x0B00 0002 R/W BCUCNTREG 2 BCU Control Register 2

0x0B00 000A R/W BCUSPEEDREG BCU Access Cycle Change Register

0x0B00 000C R/W BCUERRSTREG BCU BUS ERROR Status Register

0x0B00 000E R/W BCURFCNTREG BCU Refresh Control Register

0x0B00 0010 R REVIDREG Revision ID Register

0x0B00 0012 R/W BCURFCOUNTREG BCU Refresh Count Register

0x0B00 0014 R/W CLKSPEEDREG Clock Speed Register

Each register is described in detail as follows.

CHAPTER 10 BCU (BUS CONTROL UNIT)

236

10.2.1 BCUCNTREG 1 (0x0B00 0000)

(1/2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name ROM64 DRAM64 ISAM/LCD PAGE128 Reserved PAGEROM2 Reserved PAGEROM0

R/W R/W R/W R/W R/W R R/W R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved ROMWEN2 Reserved ROMWEN0 Reserved Reserved BUSHERREN RSTOUT

R/W R R/W R R/W R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] ROM64 Sets the capacity of the ROM to be used

1: 64M-bit ROM

0: 32M-bit ROM

D[14] DRAM64 Sets the capacity of the DRAM to be used

1 : 64M-bit DRAM

0 : 16M-bit DRAM

D[13] ISAM/LCD Assigns space from 0x0A00 0000 to 0x0AFF FFFF as the physical address space.

1 : As ISA high-speed memory space

0 : As LCD space

D[12] PAGE128 Sets the maximum burst acceleration size for Page ROM.

1 : 128-bit (16 byte)

0 : 64-bit (8 byte)

D[11] Reserved Write 0 when writing. 0 is returned after a read.

D[10] PAGEROM2 This is the page ROM access enable bit for the ROM space in banks 3 and 2 (16-bit

mode) or in bank 1 (32-bit mode).

1 : Page ROM

0 : Ordinary ROM

D[9] Reserved Write 0 when writing. 0 is returned after a read.

D[8] PAGEROM0 This is the page ROM access enable bit for the ROM space in banks 1 and 0 (16-bit

mode) or in bank 0 (32-bit mode).

1 : Page ROM

0 : Ordinary ROM

CHAPTER 10 BCU (BUS CONTROL UNIT)

237

(2/2)

Bit Name Function

D[7] Reserved Write 0 when writing. 0 is returned after a read.

D[6] ROMWEN2 This enables flash memory write and issues a flash memory register read-only bus

cycle for the ROM space in banks 3 and 2 (16-bit mode) or in bank 1 (32-bit mode).

1 : Enable (Not affected by PAGEROM2)

0 : Prohibit

D[5] Reserved Write 0 when writing. 0 is returned after a read.

D[4] ROMWEN0 This enables flash memory write and issues a flash memory register read-only bus

cycle for the ROM space in banks 1 and 0 (16-bit mode) or in bank 0 (32-bit mode).

1 : Enable (Not affected by PAGEROM0)

0 : Prohibit

D[3..2] Reserved Write 0 when writing. 0 is returned after a read.

D[1] BUSHERREN This is the bus timeout detection enable bit, which is used when a bus hold has been

received.

1 : Performs timeout detection when a bus hold has been received.

0 : Does not perform timeout detection when a bus hold has been received.

D[0] RSTOUT RSTOUT control bit

1 : High level

0 : Low level

This register is used to set parameters such as the bus interface’s bus cycle.

For the setting of the PAGEROM2 and ROMWEN2 bits, the target ROM area differs depending on a data bus

mode. The access target ROM area is banks 3 and 2 in 16-bit data bus mode, and bank 1 in 32-bit data bus mode.

For the setting of the PAGEROM0 and ROMWEN0 bits, the target ROM area differs depending on the data bus

mode. The access target ROM area is banks 1 and 0 in 16-bit data bus mode, and bank 0 in 32-bit data bus mode.

When a timeout is detected while the BUSHERREN bit is set to 1, the BERRST bit of the BCUERRSTREG

register is set to 1 and an interrupt request is sent to the CPU. The RSTOUT pin is set to high to request bus release

from the external bus master.

CHAPTER 10 BCU (BUS CONTROL UNIT)

238

10.2.2 BCUCNTREG 2 (0x0B00 0002)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved GMODE

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] GMODE This is the access data control bit for LCD space.

1 : Do not invert the access data for LCD space

0 : Invert the access data for LCD space

This register is used to specify whether data is inverted (translated to 2’s complement) or not when accessing the

LCD space.

The LCD space is accessed when the ISAM/LCD bit of BCUCNTREG1 is 0. When it is 1, this address space is

used as the ISA high-speed memory space. In this case, the contents of the BCUCNTREG2 register are invalid, and

inversion of access data is not performed.

CHAPTER 10 BCU (BUS CONTROL UNIT)

239

10.2.3 BCUSPEEDREG (0x0B00 000A)

(1/2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved WPROM[1] WPROM[0] Reserved WLCD/M[2] WLCD/M[1] WLCD/M[0]

R/W R R R/W R/W R R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved WISAA [2] WISAA [1] WISAA [0] Reserved WROMA[2] WROMA[1] WROMA[0]

R/W R R/W R/W R/W R R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..14] Reserved Write 0 when writing. 0 is returned after a read.

D[13..12] WPROM[1..0] Page ROM access speed

11 : RFU

10 : 1TClock

01 : 2TClock

00 : 3TClock

D[11] Reserved Write 0 when writing. 0 is returned after a read.

D[10..8] WLCD/M[2..0] Access speed to physical address space from 0x0A00 0000 to 0x0AFF FFFF

 LCD(ISAM/LCD=0) ISA-MEM(ISAM/LCD=1)

111 : RFU 1TClock

110 : RFU 2TClock

101 : RFU 3TClock

100 : RFU 4TClock

011 : 2TClock 5TClock

010 : 4TClock 6TClock

001 : 6TClock 7TClock

000 : 8TClock 8TClock

D[7] Reserved Write 0 when writing. 0 is returned after a read.

CHAPTER 10 BCU (BUS CONTROL UNIT)

240

(2/2)

Bit Name Function

D[6..4] WISAA[2..0] System bus access speed

111 : RFU. Operation is not guaranteed when this value has been set.

110 : RFU. Operation is not guaranteed when this value has been set.

101 : 3TClock Note

100 : 4TClock Note

011 : 5TClock

010 : 6TClock

001 : 7TClock

000 : 8TClock

D[3] Reserved Write 0 when writing. 0 is returned after a read.

D[2..0] WROMA[2..0] ROM access speed

111 : 2TClock

110 : 3TClock

101 : 4TClock

100 : 5TClock

011 : 6TClock

010 : 7TClock

001 : 8TClock

000 : 9TClock

Note When the WISAA [2:0] bits are set to 101 or 100, the AC characteristics between BUSCLK and the system

bus interface signals (ADD [25:0], SHB#, MEMR#, MEMW#, IOR#, and IOW#) are not guaranteed.

This register is used to set the access speed for the LCD, system bus, page ROM, and ROM.

The lowest speed is set when “0” is set to all of the following bits: WLCD/M[2..0], WPROM[1..0], WISAA[2..0],

and WROMA[2..0]. Setting “1” to all of these bits sets the highest speed.

The value set to WPROM[1..0] is valid only when “1” has been set to the PAGEROM bit in BCUCNTREG.

CHAPTER 10 BCU (BUS CONTROL UNIT)

241

10.2.4 BCUERRSTREG (0x0B00 000C)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved BERRST

R/W R R R R R R R R/W1C

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] BERRST Bus error status. Clear to 0 when 1 is written.

1 : Bus error

0 : Normal

This register is used to indicate when a bus error interrupt request has occurred.

CHAPTER 10 BCU (BUS CONTROL UNIT)

242

10.2.5 BCURFCNTREG (0x0B00 000E)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved BRF[13] BRF[12] BRF[11] BRF[10] BRF[9] BRF[8]

R/W R R R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 1 0

Other resets 0 0 Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name BRF[7] BRF[6] BRF[5] BRF[4] BRF[3] BRF[2] BRF[1] BRF[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit Name Function

D[15..14] Reserved Write 0 when writing. 0 is returned after a read.

D[13..0] BRF[13..0] Use this bit to set the number of refresh cycles (with TClock cycle).

This register is used to specify the number of refresh cycles (with Tclock cycle).

CHAPTER 10 BCU (BUS CONTROL UNIT)

243

10.2.6 REVIDREG (0x0B00 0010)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name RID[3] RID[2] RID[1] RID[0] MJREV[3] MJREV[2] MJREV[1] MJREV[0]

R/W R R R R R R R R

RTCRST 0 0 0 1 Undefined Undefined Undefined Undefined

Other resets 0 0 0 1 Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved MNREV[(3] MNREV[2] MNREV[1] MNREV[0]

R/W R R R R R R R R

RTCRST 0 0 0 0 Undefined Undefined Undefined Undefined

Other resets 0 0 0 0 Undefined Undefined Undefined Undefined

Bit Name Function

D[15..12] RID[3:0] This is the processor revision ID. 0x01 indicates the VR4102.

D[11..8] MJREV[3..0] Major revision number

D[7..4] Reserved Write 0 when writing. 0 is returned after a read.

D[3..0] MNREV[3..0] Minor revision number

This register is used to indicate revisions of the VR4102’s peripheral units.

The revision number is stored as a value in the form y.x, where y is a major revision number and x is a minor

revision number.

Major revision number and minor revision number can distinguish the revision of the CPU and the peripheral

units, however there is no guarantee that changes to the CPU and the peripheral units will necessarily be reflected in

this register, or that changes to the revision number necessarily reflect real CPU’s and units’ changes. For this

reason, these values are not listed and software should not rely on the revision number in PREVIDREG to

characterize the units.

CHAPTER 10 BCU (BUS CONTROL UNIT)

244

10.2.7 BCURFCOUNTREG (0x0B00 0012)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved BRFC[13] BRFC[12] BRFC[11] BRFC[10] BRFC[9] BRFC[8]

R/W R R R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name BRFC[7] BRFC[6] BRFC[5] BRFC[4] BRFC[3] BRFC[2] BRFC[1] BRFC[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..14] Reserved Write 0 when writing. 0 is returned after a read.

D[13..0] BRFC[13..0] This is the down counter that counts the number of refresh cycles (with TClock cycle).

This register is used to indicate the current refresh cycle count value.

CHAPTER 10 BCU (BUS CONTROL UNIT)

245

10.2.8 CLKSPEEDREG (0x0B00 0014)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name DIV2B Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved CLKSP[4] CLKSP[3] CLKSP[2] CLKSP[1] CLKSP[0]

R/W R R R R R R R R

RTCRST 0 0 0 Undefined Undefined Undefined Undefined Undefined

Other resets 0 0 0 Undefined Undefined Undefined Undefined Undefined

Bit Name Function

D[15] DIV2B The multiplier of TClock frequency. This bit always indicates 0 in the current VR4102.

1: Reserved

0: Multiplied by 16

D[14..5] Reserved Write 0 when writing. 0 is returned after a read.

D[4..0] CLKSP[4..0] These bits indicate the value used to calculate the frequency of PClock and TClock.

This register is used to indicate the value to calculate the frequencies of the peripheral unit’s operating clock

(TClock) and CPU core’s operating clock (PClock). The PClock frequency obtained from this register’s setting is the

same as the frequency selected by setting CLKSEL[2:0] pins.

The following method is used to calculate TClock frequency.

TClock = (18.432 MHz/CLKSP[4..0])*16

The following method is used to calculate PClock frequency.

PClock = (18.432 MHz/CLKSP[4..0])*32

CHAPTER 10 BCU (BUS CONTROL UNIT)

246

10.3 CONNECTION OF ADDRESS PINS

Physical address output from the CPU core is provided to external devices through ADD bus. The

correspondence between the address output to ADD bus and the address bits of external devices differs depending

on the external devices as shown in Table 10-2. Therefore, connect ADD bus and address pin of the external device

as shown in Table 10-3.

Table 10-2. Address Bit Correspondence between ADD Bus and External Devices

ADD busDevices connected

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ROM, LCD, ISA,

DRAM (ROW)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

DRAM (COLUMN),

DATA [15:0]

0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 19 20 19 20 21 22 23 24 25

DRAM (COLUMN),

DATA [31:0]

0 1 2 3 4 5 6 7 8 21 2 3 4 5 6 7 8 19 20 19 20 21 22 23 24 25

Table 10-3. Address Connection Table with External Devices

Address bits of external devicesVR4102 pin

16M-bit DRAM 64M-bit DRAM,

DATA[15..0]

64M-bit DRAM,

DATA[31..0]

ADD[9] A0 A0 A0

ADD[10] A1 A1 A1

ADD[11] A2 A2 A2

ADD[12] A3 A3 A3

ADD[13] A4 A4 A4

ADD[14] A5 A5 A5

ADD[15] A6 A6 A6

ADD[16] A7 A7 A7

ADD[17] A8 A8 A8

ADD[18] A9 A9 A9

ADD[19] A10/NCNote 1 - -

ADD[20] A11/NCNote 1 A12/NCNote 2 A12/NCNote 3

ADD[21] - A10 -

ADD[22] - A11 A10

ADD[23] - - A11

Notes 1. A10, A11 : PPD42S16165, NC : PPD42S18165

2. A12 : PPD42S64165, NC : PPD42S65165

3. A12 : PPD42S64165, NC : PPD42S65165

CHAPTER 10 BCU (BUS CONTROL UNIT)

247

10.4 NOTES ON USING BCU

10.4.1 CPU Core Bus Modes

The VR4102 is designed on the assumption that the CPU core is set to the following mode.

• Writeback data rate : D

• Accelerate data ratio : VR4x00 compatible mode

Therefore, set the Config Register as below:

• EP : 0000

• AD : 0

10.4.2 Access Data Size

In the VR4102, access size is restricted for each address space. Access sizes for the following address spaces

are listed below.

Table 10-4. Access Size Restrictions for Address Spaces

Address space R/W Access size (bytes) Remark

16 8 4 3 2 1

ROM/PageROM R { { { { { {

Flash memory W u u u u Note 1

System bus I/O space R/W { { { u { {

System bus memory space R/W { { { u { {

On-chip I/O space 1 R/W { { { u { {

On-chip I/O space 2 R/W u { { u { u

LCD space R/W u { { u { { Notes 2, 3

High-speed system bus memory space R/W u { { u { { Note 3

DRAM R/W { { { { { {

Notes 1. The access size when writing to flash memory must be the same as the data bus width such as below;

 In 32-bit mode: 4 bytes

 In 16-bit mode: 2 bytes

2. Use as uncached.

3. The LCD space and high-speed system bus memory space are mapped to the same physical

address.

Use BCUCNTREG1’s ISAM/LCD bit to switch between the two.

Remark {, : accessible, u : not accessible

CHAPTER 10 BCU (BUS CONTROL UNIT)

248

10.4.3 ROM Interface

(1) Switching among ROM, PageROM, and Flash Memory Modes

The VR4102 supports three modes (ROM, PageROM and Flash Memory). The mode setting in ROM bank 3/2 is

set via BCUCNTREG1’s ROMWEN2 and PAGEROM2 bits, and the mode setting in ROM bank 1/0 is set via the

ROMWEN0 and PAGEROM0 bits. In Ordinary ROM mode or Flash Memory mode, the VR4102 can access to

memories regardless of its mode name. Table 10-5 shows accessible memory types and methods of access in

each mode.

Table 10-5. Summary of ROM Modes

Mode Setting Access-enabled devices

ROMWEN2/0 PAGEROM2/0 Memory read Flash Memory

register read

Flash Memory

write

Ordinary ROM 0 0 Ordinary ROM

PageROM

Flash Memory

N/A N/A

PageROM 0 1 PageROM N/A N/A

Flash Memory 1 don’t care Ordinary ROM

PageROM

Flash Memory

Flash Memory Flash Memory

Remark The initial setting is Ordinary ROM mode.

(2) Access Speed Setting

The VR4102 enables the access speed to be changed when operating in Ordinary ROM mode or PageROM

mode.

For details, see 10.5.1.

CHAPTER 10 BCU (BUS CONTROL UNIT)

249

10.4.4 Flash Memory Interface

(1) Notes for Specific Modes

The following two modes are available for flash memory.

• Ordinary ROM mode (memory read only)

• Flash Memory mode (supports memory write and register read)

The following notes apply to these modes.

(a) Notes for Ordinary ROM mode

• Write is prohibited

The WR# pin is not asserted even when a write operation is attempted.

• Flash memory register read is prohibited

The Ordinary ROM mode is the mode in which bus cycles suite for memory read operations are issued.

Since the AC characteristics of flash memory are different for register read and memory read operations,

accurate data cannot be obtained by reading the flash memory register while in this mode.

(b) Notes for Flash Memory mode

• Be sure to access in double-byte units when writing to flash memory.

(2) Example of write sequence for flash memory

An example of a write sequence for flash memory is shown below.

Caution This example’s operations have not been confirmed using an actual system.

1 Using GPIO as an output port, apply the flash memory write voltage (VPP).

If the VR4102’s on-chip GPIOs cannot be used, set up an external output port and then control the write

voltage.

2 Set the VR4102 to flash memory mode (Set “1” to the BCUCNTREG’s ROMWEN bit).

3 Wait until the flash memory write voltage become stable.

4 Issue the flash memory write command from the VR4102.

5 Write data from the VR4102 to flash memory.

6 Wait until the flash memory write completion signal (ry/by) becomes stable.

7 Wait until the flash memory write completion signal gives notification of write completion.

After write to flash memory is completed, notification can be obtained by receiving an interrupt from the flash

memory write completion signal (ry/by) or by polling the flash memory register.

8 Read the flash memory register.

• If write succeeded, start processing from “9”.

• If write failed, start processing from “12”.

9 If writing new data to flash memory, start processing from “4”.

If write to flash memory is completed, start processing from “10”.

CHAPTER 10 BCU (BUS CONTROL UNIT)

250

10 Compare the data written to flash memory with the original data.

• If the data matches, perform processing at “11”.

• If the data does not match

Start processing from “1” when rewriting.

If processing is interrupted, start processing from “11”.

11 Reduce the flash memory write voltage (VPP) and end processing after flash memory mode has been

canceled.

12 Clear any error data in the flash memory register.

• If writing again

If the write voltage is too low, start processing from “1”.

In all other cases, start processing from “4”.

• If processing is completed, perform processing at “11”.

10.4.5 LCD Control Interface

(1) Access Size

Available access sizes for accessing the LCD controller interface are 1 byte, 2 bytes, 4 bytes, and 8 bytes.

(2) Data Inversion

When “0” has been set to the BCUCNTREG1’s ISAM/LCD bit and to BCUCNTREG2’s GMODE bit, the VR4102

inverts the bits in the data being read or written via the LCD controller interface.

Table 10-6. Example of Bit Inversion in Data in V R4102 and at DATA [15:0] Pins

Data in VR4102 Data at DATA [15:0] Pins

0x0000 0xFFFF

0xA5A5 0x5A5A

0x1234 0xEDCB

CHAPTER 10 BCU (BUS CONTROL UNIT)

251

10.4.6 Illegal Access Notification

(1) Types of Illegal Access

Under the following circumstances, the VR4102 provides notification concerning illegal access of the CPU core.

• Bus deadlock

If CBR refresh does not occur at least twice, a deadlock is judged as having occurred due to the non-return of

a ready signal via the system bus or LCD controller interface, in which case notification of illegal access is

given.

• Address space reserved for future use

Notification of illegal access is given when the processor has accessed any of the following addresses.

 0x0FFF FFFF to 0x0C00 0000

 0x09FF FFFF to 0x0400 0000

(2) Notification Method for Illegal Access

The methods used to notify the CPU core are listed below.

Table 10-7. Illegal Access Notification Methods

Access type Illegal access notification method

Processor read request Notification by bus error caused by SysCmd

Processor write request Notification by interrupt exception (Int0)

Remark To clear the interrupt source caused by a processor write request, write “1” to BCUERRSTREG’s

bit1.

CHAPTER 10 BCU (BUS CONTROL UNIT)

252

10.5 BUS OPERATIONS

The bus operations of buses controlled by the BCU are described below.

The BCU’s operating clock (TClock) appears in the timing chart for each bus operation.

Remark # that follows signal names indicates active low.

10.5.1 ROM Access

The VR4102 supports the following three modes for ROM access.

Use BCUCNTREG1’s PAGEROM2/0 bits and ROMWEN2/0 bits to set the mode.

x Ordinary ROM read mode (ROMWEN, PAGEROM = 00)

x PageROM read mode (ROMWEN, PAGEROM = 01)

x Flash Memory mode (ROMWEN = 1)

(1) Ordinary ROM Read Mode

Set ROMWEN = 0 and PAGEROM = 0.

WROMA[2:0] (BCUSPEEDREG [2:0]) can be used to set the access time.

Figures 10-1 and 10-2 show 4-byte read timing chart data for when WROMA [2:0] is set to “110”. If access uses

a data size larger than 4 bytes, the Trom cycle is continued until the required access size is reached.

Table 10-8. Access Times during Ordinary ROM Read Mode

WROMA [2:0] Trom (TClock)

000 9

001 8

010 7

011 6

100 5

101 4

110 3

111 2

CHAPTER 10 BCU (BUS CONTROL UNIT)

253

Figure 10-1. ROM 4-byte Read, 16-bit Mode (WROMA[2:0] = 110)

TromTrom

RD#

ROMCS[3:0]#

ADD[25:0]

TClock(internal)

DATA[15:0]

Remark The dotted lines indicate high impedance.

Figure 10-2. ROM 4-byte Read, 32-bit Mode (WROMA[2:0] = 110)

Trom

RD#

ROMCS[3:0]#

ADD[25:0]

TClock(Internal)

DATA[31:0]

Remark The dotted lines indicate high impedance.

Data is sampled at the rising edge of the TClock following the last Trom-state TClock.

The bus operation types for ordinary ROM are as follows.

1-byte read, 2-byte read, 3-byte read, 1-word read, 2-word read, and 4-word read (1 word = 4 bytes)

CHAPTER 10 BCU (BUS CONTROL UNIT)

254

(2) PageROM Read Mode

Set ROMWEN = 0 and PAGEROM = 1.

WROMA[2:0] (BCUSPEEDREG [2:0]) and WPROM[1:0] (BCUSPEEDREG [13:12]) can be used to set the

access time.

Figures 10-3 and 10-4 show 16-byte read timing charts for when WROMA [2:0] is set to “111” and WPROM [1:0]

is set to “10”. The ROMCS[3:0]# and RD# pins are held at low level during Trom cycles.

Table 10-9. PageROM Read Mode Access Time

WROMA [2:0] Trom (TClock) WPROM [1:0] Tprom (TClock)

000 9 00 3

001 8 01 2

010 7 10 1

011 6 11 RFU

100 5

101 4

110 3

111 2

Figure 10-3. PageROM 4-word Read, 16-bit Mode (WROMA[2:0] = 111, WPROM[1:0] = 10)

Trom

RD#

ROMCS[3:0]#

ADD[25:0]

TClock(Internal)

DATA[15:0]

Tprom Tprom Tprom Tprom Tprom Tprom Tprom

Remark The dotted lines indicate high impedance.

CHAPTER 10 BCU (BUS CONTROL UNIT)

255

Figure 10-4. PageROM 4-word Read, 32-bit Mode (WROMA[2:0] = 111, WPROM[1:0] = 10)

RD#

ROMCS[3:0]#

ADD[25:0]

TClock(Internal)

DATA[31:0]

Trom Tprom Tprom Tprom

Remark The dotted lines indicate high impedance.

(3) Flash Memory Mode

Set ROMWEN = 1.

This mode is used to meet the electrical characteristics required for writing to flash memory and for accessing

the flash register. This mode can also be used to read to flash memory.

Note that the access time is constant when in this mode.

Figure 10-5. Flash Memory Mode, 2-byte Access

RD#/WR#

ROMCS[3:0]#

ADD[25:0]

TClock(Internal)

Flash Memory mode access cycle

CHAPTER 10 BCU (BUS CONTROL UNIT)

256

10.5.2 System Bus Access

(1) Bus Operations in System Bus

WISAA[2:0] (BCUSPEEDREG [6:4]) can be used to set the access time.

Table 10-10. System Bus Access Times

WISAA [2:0] Tisa (TClock)

000 8

001 7

010 6

011 5

100 4

101 3

110 RFU

111 RFU

Figure 10-6. 1-byte Access to Even Address Using 16-bit Bus (WISAA[2:0] = 101)

SHB#

Tisa

ADD[25:0]

TClock(Internal)

ZWS#

IOR#/IOW#
MEMR#/MEMW#

IOCHRDY

Tisa Tisa

DATA[15:0](Write)

DATA[15:0](Read)

IOCS16#
MEMCS16#

H

Remark The dotted lines indicate high impedance.

CHAPTER 10 BCU (BUS CONTROL UNIT)

257

Figure 10-7 illustrates 2-byte access when sampling IOCHRDY at high level. If the system bus access time has

been set as three TClocks (WISAA[2:0] = 101), the bus cycle will end after waiting for at least 3 TCLocks (Tisa

periods) after the ready signal is sampled using IOCHRDY.

Sampling of the IOCHRDY signal occurs at the rising edge of the TClock that follows the second or subsequent

Tisa period.

Figure 10-7. 2-byte Access when Sampling IOCHRDY at High Level Using 16-bit Bus (WISAA[2:0] = 101)

Tisa Tisa Tisa

TClock(Internal)

ADD[25:0]

SHB#

IOCS16#
MEMCS16#

IOR#/IOW#
MEMR#/MEMW#

IOCHRDY

ZWS#

DATA[15:0]
(Write)

DATA[15:0]
(Read)

L

Remark The dotted lines indicate high impedance.

CHAPTER 10 BCU (BUS CONTROL UNIT)

258

Figures 10-8 and 10-9 show timing charts for 1-byte access.

Figure 10-8. 1-byte Access to Odd Address Using 16-bit Bus (WISAA[2:0] = 101)

Tisa Tisa Tisa

TClock(Internal)

ADD[25:0]

SHB#

IOCS16#
MEMCS16#

IOR#/IOW#
MEMR#/MEMW#

IOCHRDY

ZWS#

DATA[15:0]
(Write)

DATA[15:0]
(Read)

L

Remark The dotted lines indicate high impedance.

Figure 10-9. 1-byte Access to Odd Address Using 8-bit Bus (WISAA[2:0] = 101)

Tisa Tisa Tisa

TClock(Internal)

ADD[25:0]

SHB#

IOCS16#
MEMCS16#

IOR#/IOW#
MEMR#/MEMW#

IOCHRDY

ZWS#

DATA[15:0]
(Write)

DATA[15:0]
(Read)

L

Remark The dotted lines indicate high impedance.

CHAPTER 10 BCU (BUS CONTROL UNIT)

259

Figures 10-10 and 10-11 illustrate 2-byte access when sampling ZWS# at low level. The bus cycle will end after

waiting for at least 1 TCLock (Tisa period) after the ready signal is sampled using ZWS#.

Sampling of the ZWS# signal occurs at the rising edge of the TClock that follows the second or subsequent Tisa

period.

Figure 10-10. 2-byte Access when Sampling ZWS# at Low Level on 16-bit Bus (WISAA[2:0] = 101)

Tisa Tisa

TClock(Internal)

ADD[25:0]

SHB#

IOCS16#
MEMCS16#

IOR#/IOW#
MEMR#/MEMW#

IOCHRDY

ZWS#

DATA[15:0]
(Write)

DATA[15:0]
(Read)

L

Remark The dotted lines indicate high impedance.

CHAPTER 10 BCU (BUS CONTROL UNIT)

260

Figure 10-11. 2-byte Access when Sampling ZWS# at Low Level on 8-bit Bus (WISAA[2:0] = 101)

Tisa Tisa Tisa Tisa

TClock(Internal)

ADD[25:0]

IOCS16#
MEMCS16#

IOR#/IOW#
MEMR#/MEMW#

IOCHRDY

ZWS#

DATA[15:0]
(Write)

DATA[15:0]
(Read)

Remark The dotted lines indicate high impedance.

(2) Bus Operations in High-Speed System Bus

The space of physical address from 0x0A00 0000 to 0x0AFF FFFF can be used as the high-speed system bus

memory space by setting the ISAM/LCD bit of BCUCNTREG1. WLCD/M [2:0] (BCUSPEEDREG [10:8]) can be

used to set the access time for access to this space, as shown in the table below.

Table 10-11. High-Speed System Bus Access Times

WLCD/W [2:0] Tisa (TClock)

000 8

001 7

010 6

011 5

100 4

101 3

110 2

111 1

CHAPTER 10 BCU (BUS CONTROL UNIT)

261

Figure 10-12. 2-byte Access on 16-bit Bus (WLCD/M[2:0] = 101)

TClock (internal)

ADD (25:0)

SHB#

LCDCS#

MEMCS16#

MEMR#/MEMW#

IOCHRDY

ZWS#

DATA (15:0)
(Write)

DATA (15:0)
(Read)

L

Hi-Z

Tisa Tisa Tisa

Figure 10-13. 1-byte Access on 8-bit Bus (WLCD/M[2:0] = 101)

TClock (internal)

ADD (25:0)

SHB#

LCDCS#

MEMCS16#

MEMR#/MEMW#

IOCHRDY

ZWS#

DATA (15:0)
(Write)

DATA (15:0)
(Read)

H

Hi-Z

Tisa Tisa Tisa

CHAPTER 10 BCU (BUS CONTROL UNIT)

262

Figure 10-14. 2-byte Access when Sampling ZWS# at Low Level

on 16-bit Bus (WLCD/M[2:0] = 101)

Tisa Tisa

TClock (internal)

ADD (25:0)

SHB# L

LCDCS#

MEMCS16#

MEMR#/MEMW#

IOCHRDY

ZWS#

DATA (15:0)
(Write)

DATA (15:0)
(Read)

Hi-z

Figure 10-15. 1-byte Access when Sampling ZWS# at Low Level

on 8-bit Bus (WLCD/M[2:0] = 101)

Tisa Tisa

TClock (internal)

ADD (25:0)

SHB# H

LCDCS#

MEMCS16#

MEMR#/MEMW#

IOCHRDY

ZWS#

DATA (15:0)
(Write)

DATA (15:0)
(Read)

Hi-z

CHAPTER 10 BCU (BUS CONTROL UNIT)

263

10.5.3 LCD Interface

The space of the physical address, from 0x0A00 0000 to 0x0AFF FFFF can be used as the LCD space by setting

the ISM/LCD bit of the BCUCNTREG1. WLCD/M[2:0] (BCUSPEEDREG [10:8]) can be used to set the access time.

Table 10-12. Access Times for LCD Interface

WLCD/M
[2:0]

Tlcd (TClock)

000 8

001 6

010 4

011 2

100 - 111 RFU

Figure 10-16. 2-byte Access to LCD Controller (WLCD/M[2:0] = 010)

Tlcd

RD#/WR#

LCDRDY

LCDCS#

ADD[25:0]

TClock(Internal)

Figure 10-17. 2-byte Access to LCD Controller (WLCD/M[2:0] = 011)

Tlcd

Wait cycle insertion via LCDRDY signal

TClock(Internal)

ADD[25:0]

SHB#

LCDCS#

RD#/WR#

LCDRDY

DATA[15:0]
(Write)

DATA[15:0]
(Read)

L

Remark The dotted lines indicate high impedance.

CHAPTER 10 BCU (BUS CONTROL UNIT)

264

10.5.4 DRAM Access (EDO Type)

The access time is constant for DRAM.

Figure 10-18. 4-byte Access to DRAM (16-bit Mode)

TClock(Internal)

MRAS[3:0]#

UCAS#/LCAS#

ADD[18:9]

RD#/WR#

DATA[15:0]
(Read)

Row Col. Col.

Data0

DATA[15:0]
(Write)

Data0

Data1

Data1

ADD[25:19]/
ADD[8:0] Row

Remark The dotted lines indicate high impedance.

Figure 10-19. 8-byte Access to DRAM (32-bit Mode)

TClock(Internal)

MRAS[1:0]#

UUCAS#/ULCAS#/
UCAS#/LCAS#

ADD[18:9]

RD#/WR#

DATA[31:0]
(Read)

Row Col. Col.

Data0

DATA[31:0]
(Write)

Data0

Data1

Data1

ADD[25:19]/
ADD[8:0] Row

Remark The dotted lines indicate high impedance.

CHAPTER 10 BCU (BUS CONTROL UNIT)

265

Figure 10-20. Byte Read of Odd Address in DRAM (16-bit Mode)

TClock(Internal)

MRAS[3:0]#

UCAS#

LCAS#

ADD[20:19]

ADD[18:9]

RD#

DATA[15:0]

H

Row

Row Col. Col.

Data

Remark The dotted lines indicate high impedance.

Figure 10-21. Byte Read of Even Address in DRAM (16-bit Mode)

TClock(Internal)

MRAS[3:0]#

UCAS#

LCAS#

ADD[20:19]

ADD[18:9]

RD#

DATA[15:0]

H

Row

Row Col. Col.

Data

Remark The dotted lines indicate high impedance.

CHAPTER 10 BCU (BUS CONTROL UNIT)

266

Figure 10-22. Byte Write to Odd Address in DRAM (16-bit Mode)

TClock(Internal)

MRAS[3:0]#

UCAS#

LCAS#

ADD[20:19]

ADD[18:9]

WR#

DATA[15:0]

H

Row

Row Col. Col.

Data

Figure 10-23. Byte Write to Even Address in DRAM (16-bit Mode)

TClock(Internal)

MRAS[3:0]#

UCAS#

LCAS#

ADD[20:19]

ADD[18:9]

WR#

DATA[15:0]

H

Row

Row Col. Col.

Data

CHAPTER 10 BCU (BUS CONTROL UNIT)

267

10.5.5 Refresh

The VR4102 supports CBR refresh and self refresh.

(1) CBR Refresh

Figure 10-24. CBR Refresh (16-bit Mode)

UCAS#/LCAS#

MRAS#

TClock(Internal)

WR#

(2) Self Refresh

Figure 10-25. Self Refresh (16-bit Mode)

UCAS#/LCAS#

MRAS#

TClock(Internal)

WR#

CHAPTER 10 BCU (BUS CONTROL UNIT)

268

10.5.6 Bus Hold

Caution The BUSCLK signal is fixed at low level during execution of the SUSPEND instruction.
Consequently, while the SUSPEND instruction is being executed, the bus is being used by an
external master device and cannot be used for BUSCLK.

Figure 10-26. Bus Hold in Fullspeed Mode

(a) Transition to Bus Hold from Ordinary Operation

TClock(Internal)

MasterOut(Internal)

HLDRQ#

HLDACK#

Note 1

Note 2

BUSCLK

(b)Transition to Ordinary Operation from Bus Hold

TClock(Internal)

MasterOut(Internal)

HLDRQ#

HLDACK#

Note 1

Note 2

BUSCLK

Notes 1. UUCAS#/MRAS[3]#, ULCAS#/MRAS[2]#, MRAS[1..0]#, UCAS#, LCAS#
2. SHB#, IOR#, IOW#, MEMR#, MEMW#, RD#, WR#, ADD[25..0], DATA[15..0],

DATA[31..16]/GPIO[31..16] (in 32-bit data bus mode)

Remark The dotted lines indicate high impedance.

CHAPTER 10 BCU (BUS CONTROL UNIT)

269

Figure 10-27. Bus Hold in Suspend Mode

(a) Transition to Bus Hold from Ordinary Operation

L

MasterOut(Internal)

HLDRQ#

HLDACK#

Note 1

Note 2

Note 3

BUSCLK

(b) Transition to Ordinary Operation from Bus Hold

L

MasterOut(Internal)

HLDRQ#

HLDACK#

Note 1

Note 2

Note 3

BUSCLK

Notes 1. UUCAS#/MRAS[3]#, ULCAS#/MRAS[2]#, MRAS[1..0]# (in 16-bit data bus mode)

MRAS[1..0]# (in 32-bit data bus mode)

2. UCAS#, LCAS# (in 16-bit data bus mode)

UUCAS#/MRAS#[3], ULCAS#/MRAS[2]#, UCAS#, LCAS# (in 32-bit data bus mode)

3. SHB#, IOR#, IOW#, MEMR#, MEMW#, RD#, WR#, ADD[25..0], DATA[15..0],

DATA[31..16]/GPIO[31..16] (in 32-bit data bus mode)

Remark The dotted lines indicate high impedance.

270

[MEMO]

271

CHAPTER 11 DMAAU (DMA ADDRESS UNIT)

This chapter describes the DMAAU register’s operations and settings.

11.1 GENERAL

The DMAAU register controls the DMA addresses for the AIU and IrDA 4-Mbps communication module (FIR).

The DMA channel used for each unit can set a DMA start address as any half-word address in the space from

0x0000 0000 to 0x01FF FFFE, and is retained in DRAM as a 2-Kbyte block that starts at the address which is

generated by masking the low-order 10 bits of the DMA start address.

After a DMA start address is set to the DMA base address register, the VR4102 performs DMA transfer using the

registers of DMAAU as below.

(1) When the DMA start address is included in the first page of the DMA space

1. The VR4102 starts a DMA transfer after writing the start address to the DMA address register.

2. When the DMA transfer reaches the first page boundary, the VR4102 adds 1 Kbyte to the contents of the DMA

base address register, writes the value to the DMA address register, and continues the DMA transfer.

3. When the DMA transfer reaches the second page boundary, the VR4102 writes the contents of the DMA base

address register to the DMA address register and continues the DMA transfer.

4. The VR4102 repeats 2. and 3. until all the data is transferred.

(2) When the DMA start address is included in the second page of the DMA space

1. The VR4102 starts a DMA transfer after writing the start address to the DMA address register.

2. When the DMA transfer reaches the second page boundary, the VR4102 subtracts 1 Kbyte from the contents

of the DMA base address register, writes the value to the DMA address register, and continues the DMA

transfer.

3. When the DMA transfer reaches the first page boundary, the VR4102 writes the contents of the DMA base

address register to the DMA address register and continues the DMA transfer.

4. The VR4102 repeats 2. and 3. until all the data is transferred.

Figure 11-1. DMA Space Used in DMA Transfers

Second page

First page boundary

Base address o

DMA space address

Second page

First page boundary

Base address o

DMA space address

(a) When the DMA start address is included

in the first page of the DMA space

(b) When the DMA start address is included

in the second page of the DMA space

1 3 5 7

2 4 6 8

2 4 6 8

1 3 5 7

Caution DMA operations are not guaranteed if an address overlaps with another DMA buffer.

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

272

11.2 REGISTER SET

The DMAAU registers are listed below.

Table 11-1. DMAAU Registers

Address R/W Register Symbols Function

0x0B00 0020 R/W AIUIBALREG AIU IN DMA Base Address Register Low

0x0B00 0022 R/W AIUIBAHREG AIU IN DMA Base Address Register High

0x0B00 0024 R/W AIUIALREG AIU IN DMA Address Register Low

0x0B00 0026 R/W AIUIAHREG AIU IN DMA Address Register High

0x0B00 0028 R/W AIUOBALREG AIU OUT DMA Base Address Register Low

0x0B00 002A R/W AIUOBAHREG AIU OUT DMA Base Address Register High

0x0B00 002C R/W AIUOALREG AIU OUT DMA Address Register Low

0x0B00 002E R/W AIUOAHREG AIU OUT DMA Address Register High

0x0B00 0030 R/W FIRBALREG FIR DMA Base Address Register Low

0x0B00 0032 R/W FIRBAHREG FIR DMA Base Address Register High

0x0B00 0034 R/W FIRALREG FIR DMA Address Register Low

0x0B00 0036 R/W FIRAHREG FIR DMA Address Register High

These registers are described in detail below.

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

273

11.2.1 AIU IN DMA Base Address Registers

(1) AIUIBALREG (0x0B00 0020)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name AIUIBA[15] AIUIBA[14] AIUIBA[13] AIUIBA[12] AIUIBA[11] AIUIBA[10] AIUIBA[9] AIUIBA[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 0 0 0

Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name AIUIBA[7] AIUIBA[6] AIUIBA[5] AIUIBA[4] AIUIBA[3] AIUIBA[2] AIUIBA[1] AIUIBA[0]

R/W R/W R/W R/W R/W R/W R/W R/W R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:1] AIUIBA[15:1] DMA base address [15:1] for AIU input

D[0] AIUIBA[0] DMA base address [0] for AIU input

Write 0 when writing. 0 is returned after a read.

(2) AIUIBAHREG (0x0B00 0022)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name AIUIBA[31] AIUIBA[30] AIUIBA[29] AIUIBA[28] AIUIBA[27] AIUIBA[26] AIUIBA[25] AIUIBA[24]

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 1

Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name AIUIBA[23] AIUIBA[22] AIUIBA[21] AIUIBA[20] AIUIBA[19] AIUIBA[18] AIUIBA[17] AIUIBA[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 1 1 1

Other resets 1 1 1 1 1 1 1 1

Bit Name Function

D[15:9] AIUIBA[31:25] DMA base address [31:25] for AIU input

Write 0 when writing. 0 is returned after a read.

D[8:0] AIUIBA[24:16] DMA base address [24:16] for AIU input

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

274

AIUIBALREG and AIUIBAHREG are used to set the base addresses for the DMA channel used for audio input

(recording).

The addresses set to this register become DMA start addresses.

The DMA channel used for audio input is retained in DRAM as a 2-Kbyte buffer that starts at the address which is

generated by masking the low-order 10 bits of the DMA start address.

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

275

11.2.2 AIU IN DMA Address Registers

(1) AIUIALREG (0x0B00 0024)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name AIUIA[15] AIUIA[14] AIUIA[13] AIUIA[12] AIUIA[11] AIUIA[10] AIUIA[9] AIUIA[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 0 0 0

Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name AIUIA[7] AIUIA[6] AIUIA[5] AIUIA[4] AIUIA[3] AIUIA[2] AIUIA[1] AIUIA[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:0] AIUIA[15:0] Next DMA address [15:0] to be accessed for AIU input channel

(2) AIUIAHREG (0x0B00 0026)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name AIUIA[31] AIUIA[30] AIUIA[29] AIUIA[28] AIUIA[27] AIUIA[26] AIUIA[25] AIUIA[24]

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 1

Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name AIUIA[23] AIUIA[22] AIUIA[21] AIUIA[20] AIUIA[19] AIUIA[18] AIUIA[17] AIUIA[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 1 1 1

Other resets 1 1 1 1 1 1 1 1

Bit Name Function

D[15:0] AIUIA[31:16] Next DMA address [31:16] to be accessed for AIU input channel

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

276

11.2.3 AIU OUT DMA Base Address Registers

(1) AIUOBALREG (0x0B00 0028)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name AIUOBA[15] AIUOBA[14] AIUOBA[13] AIUOBA[12] AIUOBA[11] AIUOBA[10] AIUOBA[9] AIUOBA[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 0 0 0

Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name AIUOBA[7] AIUOBA[6] AIUOBA[5] AIUOBA[4] AIUOBA[3] AIUOBA[2] AIUOBA[1] AIUOBA[0]

R/W R/W R/W R/W R/W R/W R/W R/W R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:1] AIUOBA[15:1] DMA base address [15:1] for AIU output

D[0] AIUOBA[0] DMA base address [0] for AIU output

Write 0 when writing. 0 is returned after a read.

(2) AIUOBAHREG (0x0B00 002A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name AIUOBA[31] AIUOBA[30] AIUOBA[29] AIUOBA[28] AIUOBA[27] AIUOBA[26] AIUOBA[25] AIUOBA[24]

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 1

Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name AIUOBA[23] AIUOBA[22] AIUOBA[21] AIUOBA[20] AIUOBA[19] AIUOBA[18] AIUOBA[17] AIUOBA[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 1 1 1

Other resets 1 1 1 1 1 1 1 1

Bit Name Function

D[15:9] AIUOBA[31:25] DMA base address [31:25] for AIU output

Write 0 when writing. 0 is returned after a read.

D[8:0] AIUOBA[24:16] DMA base address [24:16] for AIU output

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

277

AIUOBALREG and AIUOBAHREG are used to set the base addresses for the DMA channel used for audio output

(playback).

The addresses set to this register become DMA start addresses.

The DMA channel used for audio output is retained in DRAM as a 2-Kbyte buffer that starts at the address which

is generated by masking the low-order 10 bits of the DMA start address.

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

278

11.2.4 AIU OUT DMA Address Registers

(1) AIUOALREG (0x0B00 002C)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name AIUOA[15] AIUOA[14] AIUOA[13] AIUOA[12] AIUOA[11] AIUOA[10] AIUOA[9] AIUOA[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 0 0 0

Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name AIUOA[7] AIUOA[6] AIUOA[5] AIUOA[4] AIUOA[3] AIUOA[2] AIUOA[1] AIUOA[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:0] AIUOA[15:0] Next DMA address [15:0] to be accessed for AIU output channel

(2) AIUOAHREG (0x0B00 002E)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name AIUOA[31] AIUOA[30] AIUOA[29] AIUOA[28] AIUOA[27] AIUOA[26] AIUOA[25] AIUOA[24]

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 1

Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name AIUOA[23] AIUOA[22] AIUOA[21] AIUOA[20] AIUOA[19] AIUOA[18] AIUOA[17] AIUOA[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 1 1 1

Other resets 1 1 1 1 1 1 1 1

Bit Name Function

D[15:0] AIUOA[31:16] Next DMA address [31:16] to be accessed for AIU output channel

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

279

11.2.5 FIR DMA Base Address Registers

(1) FIRBALREG (0x0B00 0030)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name FIRBA[15] FIRBA[14] FIRBA[13] FIRBA[12] FIRBA[11] FIRBA[10] FIRBA[9] FIRBA[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 0 0 0

Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name FIRBA[7] FIRBA[6] FIRBA[5] FIRBA[4] FIRBA[3] FIRBA[2] FIRBA[1] FIRBA[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:0] FIRBA[15:0] FIR DMA base address [15:0]

(2) FIRBAHREG (0x0B00 0032)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name FIRBA[31] FIRBA[30] FIRBA[29] FIRBA[28] FIRBA[27] FIRBA[26] FIRBA[25] FIRBA[24]

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 1

Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name FIRBA[23] FIRBA[22] FIRBA[21] FIRBA[20] FIRBA[19] FIRBA[18] FIRBA[17] FIRBA[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 1 1 1

Other resets 1 1 1 1 1 1 1 1

Bit Name Function

D[15:9] FIRBA[31:25] FIR DMA base address [31:25]

Write 0 when writing. 0 is returned after a read.

D[8:0] FIRBA[24:16] FIR DMA base address [24:16]

FIRBALREG and FIRBAHREG are used to set the base addresses for the FIR DMA channel.

The addresses set to this register become DMA start addresses.

The FIR DMA channel is retained in DRAM as a 2-Kbyte buffer that starts at the address that is generated by

masking the low-order 10 bits of the DMA start address.

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

280

11.2.6 FIR DMA Address Registers

(1) FIRALREG (0x0B00 0034)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name FIRA[15] FIRA[14] FIRA[13] FIRA[12] FIRA[11] FIRA[10] FIRA[9] FIRA[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 0 0 0

Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name FIRA[7] FIRA[6] FIRA[5] FIRA[4] FIRA[3] FIRA[2] FIRA[1] FIRA[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:0] FIRA[15:0] Next DMA address [15:0] to be accessed by FIR channel

(2) FIRAHREG (0x0B00 0036)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name FIRA[31] FIRA[30] FIRA[29] FIRA[28] FIRA[27] FIRA[26] FIRA[25] FIRA[24]

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 1

Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name FIRA[23] FIRA[22] FIRA[21] FIRA[20] FIRA[19] FIRA[18] FIRA[17] FIRA[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 1 1 1

Other resets 1 1 1 1 1 1 1 1

Bit Name Function

D[15:0] FIRA[31:16] Next DMA address [31:16] to be accessed by FIR channel

281

CHAPTER 12 DCU (DMA CONTROL UNIT)

This chapter describes the DCU register’s operations and settings.

12.1 GENERAL

The DCU register is used for DMA control. Specifically, it controls acknowledgment from the BCU that handles

bus arbitration and DMA requests from the on-chip peripheral I/O units (AIU and FIR). It also controls DMA

enable/prohibit settings.

12.2 DMA PRIORITY CONTROL

When a conflict occurs between DMA requests sent from on-chip peripheral I/O units, the following priority levels

are used to resolve the conflict. These priority levels cannot be changed.

Table 12-1. DMA Priority Levels

Priority level Type of DMA operation

High Audio input (recording)

n Audio output (playback)

Low FIR transmission/reception

12.3 REGISTER SET

The DCU register set is described below.

Table 12-2. DCU Registers

Address R/W Register symbols Function

0x0B00 0040 R/W DMARSTREG DMA Reset Register

0x0B00 0042 R DMAIDLEREG DMA Idle Register

0x0B00 0044 R/W DMASENREG DMA Sequencer Enable Register

0x0B00 0046 R/W DMAMSKREG DMA Mask Register

0x0B00 0048 R/W DMAREQREG DMA Request Register

0x0B00 004A R/W TDREG Transfer Direction Register

These registers are described in detail below.

CHAPTER 12 DCU (DMA CONTROL UNIT)

282

12.3.1 DMARSTREG (0x0B00 0040)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DMARST

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] DMARST Reset DMA controller

0 : Reset

1 : Normal

This register is used to reset the DMA controller.

CHAPTER 12 DCU (DMA CONTROL UNIT)

283

12.3.2 DMAIDLEREG (0x0B00 0042)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DMAISTAT

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] DMAISTAT Display DMA sequencer status

1 : D_IDLE status

0 : DMA busy

This register is used to display the DMA sequencer status.

CHAPTER 12 DCU (DMA CONTROL UNIT)

284

12.3.3 DMASENREG (0x0B00 0044)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DMASEN

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] DMASEN Enable DMA sequencer

1 : Enable

0 : Prohibit

This register is used to enable/prohibit the DMA sequencer.

CHAPTER 12 DCU (DMA CONTROL UNIT)

285

12.3.4 DMAMSKREG (0x0B00 0046)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved DMAMSKAIN DMAMSK

AOUT

Reserved DMAMSK

FOUT

R/W R R R R R/W R/W R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] DMAMSKAIN Audio input DMA transfer enable/prohibit

1 : Enable

0 : Prohibit

D[2] DMAMSKAOUT Audio output DMA transfer enable/prohibit

1 : Enable

0 : Prohibit

D[1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] DMAMSKFOUT FIR transmission DMA transfer enable/prohibit

1 : Enable

0 : Prohibit

This register is used to enable/prohibit various types of DMA transfers.

The DMA transfer enable bits should be set when the units that receive DMA service have been stopped or when

there are no pending DMA requests. If any of the above bits are set to a unit while a DMA request is pending for that

unit, the CPU’s operation will be undefined.

CHAPTER 12 DCU (DMA CONTROL UNIT)

286

12.3.5 DMAREQREG (0x0B00 0048)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved DRQAIN DRQAOUT Reserved DRQFOUT

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] DRQAIN Audio input DMA transfer request

1 : Request pending

0 : No request

D[2] DRQAOUT Audio output DMA transfer request

1 : Request pending

0 : No request

D[1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] DRQFOUT FIR transmission DMA transfer request

1 : Request pending

0 : No request

This register is used to indicate whether or not there are any DMA transfer requests.

CHAPTER 12 DCU (DMA CONTROL UNIT)

287

12.3.6 TDREG (0x0B00 004A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved FIR

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] FIR Transfer direction of DMA channel for FIR transmission

1 : I/O o MEM

0 : MEM o I/O

This register is used to set the transfer direction of DMA channel for FIR transmission.

288

[MEMO]

289

CHAPTER 13 CMU (CLOCK MASK UNIT)

This chapter describes the CMU register’s operations and settings.

13.1 GENERAL

As various input clocks (ctclock, i_seclk, firclock) are supplied from the CPU to each unit, a masking method

enables power consumption to be curtailed in units that are not used.

The units for which this masking method are used are the KIU, PIU, AIU, SIU, DSIU, FIR, and HSP (software

modem interface) units.

The basic functions are described below.

1. Control of TClock supplied to PIU, AIU, SIU, KIU, DSIU, and FIR

2. Control of internal clock (18.432 MHz) supplied to SIU and HSP

3. Control of internal clock (48 MHz) supplied to FIR

The initial value is “0”, which specifies masking. No clock is supplied unless the CPU writes “1” to CMUCLKMSK

register.

Figure 13-1. Block Diagram of CMU and Peripheral Blocks

cscmub

piad(3:0)

piastbb

rst_gab

BCU

PMU

ctclock

i_seclk

cmuout(15:0)

tclk_siu

tclk_kiu

tclk_piu

tclk_aiu

tclk_dsiu

i_tclk

tclk_fir

seclk_siu

fclk
seclk_hsp

CMU

firclock

13.2 REGISTER SET

The CMU register is listed below.

Table 13-1. CMU Register

Address R/W Register symbol Function

0x0B00

0060

R/W CMUCLKMSK CMU Clock Mask Register

This register is described in detail below.

CHAPTER 13 CMU (CLOCK MASK UNIT)

290

13.2.1 CMUCLKMSK (0x0B00 0060)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved MSKFFIR MSKSHSP MSKSSIU

R/W R R R R R R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved MSKDSIU MSKFIR MSKKIU MSKAIU MSKSIU MSKPIU

R/W R R R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:11] Reserved Write 0 when writing. 0 is returned after a read.

D[10] MSKFFIR Supply/mask 48-MHz clock to FIR unit

1 : Supply

0 : Mask

D[9] MSKSHSP Supply/mask 18.432-MHz clock to HSP unit

1 : Supply

0 : Mask

D[8] MSKSSIU Supply/mask 18.432-MHz clock to SIU unit

1 : Supply

0 : Mask

D[7:6] Reserved Write 0 when writing. 0 is returned after a read.

D[5] MSKDSIU Supply/mask TClock to DSIU unit

1 : Supply

0 : Mask

D[4] MSKFIR Supply/mask TClock to FIR unit

1 : Supply

0 : Mask

D[3] MSKKIU Supply/mask TClock to KIU unit

1 : Supply

0 : Mask

D[2] MSKAIU Supply/mask TClock to AIU unit

1 : Supply

0 : Mask

D[1] MSKSIU Supply/mask TClock to SIU unit

1 : Supply

0 : Mask

D[0] MSKPIU Supply/mask TClock to PIU unit

1 : Supply

0 : Mask

This register is used to mask the clocks that are supplied to the KIU, PIU, AIU, SIU, DSIU, FIR, and HSP units.

291

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

This chapter describes the ICU register’s operations and settings.

14.1 GENERAL

The ICU collects interrupt signals from the various on-chip peripheral units and transfers these interrupt signals

(Int0, Int1, Int2, Int3, and NMI) to the CPU core.

The functions of the ICU’s internal blocks are briefly described below.

• ADDECICU … Decodes read/write addresses from the CPU that are used for ICU registers.

• REGICU … This includes a register for interrupt masking. The initial value is “0”, which specifies masking.

No interrupt signal is supplied to CPU core unless the CPU writes “1” to this register.

• OUTICU … This is the general ICU output that follows masking of interrupts (all output is at the rising edge

of I_mclkin). It also controls the interrupt masking signal (doze_mskint) used for settings

during Suspend mode, assertion of the general interrupt source signal (int_all), and the

memdrv assertion timing signal (doze_memdrv) that is used when resetting from Suspend

mode.

The signals used to notice interrupt request to the CPU are as below.

NMI : battint_intr only

Switching between NMI and Int0 is enabled according to this register’s settings.

Because NMI’s interrupt masking cannot be controlled by means of software, switch

to Int0 to mask battint_Intr.

Int3 : hsp_intr only

Int2 : rtc_long2_intr only

Int1 : rtc_long1_intr only

The IT (interval timer) and HSP interrupts require more responsiveness than do other

interrupt sources.

Int0 : All other interrupts

For details of the interrupt sources, see the register set.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

292

How an interrupt request is notified to the CPU core is shown below.

If an interrupt request occurs in the peripheral units, the corresponding bit in the interrupt indication register of

Level 2 (xxxINTREG) is set to 1. The interrupt indication register is ANDed bit-wise with the corresponding interrupt

mask register of Level 2 (MxxxINTREG). If the occurred interrupt request is enabled (set to 1) in the mask register,

the interrupt request is notified to the interrupt indication register of Level 1 (SYSINTREG) and the corresponding bit

is set to 1. At this time, the interrupt requests from the same register of Level 2 are notified to the SYSINTREG as a

single interrupt request.

Interrupt requests from some units directly set their corresponding bits in the SYSINTREG.

The SYSINTREG is ANDed bit-wise with the interrupt mask register of Level 1 (MSYSINTREG). If the interrupt

request is enabled by MSYSINTREG (set to 1), a corresponding interrupt request signal is output from the ICU to the

CPU core. battint is connected to the NMI or Int0 signal of the CPU core (selected by setting of NMIREG). rtc_long

signals are connected to the Int3 signal of the CPU core. The other interrupt requests are connected to the Int0

signal of the CPU core as a one interrupt request.

The following figure shows an outline of interrupt control in the ICU.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

293

Figure 14-1. Interrupt Control Outline

MDSIUINTREG

MSYSINT1REG
MSYSINT2REG

SYSINT1REG
SYSINT2REG

DSIUINTREG

buserrint

SOFTINTREG

dozepiuint

Int0

Int1

(battintNote)

(all interrupts except
 for battintNote and
 rtclongint)

(rtclong1int)

ledint

MGIUINTLREG

GIUINTLREG

AND/OR

AND/OR

NMI

17

17

Int2

(rtclong2int)

Int3

(hspint)

hspint

siuint

MFIRINTREG

FIRINTREG

AND/OR

AND/OR

Interrupt indication registers

Interrupt mask registers

AND/OR logic
(Checking masks bit by bit
 and summarizing interrupt
 requests from the registers)

7

6

5

5

4

4

16

16

MKIUINTREG

KIUINTREG

MAIUINTREG

AIUINTREG

tclkint

battint

powerint

rtclong2int

rtclong1int

etimerint

MPIUINTREG

PIUINTREG

AND/OR

AND/OR

AND/OR

3

3

7

7

6

6

Level 2 Level 1

MGIUINTHREG

GIUINTHREG
AND/OR

16

16

Note Which of NMI or Int0 is used for battint is selected by setting of NMIREG.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

294

14.2 REGISTER SET

The ICU registers are listed below.

Table 14-1. ICU Registers

Address R/W Register symbols Function

0x0B00 0080 R SYSINT1REG Level 1 System interrupt register 1

0x0B00 0082 R PIUINTREG Level 2 PIU interrupt register

0x0B00 0084 R AIUINTREG Level 2 AIU interrupt register

0x0B00 0086 R KIUINTREG Level 2 KIU interrupt register

0x0B00 0088 R GIUINTLREG Level 2 GIU interrupt register Low

0x0B00 008A R DSIUINTREG Level 2 DSIU interrupt register

0x0B00 008C R/W MSYSINT1REG Level 1 mask system interrupt register 1

0x0B00 008E R/W MPIUINTREG Level 2 mask PIU interrupt register

0x0B00 0090 R/W MAIUINTREG Level 2 mask AIU interrupt register

0x0B00 0092 R/W MKIUINTREG Level 2 mask KIU interrupt register

0x0B00 0094 R/W MGIUINTLREG Level 2 mask GIU interrupt register Low

0x0B00 0096 R/W MDSIUINTREG Level 2 mask DSIU interrupt register

0x0B00 0098 R/W NMIREG NMI register

0x0B00 009A R/W SOFTINTREG Software interrupt register

0x0B00 0200 R SYSINT2REG Level 1 System interrupt register 2

0x0B00 0202 R GIUINTHREG Level 2 GIU interrupt register High

0x0B00 0204 R FIRINTREG Level 2 FIR interrupt register

0x0B00 0206 R/W MSYSINT2REG Level 1 mask system interrupt register 2

0x0B00 0208 R/W MGIUINTHREG Level 2 mask GIU interrupt register High

0x0B00 020A R/W MFIRINTREG Level 2 mask FIR interrupt register

These registers are described in detail below.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

295

14.2.1 SYSINT1REG (0x0B00 0080)

(1/2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved DOZE

PIUINTR

Reserved SOFTINTR WRBER

RINTR

SIUINTR GIUINTR

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name KIUINTR AIUINTR PIUINTR Reserved ETIMER

INTR

RTCL1INTR POWER

INTR

BATINTR

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..14] Reserved Write 0 when writing. 0 is returned after a read.

D[13] DOZEPIUINTR PIU interrupt during Suspend mode

1 : Occurred

0 : Normal

D[12] Reserved Write 0 when writing. 0 is returned after a read.

D[11] SOFTINTR Software interrupt (occurs by setting the SOFTINTREG)

1 : Occurred

0 : Normal

D[10] WRBERRINTR Bus error interrupt

1 : Occurred

0 : Normal

D[9] SIUINTR SIU interrupt

1 : Occurred

0 : Normal

D[8] GIUINTR GIU interrupt

1 : Occurred

0 : Normal

D[7] KIUINTR KIU interrupt

1 : Occurred

0 : Normal

D[6] AIUINTR AIU interrupt

1 : Occurred

0 : Normal

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

296

 (2/2)

Bit Name Function

D[5] PIUINTR PIU interrupt

1 : Occurred

0 : Normal

D[4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] ETIMERINTR ETIMER interrupt

1 : Occurred

0 : Normal

D[2] RTCL1INTR RTCLong1 interrupt

1 : Occurred

0 : Normal

D[1] POWERINTR PowerSW interrupt

1 : Occurred

0 : Normal

D[0] BATINTR Battery interrupt

1 : Occurred

0 : Normal

This register indicates when various interrupts occur in the VR4102 system.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

297

14.2.2 PIUINTREG (0x0B00 0082)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved PADCMD

INTR

PADADP

INTR

PADPAGE1

INTR

PADPAGE0

INTR

PADDLOST

INTR

Reserved PENCHG

INTR

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..7] Reserved Write 0 when writing. 0 is returned after a read.

D[6] PADCMDINTR PIU command scan interrupt. This interrupt occurs when command scan found valid

data.

1 : Occurred

0 : Normal

D[5] PADADPINTR PIU AD port scan interrupt. This interrupt occurs when AD port scan found a set of

valid data.

1 : Occurred

0 : Normal

D[4] PADPAGE1INTR PIU data buffer page 1 interrupt. This interrupt occurs when a set of valid data is

stored in page 1 of data buffer.

1 : Occurred

0 : Normal

D[3] PADPAGE0INTR PIU data buffer page 0 interrupt. This interrupt occurs when a set of valid data is

stored in page 0 of data buffer.

1 : Occurred

0 : Normal

D[2] PADDLOSTINTR A/D data timeout interrupt. This interrupt occurs when a set of data did not found

within specified time.

1 : Occurred

0 : Normal

D[1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] PENCHGINTR Touch panel contact status change interrupt

1: Change has occurred

0: No change

This register indicates when various PIU-related interrupts occur.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

298

14.2.3 AIUINTREG (0x0B00 0084)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved INTMEND INTM INTMIDLE INTMST

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved INTSEND INTS INTSIDLE Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:12] Reserved Write 0 when writing. 0 is returned after a read.

D[11] INTMEND Audio input (MIC) DMA buffer 2 page interrupt

1 : Occurred

0 : Normal

D[10] INTM Audio input (MIC) DMA buffer 1 page interrupt

1 : Occurred

0 : Normal

D[9] INTMIDLE Audio input (MIC) idle interrupt (received data is lost). This interrupt occurs if valid

data exists in MIDATREG when data was received from A/D converter.

1 : Occurred

0 : Normal

D[8] INTMST Audio input (MIC) receive completion interrupt. This interrupt occurs when 10-bit

converted data was received from the A/D converter.

1 : Occurred

0 : Normal

D[7:4] Reserved Write 0 when writing. 0 is returned after a read

D[3] INTSEND Audio output (speaker) DMA buffer 2 page interrupt

1 : Occurred

0 : Normal

D[2] INTS Audio output (speaker) DMA buffer 1 page interrupt

1 : Occurred

0 : Normal

D[1] INTSIDLE Audio output (speaker) idle interrupt (mute). This interrupt occurs if there is no valid

data in SODATREG when data was transferred to D/A.

1 : Occurred

0 : Normal

D[0] Reserved Write 0 when writing. 0 is returned after a read

This register indicates when various AIU-related interrupts occur.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

299

14.2.4 KIUINTREG (0x0B00 0086)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved KDATLOST KDATRDY SCANINT

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..3] Reserved Write 0 when writing. 0 is returned after a read.

D[2] KDATLOST Key scan data lost interrupt

1 : Occurred

0 : Normal

D[1] KDATRDY Key scan data complete interrupt

1 : Occurred

0 : Normal

D[0] SCANINT Key input detect interrupt

1 : Occurred

0 : Normal

This register indicates when various KIU-related interrupts occur.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

300

14.2.5 GIUINTLREG (0x0B00 0088)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTS[15] INTS[14] INTS[13] INTS[12] INTS[11] INTS[10] INTS[9] INTS[8]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTS[7] INTS[6] INTS[5] INTS[4] INTS[3] INTS[2] INTS[1] INTS[0]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTS[15..0] Interrupt to GPIO[15..0] pin

1 : Occurred

0 : Normal

This register indicates when various GIU-related interrupts occur.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

301

14.2.6 DSIUINTREG (0x0B00 008A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved INTDCTS INTSER0 INTSR0 INTST0

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 1

Other resets 0 0 0 0 0 0 0 1

Bit Name Function

D[15..12] Reserved Write 0 when writing. 0 is returned after a read.

D[11] INTDCTS DCTS# change interrupt

1 : Occurred

0 : Normal

D[10] INTSER0 Debug serial receive error interrupt

1 : Occurred

0 : Normal

D[9] INTSR0 Debug serial receive complete interrupt

1 : Occurred

0 : Normal

D[8] INTST0 Debug serial transmit complete interrupt

1 : Occurred

0 : Normal

D[7..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] Reserved Write 1 when writing. 1 is returned after a read.

This register indicates when various DSIU-related interrupts occur.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

302

14.2.7 MSYSINT1REG (0x0B00 008C)

(1/2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved DOZE

PIUINTR

Reserved SOFTINTR WRBERR

INTR

SIUINTR GIUINTR

R/W R R R/W R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name KIUINTR AIUINTR PIUINTR Reserved ETIMER

INTR

RTCL1INTR POWER

INTR

BATINTR

R/W R/W R/W R/W R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..14] Reserved Write 0 when writing. 0 is returned after a read.

D[13] DOZEPIUINTR PIU interrupt enable during suspend mode

1 : Enable

0 : Prohibit

D[12] Reserved Write 0 when writing. 0 is returned after a read.

D[11] SOFTINTR Software interrupt (occurs by setting the SOFTINTREG) enable

1 : Enable

0 : Prohibit

D[10] WRBERRINTR Bus error interrupt enable

1 : Enable

0 : Prohibit

D[9] SIUINTR SIU interrupt enable

1 : Enable

0 : Prohibit

D[8] GIUINTR GIU interrupt enable

1 : Enable

0 : Prohibit

D[7] KIUINTR KIU interrupt enable

1 : Enable

0 : Prohibit

D[6] AIUINTR AIU interrupt enable

1 : Enable

0 : Prohibit

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

303

(2/2)

Bit Name Function

D[5] PIUINTR PIU interrupt enable

1 : Enable

0 : Prohibit

D[4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] ETIMERINTR ETIMER interrupt enable

1 : Enable

0 : Prohibit

D[2] RTCL1INTR RTCLong1 timer interrupt enable

1 : Enable

0 : Prohibit

D[1] POWERINTR PowerSW interrupt enable

1 : Enable

0 : Prohibit

D[0] BATINTR Battery interrupt enable

1 : Enable

0 : Prohibit

This register is used to mask various interrupts that occur in the VR4102 system.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

304

14.2.8 MPIUINTREG (0x0B00 008E)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved PADCMD

INTR

PADADP

INTR

PADPAGE1

INTR

PADPAGE0

INTR

PADDLOST

INTR

Reserved PENCHG

INTR

R/W R R/W R/W R/W R/W R/W R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..7] Reserved Write 0 when writing. 0 is returned after a read.

D[6] PADCMDINTR PIU command scan interrupt enable

1 : Enable

0 : Prohibit

D[5] PADADPINTR PIU A/D port scan interrupt enable

1 : Enable

0 : Prohibit

D[4] PADPAGE1INTR PIU data buffer page 1 interrupt enable

1 : Enable

0 : Prohibit

D[3] PADPAGE0INTR PIU data buffer page 0 interrupt enable

1 : Enable

0 : Prohibit

D[2] PADDLOSTINTR A/D data timeout interrupt enable

1 : Enable

0 : Prohibit

D[1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] PENCHGINTR Touch panel contact status change interrupt enable

1 : Enable

0 : Prohibit

This register is used to mask various PIU-related interrupts.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

305

14.2.9 MAIUINTREG (0x0B00 0090)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved INTMEND INTM INTMIDLE INTMST

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved INTSEND INTS INTSIDLE Reserved

R/W R R R R R/W R/W R/W R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:12] Reserved Write 0 when writing. 0 is returned after a read.

D[11] INTMEND Audio input (MIC) DMA buffer 2 page interrupt enable

1 : Enable

0 : Prohibit

D[10] INTM Audio input (MIC) DMA buffer 1 page interrupt enable

1 : Enable

0 : Prohibit

D[9] INTMIDLE Audio input (MIC) idle interrupt (received data is lost) enable

1 : Enable

0 : Prohibit

D[8] INTMST Audio input (MIC) receive complete interrupt

1 : Enable

0 : Prohibit

D[7:4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] INTSEND Audio output (speaker) DMA buffer 2 page interrupt enable

1 : Enable

0 : Prohibit

D[2] INTS Audio output (speaker) DMA buffer 1 page interrupt enable

1 : Enable

0 : Prohibit

D[1] INTSIDLE Audio output (speaker) idle interrupt (mute) enable

1 : Enable

0 : Prohibit

D[0] Reserved Write 0 when writing. 0 is returned after a read.

This register is used to mask various AIU-related interrupts.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

306

14.2.10 MKIUINTREG (0x0B00 0092)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved KDATLOST KDATRDY SCANINT

R/W R R R R R R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..3] Reserved Write 0 when writing. 0 is returned after a read.

D[2] KDATLOST Key data scan lost interrupt enable

1 : Enable

0 : Prohibit

D[1] KDATRDY Key scan data complete interrupt enable

1 : Enable

0 : Prohibit

D[0] SCANINT Key input detect interrupt enable

1 : Enable

0 : Prohibit

This register is used to mask various KIU-related interrupts.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

307

14.2.11 MGIUINTLREG (0x0B00 0094)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTS[15] INTS[14] INTS[13] INTS[12] INTS[11] INTS[10] INTS[9] INTS[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTS[7] INTS[6] INTS[5] INTS[4] INTS[3] INTS[2] INTS[1] INTS[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTS[15..0] GPIO[15..0] pin interrupt enable

1 : Enable

0 : Prohibit

This register is used to mask various GIU-related interrupts.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

308

14.2.12 MDSIUINTREG (0x0B00 0096)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved INTDCTS INTSER0 INTSR0 INTST0

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..12] Reserved Write 0 when writing. 0 is returned after a read.

D[11] INTDCTS DCTS# change interrupt enable

1 : Enable

0 : Prohibit

D[10] INTSER0 Debug serial data receive error interrupt enable

1 : Enable

0 : Prohibit

D[9] INTSR0 Debug serial data receive complete interrupt enable

1 : Enable

0 : Prohibit

D[8] INTST0 Debug serial data transmit complete interrupt enable

1 : Enable

0 : Prohibit

D[7..0] Reserved Write 0 when writing. 0 is returned after a read.

This register is used to mask various DSIU-related interrupts.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

309

14.2.13 NMIREG (0x0B00 0098)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved NMIORINT

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] NMIORINT Low battery detect interrupt type setting

1 : Int0

0 : NMI

This register is used to set the type of interrupt used to notify the VR4100 CPU core when a low battery detect

interrupt has occurred.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

310

14.2.14 SOFTINTREG (0x0B00 009A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved SOFTINTR[3] SOFTINTR[2] SOFTINTR[1] SOFTINTR[0]

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..4] Reserved Write 0 when writing. 0 is returned after a read.

D[3..0] SOFTINTR[3..0] Set/clear software interrupt

1 : Set

0 : Clear

This register is used to set software interrupts. Each bit can be set separately, and can cause four types of

interrupts.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

311

14.2.15 SYSINT2REG (0x0B00 0200)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved DSIUINTR FIRINTR TCLKINTR HSPINTR LEDINTR RTCL2INTR

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..6] Reserved Write 0 when writing. 0 is returned after a read.

D[5] DSIUINTR DSIU interrupt

1 : Occurred

0 : Normal

D[4] FIRINTR FIR interrupt

1 : Occurred

0 : Normal

D[3] TCLKINTR TClock counter interrupt

1 : Occurred

0 : Normal

D[2] HSPINTR HSP interrupt

1 : Occurred

0 : Normal

D[1] LEDINTR LED interrupt

1 : Occurred

0 : Normal

D[0] RTCL2INTR RTCLong2 timer interrupt

1 : Occurred

0 : Normal

This register indicates when various interrupts occur in the VR4102 system.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

312

14.2.16 GIUINTHREG (0x0B00 0202)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTS[31] INTS[30] INTS[29] INTS[28] INTS[27] INTS[26] INTS[25] INTS[24]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTS[23] INTS[22] INTS[21] INTS[20] INTS[19] INTS[18] INTS[17] INTS[16]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTS[31..16] GPIO[31..16] pin interrupt

1 : Occurred

0 : Normal

This register indicates when various GIU-related interrupts occur.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

313

14.2.17 FIRINTREG (0x0B00 0204)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved FIRINT FDPINT[4] FDPINT[3] FDPINT[2] FDPINT[1]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..5] Reserved Write 0 when writing. 0 is returned after a read.

D[4] FIRINT Interrupt from FIR unit

1 : Occurred

0 : Normal

D[3] FDPINT[4] FIR DMA buffer (receive side) 2 page interrupt

1 : Occurred

0 : Normal

D[2] FDPINT[3] FIR DMA buffer (transmit side) 2 page interrupt

1 : Occurred

0 : Normal

D[1] FDPINT[2] FIR DMA buffer (receive side) 1 page interrupt

1 : Occurred

0 : Normal

D[0] FDPINT[1] FIR DMA buffer (transmit side) 1 page interrupt

1 : Occurred

0 : Normal

This register indicates when various FIR-related interrupts occur.

When FDPINT[4] or FDPINT[3] is set to 1, the VR4102 stops the DMA requests. When FDPINT[2] or FDPINT[1]

is set to 1 during the FDPCNT bit of the DPCNTR register (0x0C00 004C) is set to 1 (DMA buffer 1 page interrupt is

enabled), the VR4102 stops the DMA requests.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

314

14.2.18 MSYSINT2REG (0x0B00 0206)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved DSIUINTR FIRINTR TCLKINTR HSPINTR LEDINTR RTCL2INTR

R/W R R R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..6] Reserved Write 0 when writing. 0 is returned after a read.

D[5] DSIUINTR DSIU interrupt enable

1 : Enable

0 : Prohibit

D[4] FIRINTR FIR interrupt enable

1 : Enable

0 : Prohibit

D[3] TCLKINTR TClock counter interrupt enable

1 : Enable

0 : Prohibit

D[2] HSPINTR HSP interrupt enable

1 : Enable

0 : Prohibit

D[1] LEDINTR LED interrupt enable

1 : Enable

0 : Prohibit

D[0] RTCL2INTR RTCLong2 timer interrupt enable

1 : Enable

0 : Prohibit

This register is used to mask various interrupts in the VR4102 system.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

315

14.2.19 MGIUINTHREG (0x0B00 0208)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTS[31] INTS[30] INTS[29] INTS[28] INTS[27] INTS[26] INTS[25] INTS[24]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTS[23] INTS[22] INTS[21] INTS[20] INTS[19] INTS[18] INTS[17] INTS[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTS[31..16] Enable GPIO[31..16] pin interrupt

1 : Enable

0 : Prohibit

This register is used to mask various GIU-related interrupts.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

316

14.2.20 MFIRINTREG (0x0B00 020A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved FIRINT FDPINT[4] FDPINT[3] FDPINT[2] FDPINT[1]

R/W R R R R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..5] Reserved Write 0 when writing. 0 is returned after a read.

D4 FIRINT FIR unit interrupt enable

1 : Enable

0 : Prohibit

D[3] FDPINT[4] FIR DMA buffer 2 page interrupt (receive side) enable

1 : Enable

0 : Prohibit

D[2] FDPINT[3] FIR DMA buffer 2 page interrupt (transmit side) enable

1 : Enable

0 : Prohibit

D[1] FDPINT[2] FIR DMA buffer 1 page interrupt (receive side) enable

1 : Enable

0 : Prohibit

D[0] FDPINT[1] FIR DMA buffer 1 page interrupt (transmit side) enable

1 : Enable

0 : Prohibit

This register is used to mask various FIR-related interrupts.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

317

14.3 NOTES FOR REGISTER SETTING

There is no register setting flow in relation to the ICU.

With regard to the interrupt mask registers, the initial setting is “initial = 0= mask” after start up. Therefore, enough

masks must be cleared to provide sufficient interrupts for the CPU’s start-up processing. This is always necessary

when battint_intr = NMI.

The initial setting for battint_intr is “initial = 0 = NMI”. A “1” must be written to the register to switch this setting to

Int0.

soft_intr is a software interrupt that is output to Int0 by setting 1 to the SOFTINTREG register. Writing a “0” clears

the interrupt.

318

[MEMO]

319

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

This chapter describes the PMU’s operation and register settings.

15.1 GENERAL

The PMU performs power management within the VR4102 and controls the power supply throughout the system

which includes the VR4102.

• Reset control

• Shutdown control

• Power-on control

• Low-power mode control

The PMU also performs settings to use the GPIO[12:9], GPIO[3:0] signals as a start-up factor.

15.1.1 Reset Control

The operations of the RTC, peripheral units, CPU core, and PMUINTREG bit settings during a reset are listed

below.

Table 15-1. Bit Operations during Reset

Reset type RTC Peripheral units CPU core PMUINTREG

RTC reset Reset Reset Cold reset RTCRST=1

RSTSW reset Active Reset Cold reset RSTSW=1

(1) RTC reset

When the RTCRST# signal is asserted, the PMU resets all peripheral units including the RTC unit. It also asserts

the ccoldresetb and creset signals (internal) and resets the CPU core.

In addition, the RTCRST bit in PMUINTREG is set (to “1”). After the CPU is restarted, the RTCRST bit must be

checked and cleared (to “0”) by software.

(2) RSTSW reset

When the RSTSW# signal is asserted, the PMU resets all peripheral units except for RTC and PMU. Next, it

asserts the ccoldresetb and creset signals (internal) and resets the CPU core.

In addition, the RSTSW bit in PMUINTREG is set (to “1”). After the CPU is restarted, the RSTSW bit must be

checked and cleared (to “0”) by software.

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

320

15.1.2 Shutdown Control

The operations of the RTC, peripheral units, CPU core, and PMUINTREG bit settings during a reset are listed

below.

Table 15-2. Bit Operations during Shutdown

Shutdown type RTC Peripheral units CPU core PMUINTREG

HAL timer shutdown Active Reset Cold reset HALTIMERRST=1

Deadman’s SW shutdown Active Reset Cold reset TIMOUTRST=1

Software shutdown Active Reset Cold reset -

Battery low shutdown Active Reset Cold reset BATTINH=1

Battery lock cancel shutdown Active Reset Cold reset -

(1) HAL Timer Shutdown

After the CPU is activated (following the mode change from Shutdown or Hibernate mode to Fullspeed mode),

the software must write “1” to PMUCNTREG’s HALTIMERRST bit within about four seconds to clear the HAL

timer.

If the HAL timer is not reset within about four seconds after the CPU is activated, the PMU resets all peripheral

units except for RTC and PMU. Next, it asserts the ccoldresetb and creset signals (internal) and resets the CPU

core.

In addition, the TIMOUTRST bit in PMUINTREG is set (to “1”). After the CPU is restarted, the TIMOUTRST bit

must be checked and cleared (to “0”) by software.

(2) Deadman’s SW Shutdown

When the Deadman’s SW function is enabled, the software must write “1” to DSUCLRREG’s DSWCLR bit each

time a Deadman’s SW setting is made, to clear the Deadman’s SW counter (for details, see Chapter 17).

If the Deadman’s SW counter is not cleared during a Deadman’s SW setting, the PMU resets all peripheral units

except for RTC and PMU. Next, it asserts the ccoldresetb and creset signals (internal) and resets the CPU core.

In addition, the DMSRST bit in PMUINTREG is set (to “1”). After the CPU is restarted, the DMSRST bit must be

checked and cleared (to “0”) by software.

(3) Software Shutdown

When the HIBERNATE instruction is executed, the PMU checks for currently pending interrupts. If there are no

pending interrupts, it stops the CPU clock. It then resets all peripheral units except for RTC and PMU.

The PMU register contents do not change.

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

321

15.1.3 Power-on Control

The causes of CPU activation (mode change from shutdown mode or Hibernate mode to Fullspeed mode) are

called power-on factors. There are twelve power-on factors: a power switch interrupt (POWER), eight types of

GPIO activation interrupts (GPIO[12:9], GPIO[3..0]), a DCD interrupt (DCD#), a touch panel interrupt, and an alarm

interrupt.

Battery low detection is a factor that prevents CPU activation.

(1) Activation via Power Switch Interrupt

When the POWER signal is asserted, the PMU asserts the POWERON signal and provides external notification

that the CPU is being activated. After asserting the POWERON signal, the PMU checks the BATTINH signal and

then de-asserts the POWERON signal.

If the BATTINH/BATTINT# signal is high (“1”), the PMU cancels peripheral unit reset, then starts the Cold Reset

sequence to activate the CPU core.

If the BATTINH/BATTINT# signal is low (“0”), the PMU sets “1” to PMUINTREG’s BATTINH bit and then performs

another shutdown. After the CPU is restarted, the BATTINH bit must be checked and cleared (to “0”) by software.

Figure 15-1. Activation via Power Switch Interrupt (BATTINH/BATTINT# = 1)

BATTINH/

BATTINT# (i)

MPOWER(o)

POWERON(o)

POWER(i)

RTC(Internal)

H

Figure 15-2. Activation via Power Switch Interrupt (BATTINH/BATTINT# = 0)

BATTINH/

BATTINT# (i)

MPOWER(o)

POWERON(o)

POWER(i)

RTC(Internal)

L

L

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

322

(2) Activation via GPIO Activation Interrupt

When the GPIO[12:9], GPIO[3..0] signal is asserted, the PMU checks the GPIO[12:9], GPIO[3..0]’s activation

interrupt enable bit. If GPIO[12:9], GPIO[3..0] activation interrupts are enabled, the PMU asserts the POWERON

signal and provides external notification that the CPU is being activated (since the GPIO[12:9], GPIO[2..0] activation

enable interrupt bit is cleared after an RTC is reset, the GPIO[12:9], GPIO[2..0] signal cannot be used for activation

immediately after an RTC reset. However, activation can occur at the falling edge of the GPIO[3] signal immediately

after an RTC reset for GPIO[3] only). The PMU asserts the POWERON signal, then checks the BATTINH/

BATTINT# signal and de-asserts the POWERON signal.

When the BATTINH/BATTINT# signal is high (“1”), the PMU cancels peripheral unit reset, then starts the Cold

Reset sequence to activate the CPU core.

When the BATTINH/BATTINT# signal is low (“0”), the PMU sets “1” to PMUINTREG’s BATTINH bit and then

performs another shutdown. After the CPU is restarted, the BATTINH bit must be checked and cleared (to “0”) by

software.

The CPU sets “1” to the corresponding GPIOINTR bit in the PMUINTREG regardless of whether activation

succeeds or fails.

Figure 15-3. Activation via GPIO Activation Interrupt (BATTINH/BATTINT# = 1)

BATTINH/

BATTINT#(i)

MPOWER(o)

POWERON(o)

GPIO[12:9]/

GPIO[3..0](i/o)

RTC(Internal)

H

Figure 15-4. Activation via GPIO Activation Interrupt (BATTINH/BATTINT# = 0)

BATTINH/

BATTINT#(i)

MPOWER(o)

POWERON(o)

GPIO[12:9]/

GPIO[3..0](i/o)

RTC(Internal)

L

L

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

323

(3) Activation via DCD Interrupt

When the DCD# signal is asserted, the PMU asserts the POWERON signal and provides external notification that

the CPU is being activated. After asserting the POWERON signal, the PMU checks the BATTINH/BATTINT# signal

and then de-asserts the POWERON signal.

If the BATTINH/BATTINT# signal is high (“1”), the PMU cancels peripheral unit reset, then starts the Cold Reset

sequence to activate the CPU core.

If the BATTINH/BATTINT# signal is low (“0”), the PMU sets “1” to PMUINTREG’s BATTINH bit and then performs

another shutdown. After the CPU is restarted, the BATTINH bit must be checked and cleared (to “0”) by software.

The PMUINTREG’s DCDST bit does not indicate whether a DCD interrupt has occurred but instead reflects the

current status of the DCD# pin.

Caution While POWERON is active, the PMU cannot recognize changes in the DCD# signal. If the

DCD# state when POWERON is active is different from the DCD# state when POWERON is

inactive, the change in the DCD# signal is detected only after POWERON is inactive.

However, if the DCD# state when POWERON is active is the same as the DCD# state when

POWERON is inactive, any changes in the DCD# signal that occur while POWERON is active

are not detected.

Figure 15-5. Activation via DCD Interrupt (BATTINH/BATTINT# = 1)

BATTINH/

BATTINT#(i)

MPOWER(o)

POWERON(o)

DCD#(i)

RTC(Internal)

H

Figure 15-6. Activation via DCD Interrupt (BATTINH/BATTINT# = 0)

BATTINH/

BATTINT#(i)

MPOWER(o)

POWERON(o)

DCD#(i)

RTC(Internal)

L

L

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

324

(4) Activation via Alarm Interrupt

When the alarm interrupt (alarm_intr) signal is asserted, the PMU asserts the POWERON signal and provides

external notification that the CPU is being activated. After asserting the POWERON signal, the PMU checks the

BATTINH/BATTINT# signal and then de-asserts the POWERON signal.

If the BATTINH/BATTINT# signal is high (“1”), the PMU cancels peripheral unit reset, then starts the Cold Reset

sequence to activate the CPU core.

If the BATTINH/BATTINT# signal is low (“0”), the PMU sets “1” to PMUINTREG’s BATTINH bit and then performs

another shutdown. After the CPU is restarted, the BATTINH bit must be checked and cleared (to “0”) by software.

Figure 15-7. Activation via Alarm Interrupt (BATTINH/BATTINT# = 1)

BATTINH/

BATTINT#(i)

MPOWER(o)

POWERON(o)

alarm_intr(Internal)

RTC(Internal)

H

Figure 15-8. Activation via Alarm Interrupt (BATTINH/BATTINT# = 0)

BATTINH/

BATTINT#(i)

MPOWER(o)

POWERON(o)

alarm_intr(Internal)

RTC(Internal)

L

L

15.1.4 Power Mode

The VR4102 supports the following four power modes.

� Fullspeed mode

� Standby mode

� Suspend mode

� Hibernate mode

Figure 15-9 illustrates the transition between the different power modes.

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

325

To set Standby, Suspend, or Hibernate mode from Fullspeed mode, execute a STANDBY, SUSPEND, or

HIBERNATE instruction respectively. To set Fullspeed mode from Standby, Suspend, or Hibernate mode, generate

an interrupt or perform any reset.

Table 15-3 outlines the power modes.

Figure 15-9. Power Mode State Transition

Fullspeed

mode

Standby

mode

Suspend

mode

Hibernate

mode

(4)(1)

(3)(2)

(6) (5)

(1) (2) (3) (4) (5) (6)

STANDBY

instruction &

pipeline flash

& SysAD idle

& PClock high

All interrupts SUSPEND

instruction &

pipeline flash

& SysAD idle

& PClock high

& TClock high

& DRAM self

refresh

BatteryInt

POWERON

RTCRST

Alarm

KeyTouch

PenTouch

GPIO[3..0]

GPIO[14..9]

DCD#

RTCLong

HIBERNATE

instruction &

pipeline flash

& SysAD idle

& PClock high

& TClock high

& MasterOut

high

& DRAM self

refresh

POWERON

Alarm

DCD#

GPIO[3..0]

GPIO[12:9]

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

326

Table 15-3. Power Mode

Mode Internal peripheral unit CPU core

RTC ICU DCU others

Fullspeed On On On Selectable Note On

Standby On On On Selectable Note Off

Suspend On On Off Off Off

Hibernate On Off Off Off Off

Off Off Off Off Off Off

Note See Chapter 13 for details.

(1) Fullspeed Mode

In Fullspeed mode, all internal clocks and the bus clock operate. In this mode, all the functions of the VR4102

can be executed.

(2) Standby Mode

In Standby mode, all internal clocks, other than those provided to the internal peripheral units and the internal

timer/interrupt unit of the CPU core, are fixed to high level.

To switch to Standby mode from Fullspeed mode, first execute the STANDBY instruction. The VR4102 waits until

the SysAD bus (internal) enters idle status after the completion of the WB stage of the STANDBY instruction. Then,

the internal clock is shut down, and the pipeline stops. PLL, timer/interrupt clock, internal bus clocks (TClock,

MasterOut), and RTC continue to operate.

In Standby mode, the processor returns to Fullspeed mode when an interrupt occurs. At this time, the contents of

bits indicating the states of pins in the peripheral unit’s registers are undefined. The contents of other fields are

retained.

(3) Suspend Mode

In Suspend mode, all internal clocks (including TClock) other than those supplied to the RTC/ICU/PMU internal

peripheral units and the internal timer/interrupt unit of the CPU core are fixed to high level.

To switch to Suspend mode from Fullspeed mode, first execute the SUSPEND instruction. The VR4102 waits

until the SysAD bus (internal) enters idle status after the completion of the WB stage of the SUSPEND instruction,

DRAM has entered self-refresh mode, and the MPOWER pin has been made inactive. Then, the internal clocks

(including TClock) are shut down, and the pipeline stops. PLL, timer interrupt clock, MasterOut, and RTC continue

to operate.

If the SUSPEND instruction is executed during DMA transfer, the DRAM transfer is suspended, and operation is

undefined.

In Suspend mode, the processor returns to Fullspeed mode when an interrupt request from the peripheral units or

any resets occur. At this time, the contents of bits indicating the states of pins in the peripheral unit’s registers are

undefined. The contents of other fields are retained.

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

327

(4) Hibernate Mode

In Hibernate mode, all the clocks supplied to internal peripheral units other than RTC/ICU/PMU and to the CPU

core are fixed to high level.

To switch to Hibernate mode from Fullspeed mode, first execute the HIBERNATE instruction. The VR4102 waits

until the SysAD bus (internal) enters idle status after the completion of the WB stage of the HIBERNATE instruction,

DRAM has entered self-refresh mode, and the MPOWER pin has been made inactive. Then, the internal clocks

(including TClock and MasterOut) are shut down, and the pipeline stops. PLL also stops, but RTC continue to

operate.

In Hibernate mode, the processor returns to Fullspeed mode when it is alarmed from the RTC, the power-on

switch is pressed, or DCD# pin is asserted. At this time, the contents of bits indicating the states of pins in the

peripheral unit’s registers and caches in the CPU core are undefined. The contents of other fields are retained.

15.2 REGISTER SET

The PMU registers are listed below.

Table 15-4. PMU Registers

Address R/W Register symbols Function

0x0B00 00A0 R/W PMUINTREG PMU Interrupt/Status Register

0x0B00 00A2 R/W PMUCNTREG PMU Control Register

0x0B00 00A4 R/W PMUINT2REG PMU Interrupt Register 2

0x0B00 00A6 R/W PMUCNT2REG PMU Control Register 2

Each register is described in detail below.

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

328

15.2.1 PMUINTREG (0x0B00 00A0)

(1/2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name GPIO3INTR GPIO2INTR GPIO1INTR GPIO0INTR Reserved DCDST RTCINTR BATTINH

R/W R/W R/W R/W R/W R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name BATTLOCK CARDLOCK TIMOUTRST RTCRST RSTSW DMSRST BATTINTR POWERSW

INTR

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 1 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] GPIO3INTR GPIO[3] activation interrupt detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[14] GPIO2INTR GPIO[2] activation interrupt detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[13] GPIO1INTR GPIO[1] activation interrupt detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[12] GPIO0INTR GPIO[0] activation interrupt detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[11] Reserved Write 0 when writing. 0 is returned after a read.

D[10] DCDST DCD# pin state.

1 : High

0 : Low

D[9] RTCINTR RTC alarm interrupt detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[8] BATTINH Battery low detection during activation. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

329

(2/2)

Bit Name Function

D[7] BATTLOCK Battery lock interrupt detection Note

1 : Detected

0 : Not detected

D[6] CARDLOCK PCMCIA card lock interrupt detection Note

1 : Detected

0 : Not detected

D[5] TIMOUTRST HAL timer reset detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[4] RTCRST RTC reset detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[3] RSTSW RESET switch interrupt detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[2] DMSRST Deadman’s switch interrupt detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[1] BATTINTR Battery low detection during normal operation. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[0] POWERSWINTR POWER switch interrupt detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

Note These bits are used by software. These are never set by hardware, and their settings never affect

hardware.

This register is used to set whether the CPU detects a power-on factor and reset.

It also indicates the status of the DCD# pin.

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

330

15.2.2 PMUCNTREG (0x0B00 00A2)

(1/2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name GPIO3MSK GPIO2MSK GPIO1MSK GPIO0MSK GPIO3TRG GPIO2TRG GPIO1TRG GPIO0TRG

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 0 0 0 1 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name STANDBY Reserved Reserved Reserved Reserved HALTIMER

RST

Reserved Reserved

R/W R/W R R R R R/W R R

RTCRST 0 0 0 0 0 0 1 0

Other resets 0 0 0 0 0 0 1 0

Bit Name Function

D[15] GPIO3MSK GPIO[3] activation enable

1 : Enable

0 : Prohibit

D[14] GPIO2MSK GPIO[2] activation enable

1 : Enable

0 : Prohibit

D[13] GPIO1MSK GPIO[1] activation enable

1 : Enable

0 : Prohibit

D[12] GPIO0MSK GPIO[0] activation enable

1 : Enable

0 : Prohibit

D[11] GPIO3TRG GPIO[3] activation interrupt type

1 : Falling edge detection

0 : Rising edge detection

D[10] GPIO2TRG GPIO[2] activation interrupt type

1 : Falling edge detection

0 : Rising edge detection

D[9] GPIO1TRG GPIO[1] activation interrupt type

1 : Falling edge detection

0 : Rising edge detection

D[8] GPIO0TRG GPIO[0] activation interrupt type

1 : Falling edge detection

0 : Rising edge detection

D[7] STANDBY Standby mode setting. This setting is performed only for software, and does not

affect hardware in any way.

1 : Standby mode

0 : Normal mode

Note Holds the value before reset

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

331

(2/2)

Bit Name Function

D[6..3] Reserved Write 0 when writing. 0 is returned after a read.

D[2] HALTIMERRST HAL timer reset

1 : Reset

0 : Set

D[1] Reserved Write 1 when writing. 1 is returned after a read.

D[0] Reserved Write 0 when writing. 0 is returned after a read.

This register is used to set CPU shutdown and overall system management operations.

The HALTIMERRST bit must be reset within about four seconds of activation. Resetting of the HALTIMERRST

bit indicates that the VR4102 itself has been activated normally. If the HALTIMERRST bit is not reset within about

four seconds of activation, program execution is regarded as abnormal (possibly due to a runaway) and an

automatic shutdown is performed.

The GPIO[3..0]MSK bits are used to set enable/prohibit for activation from Hibernate mode when the

corresponding interrupt (GPIO[3..0]) occurs. The GPIO3MSK bit is set to 1 by RTCRST, and the other bits are

cleared to “0” (prohibit). Accordingly, the GPIO[2..0] cannot be used for activation immediately after an RTCRST

reset. The GPIO activation interrupt is valid only when the CPU’s operation mode is Hibernate mode.

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

332

15.2.3 PMUINT2REG (0x0B00 00A4)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name GPIO12INTR GPIO11INTR GPIO10INTR GPIO9INTR Reserved Reserved Reserved Reserved

R/W R/W R/W R/W R/W R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] GPIO12INTR GPIO[12] activation interrupt request detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[14] GPIO11INTR GPIO[11] activation interrupt request detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[13] GPIO10INTR GPIO[10] activation interrupt request detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[12] GPIO9INTR GPIO[9] activation interrupt request detection. Cleared to 0 when 1 is written.

1 : Detected

0 : Not detected

D[11:0] Reserved Write 0 when writing. 0 is returned after a read.

This register is used to specify whether the GPIO[12:9] interrupt is detected as a power-on factor.

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

333

15.2.4 PMUCNT2REG (0x0B00 00A6)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name GPIO12MSK GPIO11MSK GPIO10MSK GPIO9MSK GPIO12TRG GPIO11TRG GPIO10TRG GPIO9TRG

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] GPIO12MSK GPIO[12] activation enable

1 : Enable

0 : Prohibit

D[14] GPIO11MSK GPIO[11] activation enable

1 : Enable

0 : Prohibit

D[13] GPIO10MSK GPIO[10] activation enable

1 : Enable

0 : Prohibit

D[12] GPIO9MSK GPIO[9] activation enable

1 : Enable

0 : Prohibit

D[11] GPIO12TRG GPIO[12] activation interrupt type

1 : Falling edge detection

0 : Rising edge detection

D[10] GPIO11TRG GPIO[11] activation interrupt type

1 : Falling edge detection

0 : Rising edge detection

D[9] GPIO10TRG GPIO[11] activation interrupt type

1 : Falling edge detection

0 : Rising edge detection

D[8] GPIO9TRG GPIO[9] activation interrupt type

1 : Falling edge detection

0 : Rising edge detection

D[7:0] Reserved Write 0 when writing. 0 is returned after a read.

This register is used to specify the settings for activation via GPIO [12:9] interrupts.

The GPIO activation interrupt is valid only when the CPU’s operation mode is Hibernate mode.

334

[MEMO]

335

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

This chapter describes the RTC unit’s operations and register settings.

16.1 GENERAL

The RTC unit has a total of four timers, including the following three types.

• RTCLong … This is a 24-bit programmable counter that counts down using 32.768-kHz cycles. Cycle

interrupts occur for up to 512 seconds. The RTC unit includes two RTCLong timers.

• TClockCount … This is a 25-bit programmable counter that counts down using TClock cycles. Cycle

interrupts occur for up to 1 to 2 seconds. This counter is used for performance evaluation.

• ElapsedTime … This is a 48-bit up counter that counts up using 32.768-kHz cycles. It counts up to 272

years before returning to zero. It includes 48-bit comparators (ECMPHREG, ECMPLREG,

and ECMPMREG) and 48-bit alarm time registers (ETIMELREG, ETIMEMREG, and

ETIMEHREG) to enable interrupts to occur at specified times.

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

336

16.2 REGISTER SET

The RTC registers are listed below.

Table 16-1. RTC Registers

Address R/W Register Symbols Function

0x0B00 00C0 R/W ETIMELREG Elapsed Time L Register

0x0B00 00C2 R/W ETIMEMREG Elapsed Time M Register

0x0B00 00C4 R/W ETIMEHREG Elapsed Time H Register

0x0B00 00C8 R/W ECMPLREG Elapsed Compare L Register

0x0B00 00CA R/W ECMPMREG Elapsed Compare M Register

0X0B00 00CC R/W ECMPHREG Elapsed Compare H Register

0x0B00 00D0 R/W RTCL1LREG RTC Long 1 L Register

0x0B00 00D2 R/W RTCL1HREG RTC Long 1 H Register

0x0B00 00D4 R RTCL1CNTLREG RTC Long 1 Count L Register

0x0B00 00D6 R RTCL1CNTHREG RTC Long 1 Count H Register

0x0B00 00D8 R/W RTCL2LREG RTC Long 2 L Register

0x0B00 00DA R/W RTCL2HREG RTC Long 2 H Register

0x0B00 00DC R RTCL2CNTLREG RTC Long 2 Count L Register

0x0B00 00DE R RTCL2CNTHREG RTC Long 2 Count H Register

0x0B00 01C0 R/W TCLKLREG TCLK L Register

0x0B00 01C2 R/W TCLKHREG TCLK H Register

0x0B00 01C4 R TCLKCNTLREG TCLK Count L Register

0x0B00 01C6 R TCLKCNTHREG TCLK Count H Register

0x0B00 01DE R/W RTCINTREG RTC Interrupt Register

Each register is described in detail below.

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

337

16.2.1 Elapsed Time Registers

(1) ETIMELREG (0x0B00 00C0)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name ETIME[15] ETIME[14] ETIME[13] ETIME[12] ETIME[11] ETIME[10] ETIME[9] ETIME[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name ETIME[7] ETIME[6] ETIME[5] ETIME[4] ETIME[3] ETIME[2] ETIME[1] ETIME[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:0] ETIME[15:0] ElapsedTime bit [15:0]

Note Continues counting

(2) ETIMEMREG (0x0B00 00C2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name ETIME[31] ETIME[30] ETIME[29] ETIME[28] ETIME[27] ETIME[26] ETIME[25] ETIME[24]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name ETIME[23] ETIME[22] ETIME[21] ETIME[20] ETIME[19] ETIME[18] ETIME[17] ETIME[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:0] ETIME[31:16] ElapsedTime bit [31:16]

Note Continues counting

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

338

(3) ETIMEHREG (0x0B00 00C4)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name ETIME[47] ETIME[46] ETIME[45] ETIME[44] ETIME[43] ETIME[42] ETIME[41] ETIME[40]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name ETIME[39] ETIME[38] ETIME[37] ETIME[36] ETIME[35] ETIME[34] ETIME[33] ETIME[32]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:0] ETIME[47:32] ElapsedTime bit [47:32]

Note Continues counting

These registers indicate the elapsed timer’s value. They count up using a 32.768-kHz cycle and when a match

occurs with the elapsed compare registers, an alarm (elapsed time interrupt) occurs (and the count-up continues). A

write operation is valid once values have been written to all registers (ETIMELREG, ETIMEMREG, and

ETIMEHREG).

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

339

16.2.2 Elapsed Time Compare Registers

(1) ECMPLREG (0x0B00 00C8)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name ECMP[15] ECMP[14] ECMP[13] ECMP[12] ECMP[11] ECMP[10] ECMP[9] ECMP[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name ECMP[7] ECMP[6] ECMP[5] ECMP[4] ECMP[3] ECMP[2] ECMP[1] ECMP[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:0] ECMP[15:0] Value to be compared with ElapsedTime bit [15:0]

Note Previous value is retained

(2) ECMPMREG (0x0B00 00CA)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name ECMP[31] ECMP[30] ECMP[29] ECMP[28] ECMP[27] ECMP[26] ECMP[25] ECMP[24]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name ECMP[23] ECMP[22] ECMP[21] ECMP[20] ECMP[19] ECMP[18] ECMP[17] ECMP[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:0] ECMP[31:16] Value to be compared with ElapsedTime bit [31:16]

Note Previous value is retained

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

340

(3) ECMPHREG (0x0B00 00CC)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name ECMP[47] ECMP[46] ECMP[45] ECMP[44] ECMP[43] ECMP[42] ECMP[41] ECMP[40]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name ECMP[39] ECMP[38] ECMP[37] ECMP[36] ECMP[35] ECMP[34] ECMP[33] ECMP[32]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:0] ECMP[47:32] Value to be compared with ElapsedTime bit [47:32]

Note Previous value is retained

Use these registers to set the values to be compared with values in the elapsed time registers.

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

341

16.2.3 RTC Long 1 Registers

(1) RTCL1LREG (0x0B00 00D0)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name RTCL1P[15] RTCL1P[14] RTCL1P[13] RTCL1P[12] RTCL1P[11] RTCL1P[10] RTCL1P[9] RTCL1P[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RTCL1P[7] RTCL1P[6] RTCL1P[5] RTCL1P[4] RTCL1P[3] RTCL1P[2] RTCL1P[1] RTCL1P[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:0] RTCL1P[15:0] [15:0] for RTCLong1 counter cycle

Note Previous value is retained

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

342

(2) RTCL1HREG (0x0B00 00D2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RTCL1P[23] RTCL1P[22] RTCL1P[21] RTCL1P[20] RTCL1P[19] RTCL1P[18] RTCL1P[17] RTCL1P[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7:0] RTCL1P[23:16] [23:16] for RTCLong1 counter cycle

Note Previous value is retained

Use these registers to set the RTCLong1 counter cycle. The RTCLong1 counter begins its countdown at the

value written to these registers.

A write operation is valid once values have been written to both registers (RTCL1LREG and RTCL1HREG).

Cautions 1. The RTC unit is stopped when all zeros are written.

2. Any combined setting of “RTCL1HREG = 0x0000” and “RTCL1LREG = 0x0001, 0x0002,

0x0003, 0x0004” is prohibited.

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

343

16.2.4 RTC Long 1 Count Registers

(1) RTCL1CNTLREG (0x0B00 00D4)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name RTCL1C[15] RTCL1C[14] RTCL1C[13] RTCL1C[12] RTCL1C[11] RTCL1C[10] RTCL1C[9] RTCL1C[8]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RTCL1C[7] RTCL1C[6] RTCL1C[5] RTCL1C[4] RTCL1C[3] RTCL1C[2] RTCL1C[1] RTCL1C[0]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:0] RTCL1C[15:0] RTCLong1 counter bit [15:0]

Note Continues counting

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

344

(2) RTCL1CNTHREG (0x0B00 00D6)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RTCL1C[23] RTCL1C[22] RTCL1C[21] RTCL1C[20] RTCL1C[19] RTCL1C[18] RTCL1C[17] RTCL1C[16]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7:0] RTCL1C[23:16] RTCLong1 counter bit [23:16]

Note Continues counting

These registers indicate the RTCLong1 counter’s values. The countdown uses a 32.768-kHz cycle and begins at

the value set to the RTCLong1 registers. An RTCLong1 interrupt occurs when the counter reaches 0x00 0001 (at

which point the counter returns to the start value and continues counting).

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

345

16.2.5 RTC Long 2 Registers

(1) RTCL2LREG (0x0B00 00D8)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name RTCL2P[15] RTCL2P[14] RTCL2P[13] RTCL2P[12] RTCL2P[11] RTCL2P[10] RTCL2P[9] RTCL2P[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RTCL2P[7] RTCL2P[6] RTCL2P[5] RTCL2P[4] RTCL2P[3] RTCL2P[2] RTCL2P[1] RTCL2P[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:0] RTCL2P[15:0] [15:0] for RTCLong2 counter cycle

Note Previous value is retained

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

346

(2) RTCL2HREG (0x0B00 00DA)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RTCL2P[23] RTCL2P[22] RTCL2P[21] RTCL2P[20] RTCL2P[19] RTCL2P[18] RTCL2P[17] RTCL2P[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7:0] RTCL2P[23:16] [23:16] for RTCLong2 counter cycle

Note Previous value is retained

Use these registers to set the RTCLong2 counter cycle. The RTCLong2 counter begins its countdown at the

value written to these registers.

A write operation is valid once values have been written to both registers (RTCL2LREG and RTCL2HREG).

Cautions 1. The RTC unit is stopped when all zeros are written.

2. Any combined setting of “RTCL2HREG = 0x0000” and “RTCL2LREG = 0x0001, 0x0002,

0x0003, 0x0004” is prohibited.

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

347

16.2.6 RTC Long 2 Count Registers

(1) RTCL2CNTLREG (0x0B00 00DC)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name RTCL2C[15] RTCL2C[14] RTCL2C[13] RTCL2C[12] RTCL2C[11] RTCL2C[10] RTCL2C[9] RTCL2C[8]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RTCL2C[7] RTCL2C[6] RTCL2C[5] RTCL2C[4] RTCL2C[3] RTCL2C[2] RTCL2C[1] RTCL2C[0]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:0] RTCL2C[15:0] RTCLong2 counter bit [15:0]

Note Continues counting

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

348

(2) RTCL2CNTHREG (0x0B00 00DE)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RTCL2C[23] RTCL2C[22] RTCL2C[21] RTCL2C[20] RTCL2C[19] RTCL2C[18] RTCL2C[17] RTCL2C[16]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets Note Note Note Note Note Note Note Note

Bit Name Function

D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7:0] RTCL2C[23:16] RTCLong2 counter bit [23:16]

Note Continues counting

These registers indicate the RTCLong2 counter’s values. The countdown uses a 32.768-kHz cycle and begins at

the value set to the RTCLong2 registers. An RTCLong2 interrupt occurs when the counter reaches 0x00 0001 (at

which point the counter returns to the start value and continues counting).

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

349

16.2.7 TClock Counter Registers

(1) TCLKLREG (0x0B00 01C0)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name TCLKP[15] TCLKP[14] TCLKP[13] TCLKP[12] TCLKP[11] TCLKP[10] TCLKP[9] TCLKP[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TCLKP[7] TCLKP[6] TCLKP[5] TCLKP[4] TCLKP[3] TCLKP[2] TCLKP[1] TCLKP[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:0] TCLKP[15:0] [15:0] for TClock counter cycle

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

350

(2) TCLKHREG (0x0B00 01C2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved TCLKP[24]

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TCLKP[23] TCLKP[22] TCLKP[21] TCLKP[20] TCLKP[19] TCLKP[18] TCLKP[17] TCLKP[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:9] Reserved Write 0 when writing. 0 is returned after a read.

D[8:0] TCLKP[24:16] [24:16] for TClock counter cycle

Use these registers to set the TCLK counter cycle. The TCLK counter begins its countdown at the value written

to these registers.

A write operation is valid once values have been written to both registers (TCLKLREG and TCLKHREG).

Caution The TCLK unit is stopped when all zeros are written.

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

351

16.2.8 TClock Counter Count Registers

(1) TCLKCNTLREG (0x0B00 01C4)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name TCLKC[15] TCLKC[14] TCLKC[13] TCLKC[12] TCLKC[11] TCLKC[10] TCLKC[9] TCLKC[8]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TCLKC[7] TCLKC[6] TCLKC[5] TCLKC[4] TCLKC[3] TCLKC[2] TCLKC[1] TCLKC[0]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:0] TCLKC[15:0] TClock counter [15:0]

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

352

(2) TCLKCNTHREG (0x0B00 01C6)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved TCLKC[24]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TCLKC[23] TCLKC[22] TCLKC[21] TCLKC[20] TCLKC[19] TCLKC[18] TCLKC[17] TCLKC[16]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:9] Reserved Write 0 when writing. 0 is returned after a read.

D[8:0] TCLKC[24:16] TClock counter [24:16]

Use these registers to set the TCLK counter value. The TCLKCNT counter begins its countdown at the value

written to the TCLK counter registers. A TCLK counter interrupt occurs when the counter reaches 0x000 0001 (at

which point the counter returns to the start value and continues counting).

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

353

16.2.9 RTC Interrupt Register

(1) RTCINTREG (0x0B00 01DE)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved RTCINTR3 RTCINTR2 RTCINTR1 RTCINTR0

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 Note Note Note

Bit Name Function

D[15:4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] RTCINTR3 TClock counter interrupt. Cleared to 0 when 1 is written.

1 : Occurred

0 : Normal

D[2] RTCINTR2 RTCLong2 interrupt. Cleared to 0 when 1 is written.

1 : Occurred

0 : Normal

D[1] RTCINTR1 RTCLong1 interrupt. Cleared to 0 when 1 is written.

1 : Occurred

0 : Normal

D[0] RTCINTR0 Status bit for elapsed time interrupt. Cleared to 0 when 1 is written.

1 : Occurred

0 : Normal

Note Previous value is retained

This register is used to monitor interrupts.

354

[MEMO]

355

CHAPTER 17 DSU (DEADMAN’S SWITCH UNIT)

This chapter describes the DSU (Deadman’s Switch Unit)’s operations and register settings.

17.1 GENERAL

The DSU detects when the VR4102 is in runaway (endless loop) state and resets the VR4102 to minimize

runaway time. The use of the DSU to minimize runaway time effectively minimizes data loss that can occur due to

software-related runaway states.

17.2 REGISTER SET

The DSU registers are listed below.

Table 17-1. DSU Registers

Address R/W Symbol Function

0x0B00 00E0 R/W DSUCNTREG DSU Control Register

0x0B00 00E2 R/W DSUSETREG DSU Dead Time Set Register

0x0B00 00E4 W DSUCLRREG DSU Clear Register

0x0B00 00E6 R/W DSUTIMREG DSU Elapsed Time Register

Each register is described in detail below.

CHAPTER 17 DSU (DEADMAN’S SWITCH UNIT)

356

17.2.1 DSUCNTREG (0x0B00 00E0)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DSWEN

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] DSWEN Deadman’s Switch function enable

1 : Enable

0 : Prohibit

This register is used to enable use of the Deadman’s Switch functions.

CHAPTER 17 DSU (DEADMAN’S SWITCH UNIT)

357

17.2.2 DSUSETREG (0x0B00 00E2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved DEDTIME[3] DEDTIME[2] DEDTIME[1] DEDTIME[0]

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..4] Reserved Write 0 when writing. 0 is returned after a read.

D[3..0] DEDTIME[3..0] Deadman’s Switch cycle setting

1111 15 sec

1110 14 sec

 :

0010 2 sec

0001 1 sec

0000 RFU

This register sets the cycle for Deadman’s Switch functions.

The Deadman’s Switch cycle can be set in 1-second increments in a range from 1 to 15 seconds. However, the

VR4102’s operation is undefined when 0x0 has been set to DEDTIME[3..0]. The DSUCLRREG’s DSWCLR bit must

be set by software within the specified cycle time.

CHAPTER 17 DSU (DEADMAN’S SWITCH UNIT)

358

17.2.3 DSUCLRREG (0x0B00 00E4)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DSWCLR

R/W R R R R R R R W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] DSWCLR Deadman’s Switch counter clear. Cleared to 0 when 1 is written.

1 : Clear

0 : Don’t clear

This register clears the Deadman’s Switch counter.

The VR4102 automatically shuts down if 1 is not written to this register within the period set in DSUSETREG.

CHAPTER 17 DSU (DEADMAN’S SWITCH UNIT)

359

17.2.4 DSUTIMREG (0x0B00 00E6)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved CRTTIME[3] CRTTIME[2] CRTTIME[1] CRTTIME[0]

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..4] Reserved Write 0 when writing. 0 is returned after a read.

D[3..0] CRTTIME[3..0] Current Deadman’s Switch timer value (elapsed time)

1111 15 sec

1110 14 sec

 :

0010 2 sec

0001 1 sec

0000 RFU

This register indicates the elapsed time for the current Deadman’s Switch timer.

CHAPTER 17 DSU (DEADMAN’S SWITCH UNIT)

360

17.3 REGISTER SETTING FLOW

The DSU register setting flow is described below.

1. Set the DSU’s count-up value (From 1 to 15 seconds).

The CPU will be reset if it does not clear (1 is not written to DSUCLRREG) the timer within this time period.

DSUDTMREG address : 0x0B00 00E2 data : 0x000x

2. Enable the DSU.

DSUCNTREG address : 0x0B00 00E0 data : 0x0001

3. Clear the timer within the time period mentioned in step 1 above.

DSUCLRREG address : 0x0B00 00E4 data : 0x0001

For normal use, repeat step 3. To obtain the current elapsed time:

DSITIMREG address : 0x0B00 00E6 read (4 bits)

4. Disable the DSU for Suspend mode or a shutdown.

DSUCNTREG address : 0x0B00 00E0 data : 0x0000

361

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

This chapter describes the GIU’s operations and register settings.

18.1 GENERAL

The GIU controls GPIO and DCD# pins. GPIO pins are ports that support output functions and input functions

(including three types of interrupt trigger detection functions). The interrupts occur in response to an input signal

change (rising edge or falling edge of signal), low level, or high level.

The clocks and input buffer types used for interrupt detection at a GPIO pin are listed below.

When not used for an interrupt, the registers corresponding to these pins can be written to output a low-level or

high-level signal.

Each register can be read to check the state of the signal currently being input to the corresponding pin.

Table 18-1. GPIO Pin Functions

Pin Interrupt detection clock

(internal)

Input buffer type Output clock

(internal)

GPIO[49..32] ð ð TClock

GPIO[31..16] TClock Normal TClock

GPIO[15](DCD#) MasterOut Normal ð

GPIO[14..9] MasterOut Normal MasterOut

GPIO[8..5] TClock Normal MasterOut

GPIO[4] TClock Schmitt TClock

GPIO[3..0] RTC Schmitt RTC

Cautions The function of GPIO[15] is fixed as DCD# input signal. This pin cannot

be used as a general-purpose input/output pin.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

362

18.2 REGISTER SET

The GIU registers are listed below.

Table 18-2. GIU Registers

Address R/W Register Symbols Function

0x0B00 0100 R/W GIUIOSELL GPIO Input/Output Select Register L

0x0B00 0102 R/W GIUIOSELH GPIO Input/Output Select Register H

0x0B00 0104 R/W GIUPIODL GPIO Port Input/Output Data Register L

0x0B00 0106 R/W GIUPIODH GPIO Port Input/Output Data Register H

0x0B00 0108 R/W GIUINTSTATL GPIO Interrupt Status Register L

0x0B00 010A R/W GIUINTSTATH GPIO Interrupt Status Register H

0x0B00 010C R/W GIUINTENL GPIO Interrupt Enable Register L

0x0B00 010E R/W GIUINTENH GPIO Interrupt Enable Register H

0x0B00 0110 R/W GIUINTTYPL GPIO Interrupt Type (Edge or Level) Select Register L

0x0B00 0112 R/W GIUINTTYPH GPIO Interrupt Type (Edge or Level) Select Register H

0x0B00 0114 R/W GIUINTALSELL GPIO Interrupt Active Level Select Register L

0x0B00 0116 R/W GIUINTALSELH GPIO Interrupt Active Level Select Register H

0x0B00 0118 R/W GIUINTHTSELL GPIO Interrupt Hold/Through Select Register L

0x0B00 011A R/W GIUINTHTSELH GPIO Interrupt Hold/Through Select Register H

0x0B00 011C R/W GIUPODATL GPIO Port Output Data Register L

0x0B00 011E R/W GIUPODATH GPIO Port Output Data Register H

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

363

18.2.1 GIUIOSELL (0x0B00 0100)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name IOS[15] IOS[14] IOS[13] IOS[12] IOS[11] IOS[10] IOS[9] IOS[8]

R/W R R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name IOS[7] IOS[6] IOS[5] IOS[4] IOS[3] IOS[2] IOS[1] IOS[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] IOS[15..0] GPIO pin input/output select

1 : Output

0 : Input

This register is used to set input/output values for GPIO[15..0] pins.

When the IOS bit is set to “1”, the corresponding GPIO pin is set for output and the value that has been written to

the corresponding PIOD bit in the GIUPIODL (GPIO Port Input/Output Data Register) is output.

When this bit is set to “0”, the corresponding GPIO pin is set for input.

Caution Since IOS[15] (GPIO[15] (DCD#)) is fixed as input, it cannot be set for output.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

364

18.2.2 GIUIOSELH (0x0B00 0102)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name IOS[31] IOS[30] IOS[29] IOS[28] IOS[27] IOS[26] IOS[25] IOS[24]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name IOS[23] IOS[22] IOS[21] IOS[20] IOS[19] IOS[18] IOS[17] IOS[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] IOS[31..16] GPIO pin input/output select

1 : Output

0 : Input

This register is used to set input/output settings for GPIO[31..16] pins.

When the IOS bit is set to “1”, the corresponding GPIO pin is set for output and the value that has been written to

the corresponding PIOD bit in the GIUPIODH (GPIO Port Input/Output Data Register) is output.

When this bit is set to “0”, the corresponding GPIO pin is set for input.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

365

18.2.3 GIUPIODL (0x0B00 0104)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name PIOD[15] PIOD[14] PIOD[13] PIOD[12] PIOD[11] PIOD[10] PIOD[9] PIOD[8]

R/W R R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name PIOD[7] PIOD[6] PIOD[5] PIOD[4] PIOD[3] PIOD[2] PIOD[1] PIOD[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] PIOD[15..0] GPIO pin output data specification

1 : High

0 : Low

This register is used to read GPIO pins and write data. The PIOD[15..0] bits correspond to the GPIO[15..0] pins.

When “1” is set to the corresponding IOS bit in the GIUIOSELL register (GPIO Input/Output Select Register), the

data written to the PIOD bit is output via the corresponding GPIO pin.

When the value of the corresponding IOS bit in the GIUIOSELL register (GPIO Input/Output Select Register) is

“0”, writing a value to the PIOD bit does not affect the GPIO pin (the write data is ignored).

When the value of the IOS bit in the GIUIOSELL register (GPIO Input/Output Select Register) is “0”, reading the

PIOD bit enables the corresponding GPIO pin’s state to be read.

Caution Since PIOD[15] (GPIO[15] (DCD#)) is fixed as input, write data cannot be output via this pin.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

366

18.2.4 GIUPIODH (0x0B00 0106)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name PIOD[31] PIOD[30] PIOD[29] PIOD[28] PIOD[27] PIOD[26] PIOD[25] PIOD[24]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name PIOD[23] PIOD[22] PIOD[21] PIOD[20] PIOD[19] PIOD[18] PIOD[17] PIOD[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] PIOD[31..16] GPIO pin output data specification

1 : High

0 : Low

This register is used to read GPIO pins and write data. The PIOD[31..16] bits correspond to the GPIO[31..16]

pins.

When “1” is set to the corresponding IOS bit in the GIUIOSELH register (GPIO Input/Output Select Register), the

data written to the PIOD bit is output via the corresponding GPIO pin.

When the value of the corresponding IOS bit in the GIUIOSELH register (GPIO Input/Output Select Register) is

“0”, writing a value to the PIOD bit does not affect the GPIO pin (the write data is ignored).

When the value of the IOS bit in the GIUIOSELH register (GPIO Input/Output Select Register) is “0”, reading the

PIOD bit enables the corresponding GPIO pin’s state to be read.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

367

18.2.5 GIUINTSTATL (0x0B00 0108)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTS[15] INTS[14] INTS[13] INTS[12] INTS[11] INTS[10] INTS[9] INTS[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTS[7] INTS[6] INTS[5] INTS[4] INTS[3] INTS[2] INTS[1] INTS[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTS[15..0] Interrupt to GPIO pin. Cleared to 0 when 1 is written.

1 : Interrupt occurred

0 : No interrupt

This register indicates the interrupt status of GPIO pins. The INTS[15..0] bits correspond to the GPIO[15..0] pins.

“1” is set to the corresponding INTS bit when “1” is set to the corresponding INTE bit in the GIUINTENL register

(GPIO Interrupt Enable Register) and when the signal input to an interrupt-enabled GPIO pin meets the conditions

set via the GIUNTTYPL register (GPIO Interrupt Type (Edge or Level) Select Register) and the GIUINTALSELL

register (GPIO Interrupt Active Level Select Register).

Caution The function of GPIO[15] is fixed as DCD# signal input.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

368

18.2.6 GIUINTSTATH (0x0B00 010A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTS[31] INTS[30] INTS[29] INTS[28] INTS[27] INTS[26] INTS[25] INTS[24]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTS[23] INTS[22] INTS[21] INTS[20] INTS[19] INTS[18] INTS[17] INTS[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTS[31..16] Interrupt to GPIO pin. Cleared to 0 when 1 is written.

1 : Interrupt occurred

0 : No interrupt

This register indicates the interrupt status of GPIO pins. The INTS[31..16] bits correspond to the GPIO[31..16]

pins.

“1” is set to the corresponding INTS bit when “1” is set to the corresponding INTE bit in the GIUINTENH register

(GPIO Interrupt Enable Register) and when the signal input to an interrupt-enabled GPIO pin meets the conditions

set via the GIUINTTYPH register (GPIO Interrupt Type (Edge or Level) Select Register) and the GIUINTALSELH

register (GPIO Interrupt Active Level Select Register).

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

369

18.2.7 GIUINTENL (0x0B00 010C)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTE[15] INTE[14] INTE[13] INTE[12] INTE[11] INTE[10] INTE[9] INTE[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTE[7] INTE[6] INTE[5] INTE[4] INTE[3] INTE[2] INTE[1] INTE[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTE[15..0] Interrupt enable to GPIO pin

1 : Interrupt enable

0 : Interrupt prohibit

This register is used to set interrupt enable status for GPIO pins. The INTE[15..0] bits correspond to the

GPIO[15..0] pins.

When “1” is set to the corresponding INTE bit, interrupts are enabled for the corresponding GPIO pins.

Caution The function of GPIO[15] is fixed as DCD# signal input.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

370

18.2.8 GIUINTENH (0x0B00 010E)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTE[31] INTE[30] INTE[29] INTE[28] INTE[27] INTE[26] INTE[25] INTE[24]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTE[23] INTE[22] INTE[21] INTE[20] INTE[19] INTE[18] INTE[17] INTE[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTE[31..16] Interrupt enable to GPIO pin

1 : Interrupt enable

0 : Interrupt prohibit

This register is used to set interrupt enable status for GPIO pins. The INTE[31..16] bits correspond to the

GPIO[31..16] pins.

When “1” is set to the corresponding INTE bit, interrupts are enabled for the corresponding GPIO pins.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

371

18.2.9 GIUINTTYPL (0x0B00 0110)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTT[15] INTT[14] INTT[13] INTT[12] INTT[11] INTT[10] INTT[9] INTT[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTT[7] INTT[6] INTT[5] INTT[4] INTT[3] INTT[2] INTT[1] INTT[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTT[15..0] Interrupt detection method

1 : Edge

0 : Level

This register is used to set the detection method (trigger) for interrupts to GPIO pins. The INTT[15..0] bits

correspond to the GPIO[15..0] pins.

When “1” is set to the corresponding INTT bit, the edge detection method is used for the interrupt signal at the

corresponding GPIO pin (an interrupt is triggered when the signal state changes from low to high or from high to

low).

The level detection method is used when “0” is set, in which case the level set to corresponding bit in the

GIUINTALSELL register (GPIO Interrupt Active Level Select Register) is detected.

Caution The function of GPIO[15] is fixed as DCD# signal input.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

372

18.2.10 GIUINTTYPH (0x0B00 0112)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTT[31] INTT[30] INTT[29] INTT[28] INTT[27] INTT[26] INTT[25] INTT[24]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTT[23] INTT[22] INTT[21] INTT[20] INTT[19] INTT[18] INTT[17] INTT[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTT[31..16] Interrupt detection method

1 : Edge

0 : Level

This register is used to set the detection method for interrupts to GPIO pins. The INTT[31..16] bits correspond to

the GPIO[31..16] pins.

When “1” is set to the corresponding INTT bit, the edge detection method is used for the interrupt signal at the

corresponding GPIO pin (an interrupt is triggered when the signal state changes from low to high or from high to

low).

The level detection method is used when “0” is set, in which case the level set to corresponding bit in the

GIUINTALSELH register (GPIO Interrupt Active Level Select Register) is detected.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

373

18.2.11 GIUINTALSELL (0x0B00 0114)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTL[15] INTL[14] INTL[13] INTL[12] INTL[11] INTL[10] INTL[9] INTL[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTL[7] INTL[6] INTL[5] INTL[4] INTL[3] INTL[2] INTL[1] INTL[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTL[15..0] Interrupt setting during level detection method

1 : High active

0 : Low active

This register is used to set the active level when using the level detection method for interrupts to GPIO pins. The

INTL[15..0] bits correspond to the GPIO[15..0] pins.

When “1” is set to the corresponding INTL bit, the high-active level detection method is used for interrupts at the

corresponding GPIO pin. The low-active level detection method is used when “0” is set to this bit.

The contents of this register are not reflected when the edge detection method is selected via the GIUINTTYPL

register (GPIO Interrupt Type (Edge or Level) Select Register). When using this register, be sure to set the level

detection method via the GIUINTTYPL register (GPIO Interrupt Type (Edge or Level) Select Register).

Caution The function of GPIO[15] is fixed as DCD# signal input.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

374

18.2.12 GIUINTALSELH (0x0B00 0116)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTL[31] INTL[30] INTL[29] INTL[28] INTL[27] INTL[26] INTL[25] INTL[24]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTL[23] INTL[22] INTL[21] INTL[20] INTL[19] INTL[18] INTL[17] INTL[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTL[31..16] Interrupt setting during level detection method

1 : High active

0 : Low active

This register is used to set the active level when using the level detection method for interrupts to GPIO pins. The

INTL[31..16] bits correspond to the GPIO[31..16] pins.

When “1” is set to the corresponding INTL bit, the high-active level detection method is used for interrupts at the

corresponding GPIO pin. The low-active level detection method is used when “0” is set to this bit.

The contents of this register are not reflected when the edge detection method is selected via the GIUINTTYPH

register (GPIO Interrupt Type (Edge or Level) Select Register). When using this register, be sure to set the level

detection method via the GIUINTTYPH register (GPIO Interrupt Type (Edge or Level) Select Register).

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

375

18.2.13 GIUINTHTSELL (0x0B00 0118)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTH[15] INTH[14] INTH[13] INTH[12] INTH[11] INTH[10] INTH[9] INTH[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTH[7] INTH[6] INTH[5] INTH[4] INTH[3] INTH[2] INTH[1] INTH[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTH[15..0] GPIO pin interrupt signal hold/through

1 : Hold

0 : Through

This register is used to set whether or not interrupt signals to the GPIO pins should be held. The INTH[15..0] bits

correspond to the GPIO[15..0] pins.

When “1” is set to the corresponding INTH bit, any interrupt signal input to the corresponding GPIO pin is held.

When “0” is set to this bit, any interrupt signal input to the corresponding GPIO pin is not held and is instead

allowed to pass through.

Any held interrupt signal is cleared when “1” is set to the corresponding bit in the GIUINTSTATL register (GPIO

Interrupt Status Register).

INTH[15..0] are not affected by GIUINTENL (interrupt enable register).

If “1” (hold) is set to the INTH bit while the interrupt enable bit is set to prohibit interrupts, any change in the pin

state is retained as change data. Therefore, an interrupt still occurs when the interrupt enable bit is again set to

enable interrupts.

Caution The function of GPIO[15] is fixed as DCD# signal input.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

376

18.2.14 GIUINTHTSELH (0x0B00 011A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name INTH[31] INTH[30] INTH[29] INTH[28] INTH[27] INTH[26] INTH[25] INTH[24]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name INTH[23] INTH[22] INTH[21] INTH[20] INTH[19] INTH[18] INTH[17] INTH[16]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] INTH[31..16] GPIO pin interrupt signal hold/through

1 : Hold

0 : Through

This register is used to set whether or not interrupt signals to the GPIO pins should be held. The INTH[31..16]

bits correspond to the GPIO[31..16] pins.

When “1” is set to the corresponding INTH bit, any interrupt signal input to the corresponding GPIO pin is held.

When “0” is set to this bit, any interrupt signal input to the corresponding GPIO pin is not held and is instead

allowed to pass through.

Any held interrupt signal is cleared when “1” is set to the corresponding bit in the GIUINTSTATH register (GPIO

Interrupt Status Register).

INTH[31..16] are not affected by GIUINTENH (interrupt enable register).

If “1” (hold) is set to the INTH bit while the interrupt enable bit is set to prohibit interrupts, any change in the pin

state is retained as change data. Therefore, an interrupt still occurs when the interrupt enable bit is again set to

enable interrupts.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

377

The relationship between settings of GPIO interrupts enable/prohibit and hold/through is as below.

Interrupt

trigger

Setting of GIUINTHSEL Setting of GIUINTEN Hold in GIU Notation to ICU

Masked Held Not noticed

Not masked Held Noticed

Hold

Masked o canceled Held Noticed

Masked Through Not noticed

Not masked Through Noticed

Level

Through

Masked o canceled Through Not noticed

Masked Held Not noticed

Not masked Held Noticed

Hold

Masked o canceled Held Noticed

Masked Through Not noticed

Not masked Prohibited Prohibited

Edge

Through

Masked o canceled Through Not noticed

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

378

18.2.15 GIUPODATL (0x0B00 011C)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name PIOD[47] PIOD[46] PIOD[45] PIOD[44] PIOD[43] PIOD[42] PIOD[41] PIOD[40]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 1 1 1

Other resets 1 1 1 1 1 1 1 1

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name PIOD[39] PIOD[38] PIOD[37] PIOD[36] PIOD[35] PIOD[34] PIOD[33] PIOD[32]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 1 1 1

Other resets 1 1 1 1 1 1 1 1

Bit Name Function

D[15..0] PIOD[47..32] GPIO pin output data specification

1 : High

0 : Low

This register is used to set the output level for GPIO pins. The PIOD[47..32] bits correspond to the GPIO[47..32]

pins.

The data written to the PIOD bit is output via the corresponding GPIO pin. The set value can be read by reading

the PIOD bit.

Pins set by this register are output-only. Pins set by this register are used exclusively from other function pins.

Therefore, when using this register, set the enable bit to prohibit in the corresponding unit.

The correspondences between PIOD bits and function pins are listed in the table on the next page.

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

379

Table 18-3. Table of Correspondences between GPIO[47..32] and Function Pins

PIOD Bit GPIO pin Function pin

PIOD[47] GPIO[47] DCTS#

PIOD[46] GPIO[46] DRTS#

PIOD[45] GPIO[45] DDIN

PIOD[44] GPIO[44] DDOUT

PIOD[43] GPIO[43] KSCAN[11]

PIOD[42] GPIO[42] KSCAN[10]

PIOD[41] GPIO[41] KSCAN[9]

PIOD[40] GPIO[40] KSCAN[8]

PIOD[39] GPIO[39] KSCAN[7]

PIOD[38] GPIO[38] KSCAN[6]

PIOD[37] GPIO[37] KSCAN[5]

PIOD[36] GPIO[36] KSCAN[4]

PIOD[35] GPIO[35] KSCAN[3]

PIOD[34] GPIO[34] KSCAN[2]

PIOD[33] GPIO[33] KSCAN[1]

PIOD[32] GPIO[32] KSCAN[0]

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

380

18.2.16 GIUPODATH (0x0B00 011E)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved PIOEN[1] PIOEN[0]

R/W R R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved PIOD[49] PIOD[48]

R/W R R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..0] Reserved Reserved

D[9] PIOEN[1] GPIO[49] pin output control

1 : Enable

0 : Disable

D[8] PIOEN[0] GPIO[48]/DBUS32 pin output control

1 : Enable

0 : Disable

D[7..2] Reserved Reserved

D[1..0] PIOD[49..48] GPIO pin output data specification

1 : High

0 : Low

This register is used to set the output level for GPIO pins. The PIOEN[1..0] bits or the PIOD[49..48] bits

correspond to the GPIO[49..48].

The data written to the PIOD bit is output via the corresponding GPIO pin. The set value can be read by reading

the PIOD bit.

Pins set by this register are output-only. Pins set by this register are used exclusively from other function pins.

Therefore, when using this register, set the enable bit to prohibit in the corresponding unit.

The correspondence between PIOD bit and function pin is listed below.

Table 18-4. Table of Correspondence between GPIO[48] and Function Pin

PIOD Bit GPIO pin Function pin

PIOD[48] GPIO[48] DBUS32

381

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

This chapter describes the PIU’s operations and register settings.

19.1 GENERAL

The PIU uses an on-chip A/D converter and detects the X and Y coordinates of pen contact locations on the

touch panel and scans the general-purpose A/D input port. Since the touch panel control circuit and the A/D

converter (conversion precision: 10 bits) are both on-chip, the touch panel is connected directly to the VR4102.

The PIU’s function, namely the detection of X and Y coordinates, is performed partly by hardware and partly by

software.

Hardware tasks : • Touch panel applied voltage control

• Reception of coordinate data

Software task : • Processing of coordinate data based on data sampled by hardware

Features of the PIU’s hardware tasks are described below.

• Can be directly connected to touch panel with four-pin resistance layers (on-chip touch panel driver)

• Interface for on-chip A/D converter

• Voltage detection at three general-purpose AD ports and one audio input port

• Operation of A/D converter based on various settings and control of voltage applied to touch panel

• Sampling of X-coordinate and Y-coordinate data

• Variable coordinate data sampling interval

• Interrupt is triggered if pen touch occurs regardless of CPU operation mode (interrupts do not occur when in

CPU hibernate mode)

• Four dedicated buffers for up to two pages each of coordinate data

• Four buffers for A/D port scan

• Auto/manual options for coordinate data sampling start/stop control

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

382

19.1.1 Block Diagrams

Figure 19-1. PIU Peripheral Block Diagram

TPY1

TPY0

TPX1

TPX0

AUDIOIN

ADIN2

ADIN1

ADIN0

S
el

ec
to

r

4

4

ADC AIU

PIU

VR4102

I/O

buffer

1
Battery, etc.

Touch panel

I/O

buffer

• Touch panel

A set of four pins are located at the edges of the X-axis and Y-axis resistance layers, and the two layers have

high resistance when there is no pen contact and low resistance when there is pen contact. The resistance

between the two edges of the resistance layers is about 1 k:. When a voltage is applied to both edges of the

Y-axis resistance layer, the voltage (VY1 and VY2 in the figure below) is measures at the X-axis resistance

layer’s pins to determine the Y coordinate. Similarly, when a voltage is applied to both edges of the X-axis

resistance layer, the voltage (VX1 and VX2 in the figure below) is measures at the Y-axis resistance layer’s

pins to determine the X coordinate. For greater precision, voltage applied to individual resistance-layer pins

can be measured to obtain X and Y coordinate data based on four voltage measurements. The obtained

coordinate data are stored to PIUPBnmREG register (n = 0, 1, m = 0 to 3).

Figure 19-2. Equivalent Circuit of Coordinate Detection

(a) Y-coordinate detection

TPY1: 3V TPY1: 0V

TPY0: 0V TPY0: 3V

TPX0 TPX0

TPY0

(b) X-coordinate detection

TPY0

TPX0: 3V TPX1: 0V TPX0: 0V TPX1: 3V

VY2

VY1

VX1 VX2

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

383

Figure 19-3. Internal Block Diagram of PIU

General purpose
A/D ports and
Audio input port

Touch panel

Inside the VR4102 Internal bus

PIU

Internal bus

controller

PIU registers

Scan sequencer

TP
interface
controller

A/D converter

The PIU includes three blocks: an internal bus controller, a scan sequencer, and a TP interface controller.

• Internal bus controller

The internal bus controller controls the internal bus, DMA, the PIU registers, and interrupts and performs

serial/parallel conversion of data from the A/D converter.

• Scan sequencer

The scan sequencer is used for PIU state management.

• TP interface controller

The TP interface controller is used to control the touch panel.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

384

19.2 SCAN SEQUENCER STATE TRANSITION

Figure 19-4. Scan Sequencer State Transition Diagram

WaitPenTouch DataScan

IntervalADPortScan

CMDScan

Standby

Disable

PIUSeqEN=1
&

ADPSStart=1

PIUSeqEn=
1

TimeOut

Release &
AutoStop=1

Touch

auto

ADPSStart=

PIUSeqEN=1
& PIUmode=01

PIUSeqEn=0

Release

PIUSeqEn=0

PIUSeqEn=0

PIUPWR=0 PIUPWR=1

Reset=1

PIUSeqEn=1
& ScanStart=1

ScanStart=1

PIUSeqEn=0 or ScanStop=1

• Disable state

In this state, the A/D converter is in standby mode, the output pins are in touch detection mode (no PIU

interrupt), and the input pins are in mask mode (to prevent misoperation when an undefined input is applied).

• Standby state

In this state, the unit is in scan idle mode. The touch panel is in low-power mode (0-V voltage is applied to

the touch panel and the A/D converter is in disable mode). Normally, this is the state from which various

mode settings are made.

Caution State transitions occur when the PIUSEQEN bit is active, so the PIUSEQEN bit must be set

as active after each mode setting has been completed.

• ADPortScan state

This is the state in which voltage is measured at the three A/D converter’s general-purpose ports and one

audio input port. After the A/D converter is activated and voltage data is obtained, the data is stored in the

PIU’s internal data buffer (PIUABxREG). After the four ports are scanned, a PadCMDIntr interrupt occurs.

After this interrupt occurs, the ADPSSTART bit is automatically set as inactive and the state changes to the

state in which the ADPSSTART bit was active.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

385

• CMDScan state

When in this state, the A/D converter operates using various settings. Voltage data from one port only is

fetched based on a combination of the touch panel pin setting (TPX[1:0], TPY[1:0]) and the selection of an

input port (TPX[1:0], TPY[1:0], AUDIOIN, ADIN[2:0]) to the A/D converter. Use PIUCMDREG to make the

touch panel pin setting and to select the input port.

• WaitPenTouch state

This is the standby state that waits for a touch panel “touch” state. When the PIU detects a touch panel

“touch” state, PenChgIntr (an internal interrupt in the PIU) occurs. At this point, if the PADAUTOSCAN bit is

active, the state changes to the PenDataScan state. During the WaitPenTouch state, it is possible to change

to Suspend mode because the panel state can be detected even when TClock has been stopped.

• PenDataScan state

This is the state in which touch panel coordinates are detected. The A/D converter is activated and the four

sets of data for each coordinate are sampled.

Caution If one complete pair of coordinates is not obtained during the interval between one pair of

coordinates and the next coordinate data, a PadDataLostIntr interrupt occurs.

• IntervalNextScan state

This is the standby state that waits for the next coordinate sampling period or a touch panel “release” state.

After the touch panel state is detected, the time period specified via PIUSIVLREG elapses before the

transition to the PenDataScan state. If the PIU detects a “release” state within the specified time period,

PenChgIntr (an internal interrupt in the PIU) occurs. At this point, the state changes to the WaitPenTouch

state if the PADATSTOP bit is active. If the PADATSTOP bit is inactive, it changes to the PenDataScan state

after the specified time period has elapsed.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

386

19.3 REGISTER SET

The PIU registers are listed below.

Table 19-1. PIU Registers

Address R/W Register symbols Function

0x0B00 0122 R/W PIUCNTREG PIU Control register

0x0B00 0124 R/W PIUINTREG PIU Interrupt cause register

0x0B00 0126 R/W PIUSIVLREG PIU Data sampling interval register

0x0B00 0128 R/W PIUSTBLREG PIU A/D converter start delay register

0x0B00 012A R/W PIUCMDREG PIU A/D command register

0x0B00 0130 R/W PIUASCNREG PIU A/D port scan register

0x0B00 0132 R/W PIUAMSKREG PIU A/D scan mask register

0x0B00 013E R PIUCIVLREG PIU Check interval register

0x0B00 02A0 R/W PIUPB00REG PIU Page 0 Buffer 0 register

0x0B00 02A2 R/W PIUPB01REG PIU Page 0 Buffer 1 register

0x0B00 02A4 R/W PIUPB02REG PIU Page 0 Buffer 2 register

0x0B00 02A6 R/W PIUPB03REG PIU Page 0 Buffer 3 register

0x0B00 02A8 R/W PIUPB10REG PIU Page 1 Buffer 0 register

0x0B00 02AA R/W PIUPB11REG PIU Page 1 Buffer 1 register

0x0B00 02AC R/W PIUPB12REG PIU Page 1 Buffer 2 register

0x0B00 02AE R/W PIUPB13REG PIU Page 1 Buffer 3 register

0x0B00 02B0 R/W PIUAB0REG PIU A/D scan Buffer 0 register

0x0B00 02B2 R/W PIUAB1REG PIU A/D scan Buffer 1 register

0x0B00 02B4 R/W PIUAB2REG PIU A/D scan Buffer 2 register

0x0B00 02B6 R/W PIUAB3REG PIU A/D scan Buffer 3 register

0x0B00 02BC R/W PIUPB04REG PIU Page 0 Buffer 4 register

0x0B00 02BE R/W PIUPB14REG PIU Page 1 Buffer 4 register

These registers are described in detail below.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

387

19.3.1 PIUCNTREG (0x0B00 0122)

(1/2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved PENSTP PENSTC PADSTATE[2] PADSTATE[1] PADSTATE[0] PADATSTOP PADATSTART

R/W R R/W R R R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name PADSCAN

STOP

PADSCAN

START

PADSCAN

TYPE

PIUMODE[1] PIUMODE[0] PIUSEQEN PIUPWR PADRST

R/W R/W R/W R/W R/W R/W R/W R/W W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] Reserved Write 0 when writing. 0 is returned after a read.

D[14] PENSTP Previous touch panel contact state

1 : Touch

0 : Release

D[13] PENSTC Current touch panel contact state

1 : Touch

0 : Release

D[12..10] PADSTATE[2:0] Scan sequencer status

111 : CmdScan

110 : IntervalNextScan

101 : PenDataScan

100 : WaitPenTouch

011 : RFU

010 : ADPortScan

001 : Standby

000 : Disable

D[9] PADATSTOP Sequencer auto stop setting during touch panel release state

1 : Auto stop after sampling data for one set of coordinates during release state

0 : No auto stop (even during release state)

D[8] PADATSTART Sequencer auto start setting during touch panel touch state

1 : Auto start during touch state

0 : No auto start during touch state

D[7] PADSCANSTOP Forced stop setting for touch panel sequencer

1 : Forced stop after sampling data for one set of coordinates

0 : Do not stop

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

388

(2/2)

Bit Name Function

D[6] PADSCANSTART Start setting for touch panel sequencer

1 : Forced start

0 : Do not start

D[5] PADSCANTYPE Touch pressure sampling enable

1: Enable

0: Prohibit

D[4..3] PIUMODE[1..0] PIU mode setting

11 : RFU

10 : RFU

01 : Operate A/D converter using any command

00 : Sample coordinate data

D[2] PIUSEQEN Scan sequencer operation enable

1 : Enable

0 : Prohibit

D[1] PIUPWR PIU power mode setting

1 : Set PIU output as active and change to standby mode

0 : Set panel to touch detection state and set PIU operation stop enabled mode

D[0] PADRST PIU reset. Once the PADRST bit is set to “1”, it is automatically cleared to 0 after four

TClock cycles.

1 : Reset

0 : Normal

This register is used to make various settings for the PIU.

Some bits in this register cannot be set in a specific state of scan sequencer. The combination of the setting of

this register and the sequencer state is as follows.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

389

Table 19-2. PIUCNTREG Bit Manipulation and States

PIUCNTREG bit manipulation Scan sequencer’s state

Disable Standby WaitPenTouch PenData Scan

PADRST Note 1 0 o 1 ð Disable Disable Disable

PIUPWR 0 o 1 Standby ? u u

1 o 0 ? Disable u u

PIUSEQEN 0 o 1 u WaitPenTouch ? ?

1 o 0 ? ? Standby Standby

PADATSTART 0 o 1 u ð PenDataScan
Note 2

u

1 o 0 u ð ð u

PADATSTOP 0 o 1 u ð u u

1 o 0 u ð u u

PADSCANSTART 0 o 1 u PenDataScan
Note 3

u u

1 o 0 u ð u u

PADSCANSTOP 0 o 1 u ð u Standby
Note 4

1 o 0 u ð u ð

PIUCNTREG bit manipulation Scan sequencer’s state

IntervalNextScan ADPortScan CmdScan

PADRST Note 1 0 o 1 Disable Disable Disable

PIUPWR 0 o 1 ? ? ?

1 o 0 u u u

PIUSEQEN 0 o 1 ? ? ?

1 o 0 Standby Standby Standby

PADATSTART 0 o 1 u u u

1 o 0 u u u

PADATSTOP 0 o 1 u u u

1 o 0 u u u

PADSCANSTART 0 o 1 u u u

1 o 0 u u u

PADSCANSTOP 0 o 1 Standby Standby
Note 4

Standby
Note 4

1 o 0 ? ð ð

Notes 1. After “1” is written, the bit is automatically cleared to 0 after four TClock cycles.

2. State transition occurs during touch state

3. State transition occurs when PIUSEQEN = 1

4. State transition occurs after one set of data is sampled. This bit is cleared to 0 after the state

transition occurs.

Remarks ð : The bit change is retained but there is no state transition.

u : Setting prohibited (operation not guaranteed)

? : Combination of state and bit status before setting does not exist

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

390

19.3.2 PIUINTREG (0x0B00 0124)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name OVP Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R/W R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved PADCMD

INTR

PADADP

INTR

PADPAGE1

INTR

PADPAGE0

INTR

PADDLOST

INTR

Reserved PENCHG

INTR

R/W R R/W R/W R/W R/W R/W R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] OVP Valid page ID bit (older valid page)

1 : Valid data older than page 1 buffer data is retained

0 : Valid data older than page 0 buffer data is retained

D[14..7] Reserved Write 0 when writing. 0 is returned after a read.

D[6] PADCMDINTR PIU command scan interrupt. Cleared to 0 when 1 is written.

1 : Indicates that command scan found valid data

0 : Indicates that command scan did not find valid data in buffer

D[5] PADADPINTR PIU A/D port scan interrupt . Cleared to 0 when 1 is written.

1 : Indicates that A/D port scan found valid data with “1” value in buffer

0 : Indicates that A/D port scan did not find valid data with “1” value in buffer

D[4] PADPAGE1INTR PIU data buffer page 1 interrupt. Cleared to 0 when 1 is written.

1 : Valid data with “1” value is stored in page 1 of data buffer

0 : No valid data with “1” value in page 1 of data buffer

D[3] PADPAGE0INTR PIU data buffer page 0 interrupt. Cleared to 0 when 1 is written.

1 : Valid data with “1” value is stored in page 0 of data buffer

0 : No valid data with “1” value in page 0 of data buffer

D[2] PADDLOSTINTR A/D data timeout. Cleared to 0 when 1 is written.

1 : Not data with “1” value found within specified time

0 : No timeout

D[1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] PENCHGINTR Change in touch panel contact state. Cleared to 0 when 1 is written.

1 : Change has occurred

0 : No change

This register is used to set or indicate an occurrence of PIU’s various interrupt requests.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

391

19.3.3 PIUSIVLREG (0x0B00 0126)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved SCANINT

VAL[10]

SCANINT

VAL[9]

SCANINT

VAL[8]

R/W R R R R R R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name SCANINT

VAL[7]

SCANINT

VAL[6]

SCANINT

VAL[5]

SCANINT

VAL[4]

SCANINT

VAL[3]

SCANINT

VAL[2]

SCANINT

VAL[1]

SCANINT

VAL[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 1 1 1

Other resets 0 0 0 0 0 1 1 1

Bit Name Function

D[15..11] Reserved Write 0 when writing. 0 is returned after a read.

D[10..0] SCANINTVAL[10..0] Coordinate data scan sampling interval setting

Interval = SCANINTVAL[10..0] x 30 Ps

This register sets the sampling interval for coordinate data sampling.

The sampling interval for one pair of coordinate data is the value set via SCANINTVAL[10..0] multiplied by 30 Ps.

Accordingly, the logical range of sampling intervals that can be set in 30-Ps units is from 0 Ps to 60,810 Ps (about 60

ms). Actually, if the sampling interval setting is shorter than the time required for obtaining a pair of coordinate data

or ADPortScan data, a PIULostIntr interrupt will occur. If PIULostIntr interrupts occur frequently, set a longer interval

time.

Figure 19-5. Interval Times and States

Remarks S : Voltage stabilization standby time (STABLE(5:0) in PIUSTBLREG)
A : A/D converter’s conversion time (about 10Ps)
T : Touch/release detection

DataScan Interval IntervalADPortScan DataScanState

S A S A S A S A A A A A S A S A S A S AS T T

 Interval time

Operation

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

392

19.3.4 PIUSTBLREG (0x0B00 0128)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved STABLE[5] STABLE[4] STABLE[3] STABLE[2] STABLE[1] STABLE[0]

R/W R R R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 1 1 1

Other resets 0 0 0 0 0 1 1 1

Bit Name Function

D[15..6] Reserved Write 0 when writing. 0 is returned after a read.

D[5..0] STABLE[5..0] Panel applied voltage stabilization standby time

Standby time = STABLE[5..0] u 30 Ps

During A/D scan, this can be used as a timeout counter.

The voltage stabilization standby time for the voltage applied to the touch panel can be set via STABLE[5..0] in

30-Ps units between 0 Ps and 1,890 Ps.

The setting of this register is also used as a timeout period during A/D scan.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

393

19.3.5 PIUCMDREG (0x0B00 012A)

(1/2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved STABLEON TPYEN1 TPYEN0 TPXEN1 TPXEN0

R/W R R R R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TPYD1 TPYD0 TPXD1 TPXD0 ADCMD[3] ADCMD[2] ADCMD[1] ADCMD[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 1 1 1 1

Other resets 0 0 0 0 1 1 1 1

Bit Name Function

D[15..13] Reserved Write 0 when writing. 0 is returned after a read.

D[12] STABLEON Touch panel applied voltage stabilization time set (STABLE[5..0] of PIUSTBLREG)

enable

1 : Retain panel voltage stabilization time

0 : Ignore panel voltage stabilization time (voltage stabilization standby time = 0)

D[11..10] TPYEN[1..0] TPY port input/output switching during command scan

00 : TPY1 input, TPY0 input

01 : TPY1 input, TPY0 output

10 : TPY1 output, TPY0 input

11 : TPY1 output, TPY0 output

D[9..8] TPXEN[1..0] TPX port input/output switching during command scan

00 : TPX1 input, TPX0 input

01 : TPX1 input, TPX0 output

10 : TPX1 output, TPX0 input

11 : TPX1 output, TPX0 output

D[7..6] TPYD[1..0] TPY output level during command scan

00 : TPY1 = “L”, TPY0 = “L”

01 : TPY1 = “L”, TPY0 = “H”

10 : TPY1 = “H”, TPY0 = “L”

11 : TPY1 = “H”, TPY0 = “H”

TPYD value is ignored when TPYEN is set for input.

D[5..4] TPXD[1..0] TPX output level during command scan

00 : TPX1 = “L”, TPX0 = “L”

01 : TPX1 = “L”, TPX0 = “H”

10 : TPX1 = “H”, TPX0 = “L”

11 : TPX1 = “H”, TPX0 = “H”

TPXD value is ignored when TPXEN is set for input.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

394

(2/2)

Bit Name Function

D[3..0] ADCMD[3..0] A/D converter input port selection for command scan

1111 : A/D converter standby mode request

1110 : RFU

 :

1000 : RFU

0111 : AUDIOIN port

0110 : ADIN2 port

0101 : ADIN1 port

0100 : ADIN0 port

0011 : TPY1 port

0010 : TPY0 port

0001 : TPX1 port

0000 : TPX0 port

This register sets the switching or output level of ports during command scan operation.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

395

19.3.6 PIUASCNREG (0x0B00 0130)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved TPPSCAN ADPS

START

R/W R R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..2] Reserved Write 0 when writing. 0 is returned after a read.

D[1] TPPSCAN Port selection for ADPortScan

1 : Select TPX[1:0], TPY[1:0] (for touch panel) as A/D port

0 : Select ADIN[3:0] (general-purpose) as A/D port

D[0] ADPSSTART ADPorScan start

1 : Start ADPortScan

0 : Do not perform ADPortScan

The ADPortScan begins when the ADPSSTART bit is set. After the ADPortScan is completed, the state returns

to the state when ADPortScan was started. Automatically ADPSSTART bit is reset (to “0”) after ADPortScan is

completed.

If the ADPortScan is not completed within the time period set via PIUSTBLREG’s STABLE bits, a PIULostIntr

interrupt occurs as a timeout interrupt.

Some bits in this register cannot be set in a specific state of scan sequencer. The combination of the setting of

this register and the sequencer state is as follows.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

396

Table 19-3. PIUASCNREG Bit Manipulation and States

PIUASCNREG bit

manipulation

Scan sequencer’s state

Disable Standby WaitPenTouch PenData Scan

ADDSTART 0 o 1 u ADPortScan
Note

u u

1 o 0 u Disable u u

TPPSCAN 0 o 1 ð ð ð ð

1 o 0 ð ð ð ð

PIUCNTREG bit manipulation Scan sequencer’s state

IntervalNextScan ADPortScan CmdScan

ADDSTART 0 o 1 u ADPortScan
Note

u

1 o 0 u Disable u

TPPSCAN 0 o 1 u WaitPenTouch ?

1 o 0 ? ? Standby

Note After ADPortScan is completed, the bit is automatically cleared to 0.

Remarks ð : The bit change is retained but there is no state transition.

u : Setting prohibited (operation not guaranteed)

? : Combination of state and bit status before setting does not exist

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

397

19.3.7 PIUAMSKREG (0x0B00 0132)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name ADINM3 ADINM2 ADINM1 ADINM0 TPYM1 TPYM0 TPXM1 TPXM0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..8] Reserved Write 0 when writing. 0 is returned after a read.

D[7] ADINM[3] Audio input port mask

Valid only during A/D scan. If masked, A/D conversions are not performed for the

corresponding port.

D[6..4] ADINM[2..0] General-purpose A/D port mask

Valid only during A/D scan. If masked, A/D conversions are not performed for the

corresponding port.

1 : Mask

0 : Normal

D[3..2] TPYM[1..0] Touch panel A/D port TPY mask

Valid only during A/D scan. If masked, A/D conversions are not performed for the

corresponding port.

1 : Mask

0 : Normal

D[1..0] TPXM[1..0] Touch panel A/D port TPX mask

Valid only during A/D scan. If masked, A/D conversions are not performed for the

corresponding port.

1 : Mask

0 : Normal

This register is used to set masking of each A/D port. Its setting is valid only during A/D Port scanning operation.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

398

19.3.8 PIUCIVLREG (0x0B00 013E)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved CHECKIN

TVAL[10]

CHECKIN

TVAL[9]

CHECKIN

TVAL[8]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name CHECKIN

TVAL[7]

CHECKIN

TVAL[6]

CHECKIN

TVAL[5]

CHECKIN

TVAL[4]

CHECKIN

TVAL[3]

CHECKIN

TVAL[2]

CHECKIN

TVAL[1]

CHECKIN

TVAL[0]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..11] Reserved Write 0 when writing. 0 is returned after a read.

D[10..0] CHKINTVAL[10..0] Interval count value

This register is used for real-time reading of internal register values being counted down based on the

PIUSIVLREG setting.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

399

19.3.9 PIUPBnmREG (0x0B00 02A0 to 0x0B00 02AE, 0x0B00 02BC to 0x0B00 02BE)

Remark n = 0, 1, m = 0 to 4

PIUPB00REG (0x0B00 02A0) PIUPB04REG (0x0B00 02BC) PIUPB13REG (0x0B00 02AE)

PIUPB01REG (0x0B00 02A2) PIUPB10REG (0x0B00 02A8) PIUPB14REG (0x0B00 02BE)

PIUPB02REG (0x0B00 02A4) PIUPB11REG (0x0B00 02AA)

PIUPB03REG (0x0B00 02A6) PIUPB12REG (0x0B00 02AC)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name VALID Reserved Reserved Reserved Reserved Reserved PADDATA[9] PADDATA[8]

R/W R/W R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name PADDATA[7] PADDATA[6] PADDATA[5] PADDATA[4] PADDATA[3] PADDATA[2] PADDATA[1] PADDATA[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] VALID Indicates validity of data in PADDATA

1 : Valid

0 : Invalid

D[14..10] Reserved Write 0 when writing. 0 is returned after a read.

D[9..0] PADDATA[9..0] A/D converter’s sampling data

This register is used to store coordinate data and touch pressure data. There are four coordinate data buffers

and one pair of touch pressure data buffer, each of which holds two pages of coordinate data or pressure data, and

the addresses (register addresses) where the coordinate data or the pressure data is stored are fixed. Read

coordinate data from the corresponding register in a valid page.

The VALID bit, which indicates when the data is valid, is automatically rendered invalid when the page buffer

interrupt cause (PIUPAGE0INTR or PIUPAGE1INTR in PIUINTREG) is cleared.

Table 19-4. Detected Coordinates and Page Buffers

Detected data Page0 Buffer Page1 Buffer

X+ PIUPB00REG PIUPB10REG

Xð PIUPB01REG PIUPB11REG

Y+ PIUPB02REG PIUPB12REG

Yð PIUPB03REG PIUPB13REG

Z (Touch pressure) PIUPB04REG PIUPB14REG

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

400

19.3.10 PIUABnREG (0x0B00 02B0 to 0x0B00 02B6)

Remark n = 0 to 3

PIUAB0REG (0x0B00 02B0)

PIUAB1REG (0x0B00 02B2)

PIUAB2REG (0x0B00 02B4)

PIUAB3REG (0x0B00 02B6)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name VALID Reserved Reserved Reserved Reserved Reserved PADDATA[9] PADDATA[8]

R/W R/W R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name PADDATA[7] PADDATA[6] PADDATA[5] PADDATA[4] PADDATA[3] PADDATA[2] PADDATA[1] PADDATA[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] VALID Indicates validity of data in PADDATA

1 : Valid

0 : Invalid

D[14..10] Reserved Write 0 when writing. 0 is returned after a read.

D[9..0] PADDATA[9..0] A/D converter’s sampling data

This register is used to store general-purpose A/D port sampling data, audio input port sampling data, and

command scan data. There are four data buffers and the addresses (register address) where the data is stored are

fixed.

The VALID bit, which indicates when the data is valid, is automatically rendered invalid when the page buffer

interrupt cause (PIUADPINTR in PIUINTREG) is cleared.

Table 19-5. A/D Ports and Data Buffers

Register During ADPortScan During CMDScan

TPPScan = 0 TPPScan = 1

PIUAB0REG

PIUAB1REG

PIUAB2REG

PIUAB3REG

ADIN0

ADIN1

ADIN2

AUDIOIN

TPX0

TPX1

TPY0

TPY1

CMDScanDATA

ð

ð

ð

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

401

19.4 REGISTER SETTING FLOW

Be sure to reset the PIU before operating the scan sequencer. Setting initial values via a reset sets particular

values for the sequence interval, etc., that are required.

The registers for which these initial settings are necessary are listed below.

PIUSITVLREG ScanIntval [10:0]

PIUSTBLREG Stable [3:0]

Interrupt mask cancellation settings are required for registers other than the PIU registers.

Setting Unit Register Bit Value

ICU MSYSINTREG PIUINTR 1Interrupt mask clear

ICU MPIUINTREG bit 6:0 0x7F

Clock mask clear CMU CMUCLKMSK MSKPIU 1

(1) Register setting flow for voltage detection at A/D general-purpose ports and audio input port

Standby, WaitPenTouch, or Interval state

<1> PIUAMSKREG AD port and audio input port mask setting

<2> PIUASCNREG ADPSSTART = 1

p

ADPortScan state

<3> PIUASCNREG ADPSSTART = 0

p

Standby, WaitPenTouch, or Interval state

(2) Register setting flow for auto scan coordinate detection

Standby state

<1> PIUCNTREG PIUMode [1:0] = 00

PADATSCAN = 1

PADATSTOP = 1

<2> PIUCNTREG PIUSEQEN = 1

p

WaitPenTouch state

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

402

(3) Register setting flow for manual scan coordinate detection

Disable state

<1> PIUCNTREG PIUPWR = 1

p

Standby state

<2> PIUCNTREG PIUMODE[1:0] = 00

PADSCANSTART = 1

<3> PIUCNTREG PIUSEQEN = 1

p

PenDataScan state

(4) Register setting flow during Suspend mode transition

Standby, WaitPenTouch, or Interval state

<1> PIUCNTREG PIUSEQEN = 0

p

Standby state

<2> PIUCNTREG PIUPWR = 1

p

Disable state

(5) Register setting flow when returning from Suspend mode transition

Disable state

<1> PIUCNTREG PIUPWR = 1

p

Standby state

<2> PIUCNTREG PIUMODE [1:0] = 00

PADATSCAN = 1

PADATSTOP = 1

<3> PIUCNTREG PIUSEQEN = 1

p

WaitPenTouch state

Touch detected

p

PenDataScan state

(6) Register setting flow for command scan

Disable state

<1> PIUCNTREG PIUPOWER = 1

p

Standby state

<2> PIUCNTREG PIUMODE [1:0] = 01

<3> PIUCNTREG Set touch panel pins, select input port

<4> PIUCNTREG PIUSEQEN = 1

p

CMDScan state

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

403

19.5 RELATIONSHIPS AMONG TPX, TPY, AND ADIN PINS AND STATES

State PadState[2:0] TPX[1:0] TPY[1:0] ADIN[2:0]

AUDIOIN

Power off (pen status detection) Disable HH Dð ð ð ð ð

Low-power standby Standby 00 00 ð ð ð ð

Pen status detection WaitPenTouch/Interval HH Dð ð ð ð ð

Voltage detection at general-purpose AD0 port ADPortScan 00 00 ð ð ð I

Voltage detection at general-purpose AD1 port ADPortScan 00 00 ð ð I ð

Voltage detection at general-purpose AD2 port ADPortScan 00 00 ð I ð ð

Voltage detection at audio input port ADPortScan 00 00 I ð ð ð

TPY1 = H, TPY0 = L, TPX0 = samp (X+) PadDataScan ðI HL ð ð ð ð

TPY1 = L, TPY0 = H, TPX0 = samp (Xð) PadDataScan ðI LH ð ð ð ð

TPX1 = H, TPX0 = L, TPY0 = samp (Y+) PadDataScan HL ðI ð ð ð ð

TPX1 = L, TPX0 = H, TPY0 = samp (Yð) PadDataScan LH ðI ð ð ð ð

Touch pressure detection (Z) PadDataScan HH dð ð ð ð ð

Remarks 0 : Low level input

1 : High level input

L : Low level output

H : High level output

l : A/D converter input

D : Touch interrupt input (via pull-down resistor)

d : No touch interrupt input (via pull-down resistor)

ð : Don’t care

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

404

19.6 TIMING

19.6.1 Touch/Release Detection Timing

Touch/release detection does not use the A/D converter but instead uses the voltage level of the TPY1 pin to

determine the panel’s touch/release state. The following figure shows a touch/release detection timing diagram.

Figure 19-6. Touch/Release Detection Timing

State

TPY,TPX
(PADSCANTYPE = 0)

(TPY1) 1
(Touch)

WaitPenTouch

Touch detected

0
(Release)

Standby

LowPower

L

DataScan

X-, X+, Y-, Y+

Interval

Release detected

1
(Touch)

0
(Release)

TPY,TPX
(PADSCANTYPE = 1) Touch detectedLowPower Z, X-, X+, Y-, Y+ Release detected

19.6.2 A/D Port Scan Timing

The A/D port scan function sequentially scans the A/D converter’s four input channel port pins and stores the data

in the data buffer used for A/D port scanning.

The following figure shows an A/D port scan timing diagram.

Figure 19-7. A/D Port Scan Timing

XXX state: Standby, WaitPenTouch, or Interval

State

AUDIOIN, ADIN[2:0]

ADPSSTART bit
 (PIUASCNREG)

ADPortScan

AUDIOIN, ADIN2, ADIN1, ADIN0

XXX XXX

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

405

19.7 DATA LOSS INTERRUPT CONDITIONS

The PIU issues a PIUDataLostIntr interrupt when any of the following four conditions exist.

Once a PIUDataLostIntr interrupt occurs, the sequencer is forcibly changed to the Standby state.

1. Data for one coordinate has not been obtained within the interval period

2. The A/D port scan has not been completed within the time set via PIUSTBLREG

3. Transfer of the next coordinate data has begun while valid data for both pages remains in the buffer

4. The next data transfer starts while there is valid data in the ADPortScan buffer

(1) When data for one coordinate has not been obtained within the interval period

Cause

This condition occurs when the AIU has exclusive use of the A/D converter and the PIU is therefore

unable to use the A/D converter.

If this data loss condition occurs frequently, implement a countermeasure that temporarily prohibits the

AIU’s use of the A/D converter.

Response

After clearing the cause of the PIUDataLostIntr interrupt, set PIUCIUCNTREG’s PADATSTART bit or

PADSCANSTART bit to restart the coordinate detection operation. Once the PIUDataLostIntr interrupt is

cleared, the page in which the loss occurred becomes invalid. If the valid data prior to the data loss is

needed, be sure to save the data that is being stored in the page buffer before clearing the

PIUDataLostIntr interrupt.

(2) When the A/D port scan has not been completed within the time set via PIUSTBLREG

Cause

Same as cause of condition 1

Response

After clearing the cause of the PIUDataLostIntr interrupt, set PIUASCNREG’s ADPSSTART bit to restart

the A/D port scan operation. Once the PIUDataLostIntr interrupt is cleared, the page in which the loss

occurred becomes invalid. If the valid data prior to the data loss is needed, be sure to save the data that

is being stored in the page buffer before clearing the PIUDataLostIntr interrupt.

(3) When transfer of the next coordinate data has begun while valid data for both pages remains in the

buffer

Cause

This condition is caused when the data buffer contains two pages of valid data (both the PIUPAGE1INTR

and PIUPAGE0INTR interrupts have occurred) but the valid data has not been processed. If the A/D

converter is used frequently, this may shorten the time that would normally be required from when both

pages become full until when the data loss occurs.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

406

Response

In condition 3, valid data contained in the pages when the PIUDataLostIntr interrupt occurs is never

overwritten.

After two pages of valid data are processed, clear the causes of the three interrupts (PIUDataLostIntr,

PIUPAGE1INTR, and PIUPAGE0INTR).

After clearing these interrupt causes, set the PADATSTART bit or PADSCANSTART bit of PIUCNTREG

to restart the coordinate detection operation.

(4) When the next data transfer starts while there is valid data in the ADPortScan buffer

Cause

This condition is caused when valid data is not processed even while the ADPortScan buffer holds valid

data (PADADPINTR interrupt occurrence).

Response

In condition 4, valid data contained in the buffer when the PIUDataLostIntr interrupt occurs is never

overwritten.

After valid data in the buffer is processed, clear the causes of the two interrupts (PIUDataLostIntr,

PADADPINTR).

After clearing these interrupt causes, set the ADPSSTART bit of PIUASCNREG to restart the general-

purpose A/D port scan.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

407

19.8 COMPARISON OF VR4102 AND VR4101TM

Table 19-6. Comparison of PIUs of V R4102 and VR4101

Item VR4102 VR4101

A/D converter On-chip (10 bits) External (10/12 bits)

Data transfer Transfer to buffer in PIU DMA transfer

Data buffers Four buffers (two pages each) for

coordinate data only

Four buffers for A/D scan

One buffer

Scan types Coordinate data scan

Command scan

A/D scan

Coordinate data scan

Command scan

Main battery scan

Sub battery scan

A/D port scan activation states Standby, WaitPen Touch, Interval Standby

Panel applied voltage stabilization

standby time counter

6 bits 4 bits

Panel applied voltage during low-

voltage mode

All four touch panel pins are at low level All four touch panel pins are at Hi-Z

Panel state during disable state Touch detection state

(Interrupts do not occur when CPU is in

Hibernate mode.)

All four touch panel pins are at Hi-Z

Handling of valid data when data loss

occurs

Valid data is always retained Valid data is overwritten

Data interrupt Three types of special-purpose interrupts

(two coordinate data interrupts, A/D scan

interrupt, and command scan interrupt)

Two types of page boundary interrupts

PIUDataRdyIntr No Yes

408

[MEMO]

409

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

This chapter describes the AIU’s operations and register settings.

20.1 GENERAL

The AIU supports speaker output and MIC input operations. It is also used to set the A/D and D/A converter

operations.

20.2 REGISTER SET

The AIU registers are listed below.

Table 20-1. AIU Registers

Address R/W Register Symbols Function

0x0B00 0160 R/W MDMADATREG Mike DMA Data Register

0x0B00 0162 R/W SDMADATREG Speaker DMA Data Register

0x0B00 0166 R/W SODATREG Speaker Output Data Register

0x0B00 0168 R/W SCNTREG Speaker Output Control Register

0x0B00 016A R/W SCNVRREG Speaker Conversion Rate Register

0x0B00 0170 R/W MIDATREG Mike Input Data Register

0x0B00 0172 R/W MCNTREG Mike Input Control Register

0x0B00 0174 R/W MCNVRREG Mike Conversion Rate Register

0x0B00 0178 R/W DVALIDREG Data Valid Register

0x0B00 017A R/W SEQREG Sequential Register

0x0B00 017C R/W INTREG Interrupt Register

These registers are described in detail below.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

410

20.2.1 MDMADATREG (0x0B00 0160)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved MDMA[9] MDMA[8]

R/W R R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 1 0

Other resets 0 0 0 0 0 0 1 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name MDMA[7] MDMA[6] MDMA[5] MDMA[4] MDMA[3] MDMA[2] MDMA[1] MDMA[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:10] Reserved Write 0 when writing. 0 is returned after a read.

D[9:0] MDMA[9:0] MIC input DMA data (from MIDATREG to buffer)

This register is used prior to DMA transfer to store 10-bit data that has been converted by the A/D converter and
stored in MIDATREG. Write is used for debugging and is enabled when AIUMEN bit of SEQREG is set to 1. This
register is cleared (0x0200) by resetting AIUMEN bit of SEQREG to 0.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

411

20.2.2 SDMADATREG (0x0B00 0162)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved SDMA[9] SDMA[8]

R/W R R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 1 0

Other resets 0 0 0 0 0 0 1 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name SDMA[7] SDMA[6] SDMA[5] SDMA[4] SDMA[3] SDMA[2] SDMA[1] SDMA[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:10] Reserved Write 0 when writing. 0 is returned after a read.

D[9:0] SDMA[9:0] Speaker output DMA data (from buffer to SODATREG)

This register is used to store 10-bit DMA data for speaker output. When SODATREG is empty, the data is
transferred to SODATREG. Write is used for debugging and is enabled when AIUSEN bit of SEQREG is set to 1.
This register is cleared (0x0200) by resetting AIUSEN bit of SEQREG to 0.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

412

20.2.3 SODATREG (0x0B00 0166)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved SODAT[9] SODAT[8]

R/W R R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 1 0

Other resets 0 0 0 0 0 0 1 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name SODAT[7] SODAT[6] SODAT[5] SODAT[4] SODAT[3] SODAT[2] SODAT[1] SODAT[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:10] Reserved Write 0 when writing. 0 is returned after a read.

D[9:0] SODAT[9:0] Speaker output data (from SDMADATREG to D/A converter)

This register is used to store 10-bit DMA data for speaker output. Data is sent from the D/A converter to

SDMADATREG. Write is used for debugging and is enabled when AIUSEN bit of SEQREG is set to 1. This register

is cleared (0x0200) by resetting AIUSEN bit of SEQREG to 0.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

413

20.2.4 SCNTREG (0x0B00 0168)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name DAENAIU Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R/W R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved SSTATE Reserved SSTOPEN Reserved

R/W R R R R R R R/W R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] DAENAIU This is the speaker D/A enable bit. It controls the ON/OFF status of the Vref input to

the D/A converter’s ladder resistors.

1 : Vref ON

0 : Vref OFF

D[14:4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] SSTATE Indicates speaker operation state

1 : In operation

0 : Stopped

D[2] Reserved Write 0 when writing. 0 is returned after a read.

D[1] SSTOPEN Speaker output DMA transfer 1-page boundary interrupt stop

1 : Stop DMA request at 1-page boundary

0 : Stop DMA request at 2-page boundary

D[0] Reserved Write 0 when writing. 0 is returned after a read.

This register is used to control the AIU’s speaker block.

DAENAIU bit controls the connection of DVDD and Vref input to ladder type resistors in the D/A converter. Setting

this bit to 0 (OFF) allows low power consumption when not using the D/A converter. When using D/A converter, this

bit must be set following the sequence described in 20.3.

The contents of SSTATE bit is valid only when AIUSEN bit of SEQREG is set to 1.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

414

20.2.5 SCNVRREG (0x0B00 016A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved SCNVR[2] SCNVR[1] SCNVR[0]

R/W R R R R R R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:3] Reserved Write 0 when writing. 0 is returned after a read.

D[2:0] SCNVR[2:0] D/A Conversion Rate

111 : RFU

 :

101 : RFU

100 : 8 ksps

011 : RFU

010 : 44.1 ksps

001 : 22.05 ksps

000 : 11.025 ksps

This register is used to select a conversion rate for the D/A converter.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

415

20.2.6 MIDATREG (0x0B00 0170)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved MIDAT[9] MIDAT[8]

R/W R R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 1 0

Other resets 0 0 0 0 0 0 1 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name MIDAT[7] MIDAT[6] MIDAT[5] MIDAT[4] MIDAT[3] MIDAT[2] MIDAT[1] MIDAT[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:10] Reserved Write 0 when writing. 0 is returned after a read.

D[9:0] MIDAT[9:0] MIC input data (from A/D to MDMADATREG)

This register is used to store 10-bit speaker input data that has been converted by the A/D converter. Data is

sent to MDMADATREG and is received from the A/D converter. Write is used for debugging and is enabled when

AIUMEN bit of SEQREG is set to 1. This register is cleared (0x0200) by resetting AIUMEN bit of SEQREG to 0.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

416

20.2.7 MCNTREG (0x0B00 0172)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name ADENAIU Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R/W R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved MSTATE Reserved MSTOPEN ADREQAIU

R/W R R R R R R R/W R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] ADENAIU This is the MIC A/D enable bit. It controls the ON/OFF status of the Vref input to the

D/A converter’s ladder resistors in the A/D converter.

1 : Vref ON

0 : Vref OFF

D[14:4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] MSTATE Indicates MIC operation state (= AIUMEN)

1 : In operation

0 : Stopped

D[2] Reserved Write 0 when writing. 0 is returned after a read.

D[1] MSTOPEN MIC input DMA transfer 1-page boundary interrupt stop

1 : Stop DMA request at 1-page boundary

0 : Stop DMA request at 2-page boundary

D[0] ADREQAIU A/D use request bit

1 : Request

0 : Normal

This register is used to control the AIU’s MIC block.

ADENAIU bit controls the connection of AVDD and Vref input to ladder type resistors in the A/D converter. Setting

this bit to 0 (OFF) allows low power consumption when not using the A/D converter. When using A/D converter, this

bit must be set following the sequence described in 20.3.

The contents of MSTATE bit is valid only when AIUMEN bit of SEQREG is set to 1.

This unit has priority when a conflict occurs with the PIU in relation to A/D requests.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

417

20.2.8 MCNVRREG (0x0B00 0174)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved MCNVR[2] MCNVR[1] MCNVR[0]

R/W R R R R R R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:3] Reserved Write 0 when writing. 0 is returned after a read.

D[2:0] MCNVR[2:0] A/D Conversion Rate

111 : RFU

 :

101 : RFU

100 : 8 ksps

011 : RFU

010 : 44.1 ksps

001 : 22.05 ksps

000 : 11.025 ksps

This register is used to select a conversion rate for the A/D converter.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

418

20.2.9 DVALIDREG (0x0B00 0178)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved SODATV SDMAV MIDATV MDMAV

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:4] Reserved Write 0 when writing. 0 is returned after a read

D[3] SODATV This indicates when valid data has been stored in SODATREG.

1 : Valid data exists

0 : No valid data

D[2] SDMAV This indicates when valid data has been stored in SDMADATREG.

1 : Valid data exists

0 : No valid data

D[1] MIDATV This indicates when valid data has been stored in MIDATREG.

1 : Valid data exists

0 : No valid data

D[0] MDMAV This indicates when valid data has been stored in MDMAREG.

1 : Valid data exists

0 : No valid data

This register indicates when valid data has been stored in SODATREG, SDMADATREG, MIDATREG, or

MDMAREG.

If data has been written directly to SODATREG, SDMADATREG, MIDATREG, or MDMAREG via software, the

bits in this register are not active, so write “1” via software.

Write is used for debugging and is enabled when AIUSEN or AIUMEN bit of SEQREG is set to 1.

If AIUSEN = 0 or AIUMEN = 0 in SEQREG, then SODATV = SDMAV = 0 or MIDATV = MDMAV = 0.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

419

20.2.10 SEQREG (0x0B00 017A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name AIURST Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R/W R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved AIUMEN Reserved Reserved Reserved AIUSEN

R/W R R R R/W R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] AIURST AIU reset via software

1 : Reset

0 : Normal

D[14:5] Reserved Write 0 when writing. 0 is returned after a read.

D[4] AIUMEN MIC block operation enable, DMA enable

1 : Enable operation

0 : Disable operation

D[3:1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] AIUSEN Speaker block operation enable, DMA enable

1 : Enable operation

0 : Disable operation

This register is used to enable/disable the AIU’s operation.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

420

20.2.11 INTREG (0x0B00 017C)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved MENDINTR MINTR MIDLEINTR MSTINTR

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved SENDINTR SINTR SIDLEINTR Reserved

R/W R R R R R/W R/W R/W R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:12] Reserved Write 0 when writing. 0 is returned after a read.

D[11] MENDINTR MIC DMA 2 page interrupt. Cleared to 0 when 1 is written.

1 : Occurred

0 : Normal

D[10] MINTR MIC DMA 1 page interrupt. Cleared to 0 when 1 is written.

1 : Occurred

0 : Normal

D[9] MIDLEINTR MIC idle interrupt (receive data loss). Cleared to 0 when 1 is written.

1 : Occurred

0 : Normal

D[8] MSTINTR MIC receive complete interrupt. Cleared to 0 when 1 is written.

1 : Occurred

0 : Normal

D[7:4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] SENDINTR SPEAKER DMA 2 page interrupt. Cleared to 0 when 1 is written.

1 : Occurred

0 : Normal

D[2] SINTR SPEAKER DMA 1 page interrupt. Cleared to 0 when 1 is written.

1 : Occurred

0 : Normal

D[1] SIDLEINTR SPEAKER idle interrupt (mute). Cleared to 0 when 1 is written.

1 : Occurred

0 : Normal

D[0] Reserved Write 0 when writing. 0 is returned after a read.

This register indicates the AIU’s interrupt status.

When data is received from the A/D converter, MIDLEINTR is set if valid data still exists in MIDATREG (MIDATV

= 1). In this case, MIDATREG is overwritten. MSTINTR is set when data is received in MDMADATREG.

When data is passed to the D/A converter, SIDLEINTR is set if there is no valid data in SODATREG (SODATV =

0). However, this interrupt is valid only after AIUSEN = 1, after which SODATV = 1.

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

421

20.3 OPERATION SEQUENCE

20.3.1 Output (Speaker)

1. Set conversion rate (0x0B00 016A: SCNVR = arbitrary)

2. Set output data area to DMAAU

3. DMA enable in DCU

4. Set D/A converter’s Vref to ON (0x0B00 0168: DAENAIU = 1)

5. Wait for Vref resistor stabilization time (about 5 Ps) (use the RTC counter)

Even if speaker power is set to ON without waiting for Vref resistor stabilization time and speaker

operation is enabled, speaker output starts after the period calculated with the formula below.

5 + 1/conversion rate (44.1, 22.05, 11.025, or 8) (Ps)

6. Set speaker power ON via GPIO.

7. Speaker operation enable (0x0B00 017A: AIUSEN = 1)

DMA request

Receive acknowledge and DMA data from DMA

0x0B00 0178: SDMAV = SODATV = 1

Output 10-bit data (0x0B00 0166: SODAT) to D/A converter

SODATV = 0, SDMAV = 1

Send SDMADATREG data to SODATREG

SODATV = 1, SDMAV = 0

Output DMA request and store the second data to SDMADATREG

SODATV = 1, SDMAV = 1

Refresh data at each conversion timing interval (becomes SIDLEINTR = 1 when DMA is slow and

SODATV = 0 during conversion timing interval, and (mute) interrupt occurs)

DMA page boundary interrupt occurs at page boundary

Page interrupt is cleared when output continues

8. Speaker operation to disable (0x0B00 017A: AIUSEN = 0)

9. Set speaker power OFF via GPIO.

10. Set D/A converter’s Vref to OFF (0x0B00 0168: DAENAIU = 0)

11. DMA disable in DCU

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

422

20.3.2 Input (MIC)

1. Set conversion rate (0x0B00 0174: MCNVR = arbitrary)

2. Set input data area in DMAAU

3. DMA enable in DCU

4. Set A/D converter’s Vref to ON (0x0B00 0172: ADENAIU = 1)

MIC power can be set ON and MIC operation can be enabled without waiting for Vref resistor

stabilization time (about 5 Ps). However, in such a case, sampling starts after the period calculated

with the formula below.

5 + 1/conversion rate (44.1, 22.05, 11.025, or 8) (Ps)

5. Set MIC power ON via GPIO.

6. MIC operation enable (0x0B00 017A: AIUMEN = 1)

Output A/D request (ADREQAIU) to A/D converter

Return acknowledge (aiuadack) and 10-bit conversion data from A/D converter

Store data in MIDATREG

0x0B00 0178: MDMAV = 0, MIDATV = 1

Transfer data from MIDATREG to MDMADATREG

MDMAV = 1, MIDATV = 0

The INTMST value becomes “1” and an interrupt (receive complete) occurs

Issue DMA request and store MIDMADATREG data to memory.

MDMAV = 0, MIDATV = 0

An A/D request is issued once per conversion timing interval and 10-bit data is received (becomes

MIDLEINTR = 1 when DMA is slow and MIDATV = 1 during conversion timing interval, and (data loss)

interrupt occurs)

DMA page boundary interrupt occurs at page boundary

(Page interrupt is cleared when output continues)

7. MIC operation to disable (0x0B00 017A: AIUMEN = 0)

8. Set MIC power OFF via GPIO

9. Set A/D converter’s Vref to OFF (0x0B00 0172: AIUADEN = 0)

10. DMA disable in DCU

423

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

This chapter describes the KIU’s operations and register settings.

21.1 GENERAL

The KIU includes 12 scan lines and 8 detection lines. The number of key inputs to be detected can be selected

from 96/80/64, by switching the number of scan lines from 12/10/8.

The register can be set to enable the 12 scan lines to be used as a general-purpose output port.

21.2 REGISTER SET

The KIU registers are listed below.

Table 21-1. KIU Registers

Address R/W Register Symbols Function

0x0B00 0180 R/W KIUDAT0 KIU Data0 Register

0x0B00 0182 R/W KIUDAT1 KIU Data1 Register

0x0B00 0184 R/W KIUDAT2 KIU Data2 Register

0x0B00 0186 R/W KIUDAT3 KIU Data3 Register

0x0B00 0188 R/W KIUDAT4 KIU Data4 Register

0x0B00 018A R/W KIUDAT5 KIU Data5 Register

0x0B00 0190 R/W KIUSCANREP KIU Scan/Repeat Register

0x0B00 0192 R KIUSCANS KIU Scan Status Register

0x0B00 0194 R/W KIUWKS KIU Wait Keyscan Stable Register

0x0B00 0196 R/W KIUWKI KIU Wait Keyscan Interval Register

0x0B00 0198 R/W KIUINT KIU Interrupt Register

0x0B00 019A W KIURST KIU Reset Register

0x0B00 019C R/W KIUGPEN KIU General Purpose Output Enable

0x0B00 019E R/W SCANLINE KIU Scan Line Register

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

424

21.2.1 KIUDATn (0x0B00 0180 to 0x0B00 018A)

Remark n = 0 to 5

KIUDAT0 (0x0B00 0180)

KIUDAT1 (0x0B00 0182)

KIUDAT2 (0x0B00 0184)

KIUDAT3 (0x0B00 0186)

KIUDAT4 (0x0B00 0188)

KIUDAT5 (0x0B00 018A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name KEYDAT[15] KEYDAT[14] KEYDAT[13] KEYDAT[12] KEYDAT[11] KEYDAT[10] KEYDAT[9] KEYDAT[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name KEYDAT[7] KEYDAT[6] KEYDAT[5] KEYDAT[4] KEYDAT[3] KEYDAT[2] KEYDAT[1] KEYDAT[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..8] KEYDAT[15..8] Scan data from odd-numbered scans

D[7..0] KEYDAT[7..0] Scan data from even-numbered scans

These registers are used to hold key scan data.

Each KIU data register is able to hold the data from one scan operation.

How scan data is input to the registers is as below.

Bit

Register

KEYDAT[15..8] KEYDAT[7..0]

KIUDAT0 Scan[1] Scan[0]

KIUDAT1 Scan[3] Scan[2]

KIUDAT2 Scan[5] Scan[4]

KIUDAT3 Scan[7] Scan[6]

KIUDAT4 Scan[9] Scan[8]

KIUDAT5 Scan[11] Scan[10]

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

425

21.2.2 KIUSCANREP (0x0B00 0190)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name KEYEN Reserved Reserved Reserved Reserved Reserved STPREP[5] STPREP[4]

R/W R/W R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name STPREP[3] STPREP[2] STPREP[1] STPREP[0] SCANSTP SCANSTART ATSTP ATSCAN

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 1

Other resets 0 0 0 0 0 0 0 1

Bit Name Function

D[15] KEYEN Key scan

1 : Enable

0 : Prohibit

D[14..10] Reserved Write 0 when writing. 0 is returned after a read.

D[9..4] STPREP[5..0] Key scan sequencer stop count setting

111111 : 63 times

 :

000001 : 1 time

000000 : 64 times

D[3] SCANSTP Key scan stop

1 : Stop

0 : Operate

D[2] SCANSTART Key scan start

1 : Start

0 : Stop

D[1] ATSTP Key auto stop setting

1 : Auto stop

0 : Not auto stop

D[0] ATSCAN Key auto scan setting

1 : Auto scan

0 : Not auto scan

This register is used to enable operation of the key scan unit and to make settings for key scan and the key scan

sequencer.

• Key scan sequencer stop count setting

This sets the number of key scan sequencer stops when no keys are being pressed.

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

426

• Key scan stop

When the SCANSTP bit is set to “1”, the key scan sequencer stops. However, if this bit is set to “1” during a

key scan operation, the key scan sequencer stops after the current set of key data is received.

• Key scan start

When the SCANSTART bit is set to “1”, the key scan sequencer starts regardless of key contact detection.

• Key scan auto stop setting

When the ATSTOP bit is set to “1”, the key scan sequencer stops automatically when the data remains all

zeros for the number of key scan times specified by STOPREP.

• Key auto scan setting

When the ATSCAN bit is set to “1”, the key scan operation automatically starts after key contact is detected.

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

427

21.2.3 KIUSCANS (0x0B00 0192)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved SSTAT[1] SSTAT[0]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..2] Reserved Write 0 when writing. 0 is returned after a read.

D[1..0] SSTAT[1..0] KIU sequencer status

11 : Scanning

10 : Interval Next Scan

01 : WaitKeyIn

00 : Stopped

This register indicates the current KIU sequencer status.

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

428

Details of the status of the KIU sequencer are described below.

• Scanning: This is the state where the scan sequencer performs key scan to load key data.

• Interval next scan: This is the state where the scan of a set of key dataNote has completed and waiting for

the start of the next key scan. The interval after the completion of the scan of a set of

key data until the start of the next scan is set on the KIUWKIREG.

Note The number of data bits depends on the number of KSCAN pins used as below.

The number of KSCAN pins is set in SCANLINE register.

KSCAN pins Number of data bits

8 64 bits

10 80 bits

12 96 bits

• Wait Key in: This is the state of waiting for key input in the key auto scan mode. When the scan

sequencer is enabled while ATSCAN bit of KIUSCANREP register is set to 1, the

VR4102 waits for key input in this state. In this case, all outputs of the KSCAN pinsNote

are in high level. When shifting the CPU to Suspend mode (or Standby mode with

TClock masked), be sure to set the KIU to the auto scan mode before the shift and

confirm that the sequencer in the Wait key in state.

Note The number of pins is set in LINE[1..0] bits of SCANLINE register as below.

LINE[1..0] Number of KSCAN pins

10 8

01 10

00 12

• Stopped: This is the state where the sequencer is disabled.

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

429

21.2.4 KIUWKS (0x0B00 0194)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved T3CNT[4] T3CNT[3] T3CNT[2] T3CNT[1] T3CNT[0] T2CNT[4] T2CNT[3]

R/W R R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 1 1 1 1 1 1 1

Other resets 0 1 1 1 1 1 1 1

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name T2CNT[2] T2CNT[1] T2CNT[0] T1CNT[4] T1CNT[3] T1CNT[2] T1CNT[1] T1CNT[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 1 1 1

Other resets 1 1 1 1 1 1 1 1

Bit Name Function

D[15] Reserved Write 0 when writing. 0 is returned after a read.

D[14..10] T3CNT[4..0] Wait time setting ((T3CNT[4..0] + 1) * 30 Ps)

11111 : 960 Ps

 :

00001 : 60 Ps

00000 : RFU

D[9..5] T2CNT[4..0] Off time setting ((T2CNT[4..0] + 1) * 30 Ps)

11111 : 960 Ps

 :

00001 : 60 Ps

00000 : RFU

D[4..0] T1CNT[4..0] Stabilization time setting ((T1CNT[4..0] + 1) * 30 Ps)

11111 : 960 Ps

 :

00001 : 60 Ps

00000 : RFU

This register is used to set the wait time between when the key scan sequencer sets the KSCAN pin “High” during

a key matrix scan and when the status is read from the KPORT pin.

The T1CNT bit is used to set the stabilization time between when voltage is applied to the KSCAN pin and when

the key scan data is read.

The T2CNT bit is used to set the time between when the key data is read and when voltage applied to the

KSCAN pin is set to “OFF”.

The T3CNT bit is used to set the time between when voltage applied to the KSCAN pin is set to “OFF” and when

voltage can be again applied to the KSCAN pin.

The status of output from the KSCAN pins and the timing of KPORT sampling are shown below.

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

430

T1T1

KSCAN[n]

KSCAN[n+1]

Hi-Z

KPORT sampling

T2 T3 T2

Hi-Z

Hi-Z

Hi-Z

KPORT sampling

21.2.5 KIUWKI (0x0B00 0196)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved WINTVL[9] WINTVL[8]

R/W R R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name WINTVL[7] WINTVL[6] WINTVL[5] WINTVL[4] WINTVL[3] WINTVL[2] WINTVL[1] WINTVL[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..10] Reserved Write 0 when writing. 0 is returned after a read.

D[9..0] WINTVL[9..0] Key scan interval time setting (WINTVL[9..0]*30 Ps)

1111111111 : 30690 Ps

 :

0000000001 : 30 Ps

0000000000 : No Wait

This register is used to set the interval time between when one set of key data is obtained by the key scan

sequencer and when the next set of key data is obtained.

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

431

21.2.6 KIUINT (0x0B00 0198)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved KDATLOST KDATRDY SCANINT

R/W R R R R R R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..3] Reserved Write 0 when writing. 0 is returned after a read.

D[2] KDATLOST Key scan data lost interrupt. Cleared to 0 when 1 is written.

1 : Yes

0 : No

D[1] KDATRDY Key data scan complete interrupt. Cleared to 0 when 1 is written.

1 : Yes

0 : No

D[0] SCANINT Key input detection interrupt. Cleared to 0 when 1 is written.

1 : Yes

0 : No

This register indicates the type of interrupt that has occurred in the KIU.

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

432

21.2.7 KIURST (0x0B00 019A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved KIURST

R/W R R R R R R R W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] KIURST KIU reset. Cleared to 0 when 1 is written.

1 : Reset

0 : Normal operation

This register is used to forcibly reset the KIU.

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

433

21.2.8 KIUGPEN (0x0B00 019C)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved KGPEN[11] KGPEN[10] KGPEN[9] KGPEN[8]

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name KGPEN[7] KGPEN[6] KGPEN[5] KGPEN[4] KGPEN[3] KGPEN[2] KGPEN[1] KGPEN[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..12] Reserved Write 0 when writing. 0 is returned after a read.

D[11..0] KGPEN[11..0] SCAN pin function

1 : Use as output port

0 : Use as SCAN pin

This register is used to set whether or not the KSCAN pins will function as a general-purpose output port.

Setting a “1” to each bit in this register enables the KSCAN pin to function as a general-purpose output port.

The output port setting are made via the GIU’s GIUPODATL register (0x0B00 011C).

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

434

21.2.9 SCANLINE (0x0B00 019E)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved LINE[1] LINE[0]

R/W R R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..2] Reserved Write 0 when writing. 0 is returned after a read.

D[1..0] LINE[1..0] SCAN pin use/do not use setting

11 : Do not use SCAN pins for key scan

The KIU’s SCAN pins can be used as an output port.

10 : Use eight key scan pins (KSCAN[7..0])

Key scan uses eight key scan pins (supports 64 keys)

The remaining four pins can be used as an output port.

01 : Use ten key scan pins (KSCAN[9..0])

Key scan uses ten key scan pins (supports 80 keys)

The remaining two pins can be used as an output port.

00 : Use twelve key scan pins (KSCAN[11..0])

Key scan uses twelve key scan pins (supports 96 keys)

No pins can be used as an output port.

This register is used to switch the number of scan lines.

435

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

This chapter describes the DSIU’s operations and register settings.

22.1 GENERAL

The DSIU (debug serial interface unit) supports transfer rates up to 115.2 kbps. In addition to the DDIN and

DDOUT input/output pins, the DSIU supports the DCTS# and DRTS# pins that are used for hardware flow control.

22.2 REGISTER SET

The DSIU registers are listed below.

Table 22-1. DSIU Registers

Address R/W Register Symbols Function

0x0B00 01A0 R/W PORTREG Port Change Register

0x0B00 01A2 R MODEMREG Modem Control Register

0x0B00 01A4 R/W ASIM00REG Asynchronous Mode 0 Register

0x0B00 01A6 R/W ASIM01REG Asynchronous Mode 1 Register

0x0B00 01A8 R RXB0RREG Receive Buffer Register (Extended)

0x0B00 01AA R RXB0LREG Receive Buffer Register

0x0B00 01AC R/W TXS0RREG Transmit Data Register (Extended)

0x0B00 01AE R/W TXS0LREG Transmit Data Register

0x0B00 01B0 R ASIS0REG Status Register

0x0B00 01B2 R/W INTR0REG Debug SIU Interrupt Register

0x0B00 01B6 R/W BPRM0REG Baud rate Generator Prescaler Mode Register

0x0B00 01B8 R/W DSIURESETREG Debug SIU Reset Register

These registers are described in detail below.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

436

22.2.1 PORTREG (0x0B00 01A0)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved CDDIN CDDOUT CDRTS CDCTS

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] CDDIN This pin is used to switch the DDIN pin for use as a general-purpose output pin.

1 : General-purpose output

0 : DDIN

D[2] CDDOUT This pin is used to switch the DDOUT pin for use as a general-purpose output pin.

1 : General-purpose output

0 : DDOUT

D[1] CDRTS This pin is used to switch the DRTS# pin for use as a general-purpose output pin.

1 : General-purpose output

0 : DRTS#

D[0] CDCTS This pin is used to switch the DCTS# pin for use as a general-purpose output pin.

1 : General-purpose output

0 : DCTS#

This register is used to switch the DSIU pin for use as a general-purpose output pin.

Note that the output value should be set in the GIU when the DSIU pins are set to general-purpose outputs.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

437

22.2.2 MODEMREG (0x0B00 01A2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved DRTS DCTS

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 1 1

Other resets 0 0 0 0 0 0 1 1

Bit Name Function

D[15:2] Reserved Write 0 when writing. 0 is returned after a read.

D[1] DRTS DRTS# pin output

1: High level

0: Low level

D[0] DCTS DCTS# pin input

1: High level

0: Low level

This register is used for flow control and can be used to pass signals between the VR4102 and external agents.

Note that the setting of RXE0 bit of ASIM00REG is reflected on the output from DRTS# pin.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

438

22.2.3 ASIM00REG (0x0B00 01A4)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved RXE0 PS0[1] PS0[0] CL0 SL0 Reserved Reserved

R/W R R/W R/W R/W R/W R/W R R

RTCRST 1 0 0 0 0 0 0 0

Other resets 1 0 0 0 0 0 0 0

Bit Name Function

D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7] Reserved Write 1 when writing. 1 is returned after a read.

D[6] RXE0 Debug serial reception enable

1 : Enable

0 : Prohibit

D[5:4] PS0[1:0] Debug serial parity select

11 : Even parity

10 : Odd parity

01 : Zero parity bits during transmit

No parity during receive

00 : No parity. Set to 00 for extended-bit operations

D[3] CL0 Debug serial character length setting

1 : 8 bits

0 : 7 bits

D[2] SL0 Debug serial stop bit setting

1 : 2 bits

0 : 1 bit

D[1:0] Reserved Write 0 when writing. 0 is returned after a read.

This register is used to make various serial communication settings for debugging.

The setting of RXE0 bit is reflected on the output from DRTS# pin. 0 is output when this bit is set to 1 (reception

enable), and 1 is output when this bit is set to 0 (reception prohibit).

If this register is changed during transmission or reception of serial data for debugging, the DSIU’s operations

cannot be guaranteed.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

439

22.2.4 ASIM01REG (0x0B00 01A6)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved EBS0

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] EBS0 Extended bit operation enable

1 : Enable

0 : Prohibit

This register is used to set extended bit operations for the DSIU.

When “1” is set to the EBS0 bit, one bit is added to the 8-bit data length for transmission and reception to enable

operations using 9-bit data. Extended-bit operations are valid only when “00” has been set to ASIM00REG’s

PS0[1:0] bit. If a value other than “00” has been set to ASIM00REG’s PS0[1:0] bit, the EBS0 bit specification is

ignored and extended-bit operations cannot be performed.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

440

22.2.5 RXB0RREG (0x0B00 01A8)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved RXB0[8]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RXB0[7] RXB0[6] RXB0[5] RXB0[4] RXB0[3] RXB0[2] RXB0[1] RXB0[0]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:9] Reserved Write 0 when writing. 0 is returned after a read.

D[8:0] RXB0[8:0] Receive data [8:0]

This register is used to store debug serial receive data.
The RXB0[8] bit stores the extended bit during extended-bit operations and stores a zero during 7- or 8-bit

character reception. The RXB0[7] bit stores a zero during 7-bit character reception.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

441

22.2.6 RXB0LREG (0x0B00 01AA)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RXB0L[7] RXB0L[6] RXB0L[5] RXB0L[4] RXB0L[3] RXB0L[2] RXB0L[1] RXB0L[0]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7:0] RXB0L[7:0] Receive data [7:0]

This register is used to store debug serial receive data.
The RXB0L[7] bit stores a zero during 7-bit character reception.

The only difference between this register and RXB0RREG is that this register does not support extended-bit

operations.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

442

22.2.7 TXS0RREG (0x0B00 01AC)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved TXS0[8]

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 1

Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TXS0[7] TXS0[6] TXS0[5] TXS0[4] TXS0[3] TXS0[2] TXS0[1] TXS0[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 1 1 1

Other resets 1 1 1 1 1 1 1 1

Bit Name Function

D[15:9] Reserved Write 0 when writing. 0 is returned after a read.

D[8:0] TXS0[8:0] Transmit data [8:0]

This register is used to store debug serial transmit data.

The TXS0[8] bit is used to transmit the extended bit during extended-bit operations.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

443

22.2.8 TXS0LREG (0x0B00 01AE)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TXS0L[7] TXS0L[6] TXS0L[5] TXS0L[4] TXS0L[3] TXS0L[2] TXS0L[1] TXS0L[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 1 1 1 1 1 1 1

Other resets 1 1 1 1 1 1 1 1

Bit Name Function

D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7:0] TXS0L[7:0] Transmit data [7:0]

This register is used to store debug serial transmit data.

The only difference between this register and TXS0RREG is that this register does not support extended-bit

operations.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

444

22.2.9 ASIS0REG (0x0B00 01B0)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name SOT0 Reserved Reserved Reserved Reserved PE0 FE0 OVE0

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7] SOT0 Transmit mode status

1 : Transmission start

0 : Transmission complete

D[6:3] Reserved Write 0 when writing. 0 is returned after a read.

D[2] PE0 Parity error status

1 : Parity error

0 : Normal

D[1] FE0 Framing error status

1 : Framing error

0 : Normal

D[0] OVE0 Overrun error status

1 : Overrun error status

0 : Normal

This register indicates the debug serial transmit/receive status.

A write to the TXS0RREG or TXS0LREG register sets “1” to the SOT0 bit. When the transmission is completed,

“1” is set to the INTR0REG register’s INTST0 bit and the SOT0 bit is cleared to zero. This bit can be used as a

means of determining whether or not it is possible to write to the transmission shift register when transmitting data in

debug serial mode.

If the received data contains a parity error, “1” is set to the PE0 bit. If the stop bit is not detected, “1” is set to the

FE0 bit.

An overrun error occurs and “1” is set to the OVE0 bit if the sequencer completes the next receive processing

before receive data is read from the receive buffer. When an overrun error occurs, the old data in the receive buffer

is overwritten by the newly received data.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

445

22.2.10 INTR0REG (0x0B00 01B2)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved INTDCD INTSER0 INTSR0 INTST0

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] INTDCD CTS# change interrupt. Cleared to 0 when 1 is written.

1 : CTS change interrupt

0 : Normal

D[2] INTSER0 Debug serial receive error interrupt. Cleared to 0 when 1 is written.

1 : Error interrupt

0 : Normal

D[1] INTSR0 Debug serial receive complete interrupt. Cleared to 0 when 1 is written.

1 : Receive complete

0 : Other

D[0] INTST0 Debug serial transmit complete interrupt. Cleared to 0 when 1 is written.

1 : Transmit complete

0 : Other

This register indicates interrupt events that occur during debug serial transmission.

When debug serial operations are in the reception-enable mode, and either the PE0 bit, FE0 bit, or OVE0 bit in

the ASIS0REG has been set, “1” is set to the INTSER0 bit.

When debug serial operations are in the reception-enable mode, and receive data is transferred to the receive

buffer, “1” is set to the INTSR0 bit. When one frame of transmit data is sent from the transmit register, “1” is set to

the INTST0 bit.

When the CTS# (flow control signal from an external agent) is changed, “1” is set to INTDCD bit.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

446

22.2.11 BPRM0REG (0x0B00 01B6)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name BRCE0 Reserved Reserved Reserved Reserved BPR0[2] BPR0[1] BPR0[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7] BRCE0 Baud rate generator count enable

1 : Enable

0 : Prohibit

D[6:3] Reserved Write 0 when writing. 0 is returned after a read.

D[2:0] BPR0[2:0] Debug serial baud rate setting

111 : 115200 bps

110 : 57600 bps

101 : 38400 bps

100 : 19200 bps

011 : 9600 bps

010 : 4800 bps

001 : 2400 bps

000 : 1200 bps

This register is used to set the baud rate for debug serial communications.

Debug serial operations are not guaranteed if the baud rate is changed during transmission or reception.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

447

22.2.12 DSIURESETREG (0x0B00 01B8)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DSIURST

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:1] Reserved Write 0 when writing. 0 is returned after a read

D[0] DSIURST Debug serial reset. Cleared to 0 when 1 is written.

1 : Reset

0 : Normal

This register is used to reset the debug serial mode.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

448

22.3 DESCRIPTION OF OPERATIONS

22.3.1 Data Format

Serial data is transmitted and received in full-duplex mode.

The format of the transmit and receive data is shown in the following figure. Each frame includes a start bit,

character bits, parity bit, and stop bit(s). Specification of the character bit length in one data frame, along with the

parity setting, and stop bit length specification are all made via the mode registers (ASIM00REG and ASIM01REG).

Figure 22-1. Data Format for Transmission and Reception

Character bits

D0 ParityD7D6D5D4D3D2D1Start Stop

1 data frame

z Start bit : 1 bit
z Character bits (Dn) : 7, 8, or 9 bits (when using extended bit) (n = 0 to 8)
z Parity bit : Even parity, odd parity, zero parity, or no parity
z Stop bit(s) : 1 bit or 2 bits

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

449

22.3.2 Transmission

After the DCTS# pin value is confirmed as “1”, writing data to a transmission shift register (TXS0REG or

TXS0LREG) activates transmission via the DDOUT pin. Use the transmit complete interrupt (Dsiu_Intst0) service

routine to write the next data to TXS0REG or TXS0LREG.

Transmission enable status

The DSIU unit is always set to transmission enable status. The DCTS# pin is used when it is necessary to

confirm that the remote side is ready to receive.

Activation of transmit operation

Writing data to a transmission shift register (TXS0REG or TXS0LREG) activates the transmit operation. The

transmit data is sent in LSB-first order, beginning with the start bit. The start bit, parity bit, and stop bit(s) are

added automatically.

Transmit complete interrupt request

Once one frame of data has been sent, a transmit complete interrupt request (Dsiu_Intst0) occurs. If the next

data to be transmitted is then not written to TXS0REG or TXS0LREG, the transmit operation is halted and the

transmission rate is lowered.

Cautions 1. Normally, the transmit complete interrupt request (Dsiu_Intst0) occurs when the TXS0REG

or TXS0LREG register is empty. However, if a reset is input, the transmit complete interrupt

request (Dsiu_Intst0) will not occur even when the transmission shift register (TXS0REG or

TXS0LREG) is empty.

2. Writing to either TXS0REG or TXS0LREG is prohibited during a transmit operation until

Dsiu_Intst0 occurs.

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

450

Figure 22-2. Transmit Complete Interrupt Timing

Dsiu_Intst0

D0 ParityD7D6D5D4D3D2D1Start StopDDOUT

(a) Stop bit length: 1

(b) Stop bit length: 2

Dsiu_Intst0

D0 ParityD7D6D5D4D3D2D1Start StopDDOUT Stop

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

451

22.3.3 Reception

Once reception enable has been set, sampling of the DDIN pin begins and, when a start bit is detected, data

reception begins. A receive complete interrupt (Dsiu_Intst0) occurs each time reception of one frame of data is

completed. Normally, this interrupt service is used to transfer receive data from a receive buffer (RXB0REG or

RXB0LREG) to memory.

Reception enable status

Setting the ASIM00REG’s bit[6] sets enable status for the receive operation, and a zero is output to DRTS#.

RXE0 = 1: Reception enable status DRTS# = 0

RXE0 = 0: Reception prohibit status DRTS# = 1

The reception hardware is initialized and enters idle mode when reception prohibit status has been set. Once

that happens, receive complete interrupts and receive error interrupts are not issued and the contents of the

receive buffer are retained.

Activation of receive operation

The receive operation is activated when a start bit is detected.

The DDIN pin is sampled at the interval set by the serial clock specified via the ASIM00REG. Once a signal’s

falling edge is detected at the DDIN pin, the DDIN pin is again sampled after an interval of eight serial clocks.

This time, when a low-level state is detected it is recognized as a start bit and control is passed to the receive

operation, after which the DDIN pin continues to be sampled using an interval of 16 serial clocks.

After eight serial clocks have elapsed since a signal’s falling edge was detected at the DDIN pin, when

sampling recognizes a high-level state it does not recognize the signal’s falling edge as a start bit. Instead,

the serial clock counter used for the sampling timing is initialized and the receive operation is halted until the

next edge input.

Receive complete interrupt request

When RXE0 = 1 and one frame of data has been received, the receive data in the shift register is transferred

to RXB0REG and a receive complete interrupt request (Dsiu_Intsr0) is issued. Even when an error has

occurred, the receive data for which the error occurred is still transferred to a receive buffer (RXB0REG or

RXB0LREG) and two interrupts; a receive complete interrupt (Dsiu_Intsr0) and a receive error interrupt

(Dsiu_Intser0), occur at the same time.

If the RXE0 bit is reset (to “0”) during a receive operation, the receive operation is halted immediately. At that

point, the contents of the receive buffer (RXB0REG or RXB0LREG) and ASIS0REG are not changed and

neither the receive complete interrupt (Dsiu_Intsr0) nor the receive error interrupt (Dsiu_Intser0) occur.

Figure 22-3. Receive Complete Interrupt Timing

Dsiu_Intsr0

D0 ParityD7D6D5D4D3D2D1Start StopDDIN

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

452

Receive error flag

Receive operations can be affected by three types of error flags that are set during the receive operations: a

parity error flag, a framing error flag, and an overrun error flag.

A receive error interrupt request is issued after these three types of error flags are ORed.

During a receive error interrupt (Dsiu_Intser0), the contents of the ASIS0REG can be read to detect which

kind of error occurred during reception.

The contents of the ASIS0REG are reset (to “0”) when the receive buffer (RXB0REG or RXB0LREG) is read

or when the next data is received (another error flag is set if the next data also contains an error).

Table 22-2. Receive Error Causes

Receive error Cause

Parity error Parity specified during reception does not match parity of receive data

Framing error Stop bit is not detected

Overrun error Reception of the next data is completed before data is read from the receive buffer

Figure 22-4. Receive Error Timing

Dsiu_Intsr0

D0 ParityD7D6D5D4D3D2D1Start StopDDIN

Dsiu_Intser0

453

CHAPTER 23 LED (LED CONTROL UNIT)

This chapter describes LED operations and register settings.

23.1 GENERAL

An LED is switched on and off at a regular interval. The interval can be set as programmable.

This unit can operate during Standby, Suspend, or Hibernate mode.

23.2 REGISTER SET

The LED registers are listed below.

Table 23-1. LED Registers

Address R/W Register Symbols Function

0x0B00 0240 R/W LEDHTSREG LED H Time Set register

0x0B00 0242 R/W LEDLTSREG LED L Time Set register

0x0B00 0248 R/W LEDCNTREG LED Control register

0x0B00 024A R/W LEDASTCREG LED Auto Stop Time Count register

0x0B00 024C R/W LEDINTREG LED Interrupt register

These registers are described in detail below.

CHAPTER 23 LED (LED CONTROL UNIT)

454

23.2.1 LEDHTSREG (0x0B00 0240)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved HTS[4] HTS[3] HTS[2] HTS[1] HTS[0]

R/W R R R R/W R/W R/W R/W R/W

RTCRST 0 0 0 1 0 0 0 0

Other resets 0 0 0 Note Note Note Note Note

Bit Name Function

D[15..5] Reserved Write 0 when writing. 0 is returned after a read.

D[4..0] HTS[4..0] LED ON time

00000 : Prohibit

00001 : 0.0625 seconds

00010 : 0.125 seconds

 :

00100 : 0.25 seconds

 :

01000 : 0.5 seconds

 :

10000 : 1 second

 :

11111 : 1.9375 seconds

Note Previous value is retained

This register is used to set the LED’s ON time (high-level width of LEDOUT#).

The ON time ranges from 0.0625 to 1.9375 seconds and can be set in 0.0625-second units. The initial value is 1

second.

This register cannot be changed once the LEDENABLE bit of LEDCNTREG has been set as “enable”. Operation

is not guaranteed if a change is made after that point.

CHAPTER 23 LED (LED CONTROL UNIT)

455

23.2.2 LEDLTSREG (0x0B00 0242)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved LTS[6] LTS[5] LTS[4] LTS[3] LTS[2] LTS[1] LTS[0]

R/W R R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 1 0 0 0 0 0

Other resets 0 Note Note Note Note Note Note Note

Bit Name Function

D[15..7] Reserved Write 0 when writing. 0 is returned after a read.

D[6..0] LTS[6..0] LED OFF time

0000000 : Prohibit

0000001 : 0.0625 seconds

0000010 : 0.125 seconds

 :

0000100 : 0.25 seconds

 :

0001000 : 0.5 seconds

 :

0010000 : 1 second

 :

0100000 : 2 seconds

 :

1000000 : 4 seconds

 :

1111111 : 7.9375 seconds

Note Previous value is retained

This register is used to set the LED’s OFF time (low-level width of LEDOUT#).

The OFF time ranges from 0.0625 to 7.9375 seconds and can be set in 0.0625-second units. The initial value is

2 seconds.

This register cannot be changed once the LEDENABLE bit of LEDCNTREG has been set as “enable”. Operation

is not guaranteed if a change is made after that point.

CHAPTER 23 LED (LED CONTROL UNIT)

456

23.2.3 LEDCNTREG (0x0B00 0248)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved LEDSTOP LEDENABLE

R/W R R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 1 0

Other resets 0 0 0 0 0 0 Note Note

Bit Name Function

D[15..2] Reserved Write 0 when writing. 0 is returned after a read.

D[1] LEDSTOP LED ON/OFF auto stop setting

1 : ON

0 : OFF

D[0] LEDENABLE LED ON/OFF (blink) setting

1 : Blink

0 : Do not blink

Note Previous value is retained

This register is used to make various LED settings.

Caution When setting up LED activation, make sure that a value other than zero has already been set to

the LEDHTSREG, LEDLTSREG, and LEDASTCREG. The operation is not guaranteed if zero is

set to these registers.

CHAPTER 23 LED (LED CONTROL UNIT)

457

23.2.4 LEDASTCREG (0x0B00 024A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name ASTC[15] ASTC[14] ASTC[13] ASTC[12] ASTC[11] ASTC[10] ASTC[9] ASTC[8]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 1 0 0

Other resets 0 0 0 0 0 1 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name ASTC[7] ASTC[6] ASTC[5] ASTC[4] ASTC[3] ASTC[2] ASTC[1] ASTC[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 1 0 1 1 0 0 0 0

Other resets 1 0 1 1 0 0 0 0

Bit Name Function

D[15..0] ASTC[15..0] LED auto stop time count bit

This register is a 16-bit down counter that sets the number of ON/OFF times prior to automatic stopping of LED

activation. The set value is read during a read.

The pair of operations in which the LED is switched ON once and OFF once is counted as “1” by this counter.

The counter counts down from the set value and an LEDINT interrupt occurs when it reaches zero.

The initial setting is 1,200 times (ON/OFF pairs) in which each time includes one second of ON time and two

seconds of OFF time.

Caution Setting a zero to this register is prohibited. The operation is not guaranteed if zero is set to this

register.

CHAPTER 23 LED (LED CONTROL UNIT)

458

23.2.5 LEDINTREG (0x0B00 024C)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved LEDINT

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] LEDINT Auto stop interrupt. Cleared to 0 when 1 is written.

1 : Yes

0 : No

This register indicates when an auto stop interrupt has occurred.

An auto stop interrupt occurs if “1” has already been set to bit 1 and bit 0 of the LEDCNTREG when the

LEDASTCREG is cleared to “0”. When this interrupt occurs, bit 1 and bit 0 of the LEDCNTREG are both cleared to

“0”.

CHAPTER 23 LED (LED CONTROL UNIT)

459

23.3 OPERATION FLOW

Set LEDHTSREG

Set LEDLTSREG

LEDCNTREG
LEDSTOP = 1

Set LEDASTCREG

LEDCNTREG
LEDENABLE = 1

LEDs blink
(Auto Stop)

LED blinking time setting

x LEDHTSREG

Sets LED lighting time.

x LEDLTSREG

Sets LED off time.

x LEDASTCREG

Sets number of LEDs blinking.

Caution Setting these registers to 0 is

prohibited because it may cause

undefined operation.

LED auto-stop setting

x LEDSTOP

Sets the LED blink auto-stop function to enable.

This setting terminates LED blinking

automatically after blinking time set above has

elapsed.

LED blinking start

x LEDENABLE

Starts LED blinking.

LEDs blink

Auto Stop
Counter = 0?

Yes

No

LEDENABLE = 0
LEDSTOP = 0

LEDINT = 1

LED blinking termination

x LEDENABLE = 0

Terminates LED blinking.

LED blinking

x Supervising the auto-stop counter

LED blinking terminates when the auto-stop

counter reaches 0.

Caution Setting the LEDENABLE or

LEDSTOP bit to 0 during blinking is

prohibited because it may cause

undefined operation.

LED blinking terminate interrupt generation

x LEDINT = 1

Generates an interrupt request to the ICU.

LEDs off

LEDs blinking
start condition

460

[MEMO]

461

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

This chapter describes the SIU’s operations and register settings.

24.1 GENERAL

The SIU is a serial interface that conforms to the RS-232-C communication standard and is equipped with two

one-channel interfaces, one for transmission and one for reception.

This unit is functionally compatible with the NS16550.

24.2 REGISTER SET

The SIU registers are listed below.

Table 24-1. SIU Registers

Address LCR[7] R/W Register Symbols Function

R SIURB Receiver Buffer Register (Read)0

W SIUTH Transmitter Holding Register (Write)

0x0C00 0000

1 R/W SIUDLL Divisor Latch (Least Significant Byte)

0 R/W SIUIE Interrupt Enable0x0C00 0001

1 R/W SIUDLM Divisor Latch (Most Significant Byte)

R SIUIID Interrupt Identification Register (Read)0x0C00 0002 ð

W SIUFC FIFO Control Register (Write)

0x0C00 0003 ð R/W SIULC Line Control Register

0x0C00 0004 ð R/W SIUMC MODEM Control Register

0x0C00 0005 ð R/W SIULS Line Status Register

0x0C00 0006 ð R/W SIUMS MODEM Status Register

0x0C00 0007 ð R/W SIUSC Scratch Register

0x0C00 0008 ð R/W SIUIRSEL SIU/FIR IrDA Selector

Remark LCR[7] is the bit 7 of SIULC register.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

462

24.2.1 SIURB (0x0C00 0000: LCR[7] = 0, Read)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RXD[7] RXD[6] RXD[5] RXD[4] RXD[3] RXD[2] RXD[1] RXD[0]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[7..0] RXD[7..0] Serial receive data

This register stores receive data used in serial communications.

To access this register, set LCR[7] (bit 7 of SIULC register) to 0.

24.2.2 SIUTH (0x0C00 0000: LCR[7] = 0, Write)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TXD[7] TXD[6] TXD[5] TXD[4] TXD[3] TXD[2] TXD[1] TXD[0]

R/W W W W W W W W W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[7..0] TXD[7..0] Serial transmit data

This register stores transmit data used in serial communications.

To access this register, set LCR[7] (bit 7 of SIULC register) to 0.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

463

24.2.3 SIUDLL (0x0C00 0000: LCR[7] = 1)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name DLL[7] DLL[6] DLL[5] DLL[4] DLL[3] DLL[2] DLL[1] DLL[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[7..0] DLL[7..0] Baud rate generator divisor (low-order byte)

This register is used to set the divisor (division rate) for the baud rate generator.

The data in this register and the data in SIUDLM register on the high-order side are together handled as 16-bit

data.

To access this register, set LCR[7] (bit 7 of SIULC register) to 1.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

464

24.2.4 SIUIE (0x0C00 0001: LCR[7] = 0)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved IE[3] IE[2] IE[1] IE[0]

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[7..4] Reserved Write 0 when writing. 0 is returned after read.

D[3] IE[3] Modem status interrupt

1 : Interrupt enable

0 : Interrupt prohibit

D[2] IE[2] Receive status interrupt

1 : Interrupt enable

0 : Interrupt prohibit

D[1] IE[1] Transmitter holding register empty interrupt

1 : Interrupt enable

0 : Interrupt prohibit

D[0] IE[0] Receive data interrupt or timeout interrupt in FIFO mode

1 : Interrupt enable

0 : Interrupt prohibit

This register is used to specify interrupt enable/prohibit settings for the five types of interrupt used by the SIU.

These interrupts can be used to make the corresponding interrupt output signal (INTR) active.

Overall use of interrupt functions can be halted by setting bit 0 to bit 3 of the interrupt enable register (IER) to

zero. If one or more of the bits from bit 0 to bit 3 has a value of 1, the corresponding interrupt is enabled.

When interrupts are prohibited, “pending” is not displayed in the IIR[0] bit even when the interrupt condition has

been met and INTR output does not become active.

Other functions in the system are not affected even though interrupts are prohibited and the settings in the line

status register and modem status register are valid.

To access this register, set LCR[7] (bit 7 of SIULC register) to 0.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

465

24.2.5 SIUDLM (0x0C00 0001: LCR[7] = 1)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name DLM[7] DLM[6] DLM[5] DLM[4] DLM[3] DLM[2] DLM[1] DLM[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[7..0] DLM[7..0] Baud rate generator divisor (high-order byte)

This register is used to set the divisor (division rate) for the baud rate generator.

The data in this register and the data in SIUDLL register on the low-order side are together handled as 16-bit

data.

To access this register, set LCR[7] (bit 7 of SIULC register) to 1.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

466

Table 24-2. Correspondence between Baud Rates and Divisors

Baud rate Divisor

50 23040

75 15360

110 10473

134.5 8565

150 7680

300 3840

600 1920

1200 920

1800 640

2000 573

2400 480

3600 320

4800 240

7200 160

9600 120

19200 60

38400 30

56000 21

128000 9

144000 8

192000 6

230400 5

288000 4

384000 3

576000 2

1152000 1

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

467

24.2.6 SIUIID (0x0C00 0002: Read)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name IIR[7] IIR[6] Reserved Reserved IIR[3] IIR[2] IIR[1] IIR[0]

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 1

Other resets 0 0 0 0 0 0 0 1

Bit Name Function

D[7..6] IIR[7..6] Becomes 11 when FCR0 = 1

D[5..4] Reserved Write 0 when writing. 0 is returned after read.

D[3] IIR[3] Pending character timeout interrupt (in FIFO mode)

1 : Pending interrupt

0 : No pending interrupt

D[2..1] IIR[2..1] Indicates the priority level of pending interrupt.

See the following table.

D[0] IIR[0] Pending interrupts

1 : No pending interrupt

0 : Pending interrupt

This register indicates priority levels for interrupts and existence of pending interrupt.

From highest to lowest priority, these interrupts are receive line status, receive data ready, character timeout,

transmit holding register empty, and modem status.

The contents of IIR[3] bit is valid only in FIFO mode, and it is always 0 in 16550 mode.

IIR[2] bit becomes 1 when IIR[3] bit is set to 1.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

468

Table 24-3. Interrupt Function

SIUIID register Interrupt set/reset function

Bit3Note Bit2 Bit1 Priority level Interrupt type Interrupt source Interrupt reset control

0 1 1 Highest (1st) Receive line

status

Overrun error, parity error, framing error,

or break interrupt

Read line status register

0 1 0 2nd Receive data

ready

Receive data exists or has reached the

trigger level.

Read the receive buffer

register or lower trigger

level via FIFO.

1 1 0 2nd Character

timeout

During the time period for the four most

recent characters, not one character has

been read from the receive FIFO nor has

a character been input to the receive

FIFO.

During this period, at least one character

has been held in the receive FIFO.

Read receive buffer

register

0 0 1 3rd Transmit

holding

register empty

Transmit register is empty Read IIR (if it is the

interrupt source) or write

to transmit holding

register

0 0 0 4th Modem status CTS#, DSR#, or DCD# Read modem status

register

Note FIFO mode only

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

469

24.2.7 SIUFC (0x0C00 0002: Write)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name FCR[7] FCR[6] Reserved Reserved FCR[3] FCR[2] FCR[1] FCR[0]

R/W W W R R W W W W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[7..6] FCR[7..6] Receive FIFO trigger level

11 : 14 Bytes

10 : 08 Bytes

01 : 04 Bytes

00 : 00 Byte

D[5..4] Reserved Write 0 when writing. 0 is returned after read.

D[3] FCR[3] Switch between 16550 mode and FIFO mode

1 : From 16550 mode to FIFO mode

0 : From FIFO mode to 16550 mode

D[2] FCR[2] Transmit FIFO clear/counter clear. Cleared to 0 when 1 is written.

1 : FIFO clear/counter clear

0 : Normal

D[1] FCR[1] Receive FIFO clear/counter clear. Cleared to 0 when 1 is written.

1 : FIFO clear/counter clear

0 : Normal

D[0] FCR[0] Receive/Transmit FIFO enable

1 : Enable

0 : Disable

This register is used to control the FIFOs.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

470

z FIFO interrupt modes

When receive FIFO is enabled and receive interrupts are enabled, receive interrupts can occur as described

below.

1. When the FIFO is reached to the specified trigger level, a receive data ready interrupt occurs to inform the

CPU.

This interrupt is cleared when the FIFO goes below the trigger level.

2. When the FIFO is reached to the specified trigger level, the SIUIID register indicates a receive data ready

interrupt.

As with the interrupt above, this interrupt is cleared when the FIFO goes below the trigger level.

3. Receive line status interrupts are assigned a higher priority level than are receive data ready interrupts.

4. When characters are transferred from the shift register to the receive FIFO, “1” is set to the LSR0 bit.

The value of this bit returns to “0” when the FIFO becomes empty.

When receive FIFO is use-enabled and receive interrupts are enabled, receive FIFO timeout interrupts can

occur as described below.

1. The following are conditions under which FIFO timeout interrupts occur.

• At least one character is being stored in the FIFO.

• The time required for sending four characters has elapsed since the serial reception of the last character

(includes the time for two stop bits in cases where a stop bit has been specified).

• The time required for sending four characters has elapsed since the CPU last accessed the FIFO.

The time between receiving the last character and issuing a timeout interrupt is a maximum of 160 ms

when operating at 300 baud and receiving 12-bit data.

2. The transfer time for a character is calculated based on the baud rate clock for reception (internal) input as

clock signals (which is why the elapsed time is in proportion to the baud rate).

3. Once a timeout interrupt has occurred, the timeout interrupt is cleared and the timer is reset as soon as the

CPU reads one character from the receive FIFO.

4. If no timeout interrupt has occurred, the timer is reset when a new character is received or when the CPU

reads the receive FIFO.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

471

When transmit FIFO is use-enabled and transmit interrupts are enabled, transmit interrupts can occur as

described below.

1. When the transmit FIFO becomes empty, a transmit holding register empty interrupt occurs.

This interrupt is cleared when a character is written to the transmit holding register (from one to 16

characters can be written to the transmit FIFO during servicing of this interrupt), or when the SIUIID

(interrupt ID register) is read.

2. If there are not at least two bytes of character data in the transmit FIFO between one time when LSR[5] = 1

(transmit FIFO is empty) and the next time when LSR[5] = 1, empty transmit FIFO status is reported to the

IIR after a delay period calculated as “the time for one character ð the time for the last stop bit(s).”

When transmit interrupts are enabled, the first transmit interrupt that occurs after the FCR0 (FIFO enable bit)

is overwritten is indicated immediately.

The priority level of the character timeout interrupt and receive FIFO trigger level interrupt is the same as that of

the receive data ready interrupt.

The priority level of the transmit FIFO empty interrupt is the same as that of the transmit holding register empty

interrupt.

z FIFO polling mode

When FCR0 = 1 (FIFO is enabled), if the value of any or all of the interrupt enable register (SIUIE) bits 3 to 0

becomes “0”, the SIU enters FIFO polling mode. Because the transmit block and receive block are controlled

separately, polling mode can be set for either or both blocks.

When in this mode, the status of the transmit block and/or receive block can be checked by reading the line

status register (SIULS) via a user program.

When in FIFO polling mode, there is no notification when the trigger level is reached or when a timeout occurs,

but the receive FIFO and transmit FIFO can still store characters as they normally do.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

472

24.2.8 SIULC (0x0C00 0003)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name LCR[7] LCR[6] LCR[5] LCR[4] LCR[3] LCR[2] LCR[1] LCR[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[7] LCR[7] Divisor latch access bit specification

1 : Divisor latch access

0 : Receive buffer, transmit holding register, interrupt enable register

D[6] LCR[6] Break control

1 : Set break

0 : Clear break

D[5] LCR[5] Parity fixing

1 : Fixed parity

0 : Parity not fixed

D[4] LCR[4] Parity setting

1 : Set one bit as odd bit

0 : Set one bit as even bit

D[3] LCR[3] Parity enable

1 : Create parity (during transmission) or check parity (during reception)

0 : No parity (during transmission) or no checking (during reception)

D[2] LCR[2] Stop bit specification

1 : 1.5 bits (character length is 5 bits)

2 bits (character length is 6, 7, or 8 bits)

0 : 1 bit

D[1..0] LCR[1..0] Specifies the length of one character (number of bits)

11 : 8 Bits

10 : 7 Bits

01 : 6 Bits

00 : 5 Bits

This register is used to specify the format for asynchronous data communication and exchange and to set the divisor
latch access bit.

The setting of bit 5 becomes valid according to settings in bits 4 and 3.
Bit 6 is used to send the break status to the receive side’s UART. When Bit6 = 1, the serial output (TxD) is forcibly

set to the spacing (0) state.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

473

24.2.9 SIUMC (0x0C00 0004)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved MCR[4] MCR[3] MCR[2] MCR[1] MCR[0]

R/W R R R R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[7..5] Reserved Write 0 when writing. 0 is returned after read.

D[4] MCR[4] For diagnostic testing (local loopback)

1 : Enable use of local loopback

0 : Disable use of local loopback

D[3] MCR[3] OUT2 signal (internal) specification

1 : Output the low-level signal

0 : Output the high-level signal

D[2] MCR[2] OUT1 signal (internal) specification

1 : Output the low-level signal

0 : Output the high-level signal

D[1] MCR[1] RTS# output control

1 : Output the low-level signal

0 : Output the high-level signal

D[0] MCR[0] DTR# output control

1 : Output the low-level signal

0 : Output the high-level signal

This register is used for interface control with a modem or data set (or a peripheral device that emulates a modem).
The settings of bit 3 and bit 2 become valid only when bit 4 is set to 1 (enable use of local loopback).

z Local Loopback
The local loopback can be used to test the transmit/receive data path in the SIU.
The following operation is executed when bit 4 value = 1.
The transmit block’s serial output (TxD) enters the marking state (logical 1) and the serial input (RxD) to the
receive block is cut off. The transmit shift register’s output is looped back to the receive shift register’s input.
The four modem control inputs (DSR#, CTS#, RI (internal), and DCD#) are cut off and the four modem control
outputs (DTR#, RTS#, OUT1 (internal), and OUT2 (internal)) are internally connected to the corresponding
modem control inputs.
The modem control output pins are forcibly set as inactive (high level). During this kind of loopback mode,
transmitted data can be immediately and directly received.
This function can be used to check on the transmit/receive data bus within the SIU.
When in loopback mode, both transmission and receive interrupts can be used. The interrupt sources are
external sources in relation to the transmit and receive blocks.
Although modem control interrupts can be used, the low-order four bits of the modem control register can be
used instead of the four modem control inputs as interrupt sources.
As usual, each interrupt is controlled by an interrupt enable register.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

474

24.2.10 SIULS (0x0C00 0005)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name LSR[7] LSR[6] LSR[5] LSR[4] LSR[3] LSR[2] LSR[1] LSR[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 1 1 0 0 0 0 0

Other resets 0 1 1 0 0 0 0 0

Bit Name Function

D[7] LSR[7] Indicates error detection (in FIFO mode)

1 : Parity error, framing error, or break is detected

0 : Normal

D[6] LSR[6] Transmit block empty

1 : No data in transmit holding register or transmit shift register

No data in transmit FIFO (during FIFO mode)

0 : Data exists in transmit holding register or transmit shift register

Data exists in transmit FIFO (during FIFO mode)

D[5] LSR[5] Transmit holding register empty

1 : Character is transferred to transmit shift register (during 16550 mode)

Transmit FIFO is empty (during FIFO mode)

0 : Character is stored in transmit holding register (during 16550 mode)

Transmit data exists in transmit FIFO (during FIFO mode)

D[4] LSR[4] Break interrupt

1 : Break interrupt detected

0 : Normal

D[3] LSR[3] Framing error

1 : Framing error detected

0 : Normal

D[2] LSR[2] Parity error

1 : Parity error detected

0 : Normal

D[1] LSR[1] Overrun error

1 : Overwrite receive data

0 : Normal

D[0] LSR[0] Receive data ready

1 : Receive data exists in FIFO

0 : No receive data in FIFO

The CPU uses this register to get information related to data transfers.

LSR[7] bit is valid only in FIFO mode, and it indicates always 0 in 16550 mode.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

475

Bit4: Break interrupt

The value of bit 4 becomes 1 when the spacing mode (logical 0) is held longer than the time required for

transmission of one word of receive data input (start bit + data bits + parity bit + stop bit).

This bit value returns “0” when the CPU reads the contents of the line status register.

When in FIFO mode, if a break interrupt is detected for one character in the FIFO, the character is

regarded as an error character and the CPU is notified of a break interrupt when that character reaches

the highest position in the FIFO.

When a break occurs, one “zero” character is sent to the FIFO. The RxD enters marking mode, and

when the next valid start bit is received, the next character can be transmitted.

Bit3: Framing error

This indicates that the received character data did not include a correct stop bit.

The value of this becomes 1 when a zero (spacing level) stop bit is detected following the final data bit or

parity bit. This bit value returns to 0 when the CPU reads the contents of the line status register.

When in FIFO mode, if a framing error is detected for one character in the FIFO, the character is

regarded as an error character and the CPU is notified of a framing error when that character reaches the

highest position in the FIFO.

When a framing error occurs, the SIU prepares for further synchronization. The next start bit is assumed

to be the cause of the framing error and further data is not accepted until the next start bit has been

sampled twice.

Bit2: Parity error

This error indicates that the received character data does not satisfy the even-parity or odd-parity setting

specified by the even parity select bit.

The value of this becomes 1 when a parity error is detected. This bit value returns to 0 when the CPU

reads the contents of the line status register.

When in FIFO mode, if a parity error is detected for one character within the FIFO, the character is

regarded as an error character and the CPU is notified of a parity error when that character reaches the

highest position in the FIFO.

Bit1: Overrun error (OE)

When the CPU transfers the next character to the receive buffer register before it reads the receive buffer

register, the characters existing in that register are deleted.

The value of this bit becomes 1 when overrun status is detected and returns to “0” when the CPU reads

the contents of the line status register.

When in FIFO mode, if the data exceeds the trigger level as it continues to be transferred to the FIFO,

even after the FIFO becomes full an overrun error will not occur until all characters are stored in the shift

register.

The CPU is notified as soon as an overrun error occurs. The characters in the shift register are

overwritten and are not transferred to the FIFO.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

476

24.2.11 SIUMS (0x0C00 0006)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name MSR[7] MSR[6] MSR[5] MSR[4] MSR[3] MSR[2] MSR[1] MSR[0]

R/W R R R R R/W R/W R/W R/W

RTCRST Undefined Undefined Undefined Undefined 0 0 0 0

Other resets Undefined Undefined Undefined Undefined 0 0 0 0

Bit Name Function

D[7] MSR[7] Complement of DCD# signal

1 : High level

0 : Low level

D[6] MSR[6] Complement of RI signal (internal)

1 : High level

0 : Low level

D[5] MSR[5] Complement of DSR# input

1 : High level

0 : Low level

D[4] MSR[4] Complement of CTS# input

1 : High level

0 : Low level

D[3] MSR[3] DCD# signal change

1 : Change in DCD# signal

0 : No change

D[2] MSR[2] RI signal (internal) change

1 : Change in RI signal (internal)

0 : No change

D[1] MSR[1] DSR# signal change

1 : Change in DSR# signal

0 : No change

D[0] MSR[0] CTS# signal change

1 : Change in CTS# signal

0 : No change

This register indicates the current status of various control signals that are input to the CPU from a modem or

other peripheral device.

MSR[3..0] bits are cleared to 0 when they are read.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

477

24.2.12 SIUSC (0x0C00 0007)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name SCR[7] SCR[6] SCR[5] SCR[4] SCR[3] SCR[2] SCR[1] SCR[0]

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[7..0] SCR[7..0] Can be freely applied by user

This register is a readable/writable 8-bit register.

It does not affect control of the SIU.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

478

24.2.13 SIUIRSEL (0x0C00 0008)

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved TMICMODE TMICTX IRMSEL[1] IRMSEL[0] IRUSESEL SIRSEL

R/W R R R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[7..6] Reserved Write 0 when writing. 0 is returned after read.

D[5] TMICMODE Specifies the mode of the emitter or receptor module.

D[4] TMICTX Specifies the communication rate.

1 : Communication at 4 Mbps

0 : Communication at 1.15 Mbps or less

D[3..2] IRMSEL[1..0] Sets the type of emitter/receptor module to be used

11 : RFU

10 : HP model (HSDL-1100 is assumed)

01 : TEMIC model (TFDS6000 is assumed)

00 : SHARP model (RY5FD01D is assumed)

D[1] IRUSESEL Selects SIU or FIR for use with IrDA emitter/receptor module

1 : FIR uses IrDA module

0 : SIU uses IrDA module

D[0] SIRSEL Selects whether the SIU uses the IrDA module or the RS-232-C pins during

communications

1 : Use IrDA module

0 : Use RS-232-C interface

This register is used to set the IrDA module settings, IrDA module access privileges, and the SIU’s

communication format (IrDA or serial).

The settings of TMICMODE and TMICTX bits are valid only when IRMSEL[1..0] bits are set to 01 (TEMIC model).

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

479

The figure below shows the connection examples between the VR4102 and IrDA modules.

Figure 24-1. Connection Example between the V R4102 and IrDA Module

RxDAIRDIN

TxDIRDOUT

RXDBFIRDIN#/SEL

VR4102
IrDA

module

(a) HP product

RxDIRDIN

TxDIRDOUT

SELFIRDIN#/SEL

VR4102
IrDA

module

(b) TEMIC product

RxDIRDIN

TxDIRDOUT

FIRDIN#/SEL

VR4102
IrDA

module

(c) SHARP product

NC

Remark NC: No Connection

480

[MEMO]

481

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

This chapter describes the HSP unit’s operations and register settings.

25.1 GENERAL

The core of the HSP unit uses PCtel’s PCT288I chip. The main functions of the PCT288I is as follows.

<1> CODEC device control and serial l parallel conversion of the CODEC transmit/receive data

<2> Control of relay lines, hook lines, and other signal lines in DAA (Data Access Arrangement) block

Block diagrams of HSP unit and an example of connection between the VR4102 and external agents are shown

below.

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

482

Figure 25-1. HSP Unit Block Diagram

OCLK0

OCLK1

 IMCLK
 IRESET

 IAEN
 IIOWCB
 IIORCB

 OIOCS16B
 OIOCHRDYB
 IADDR[11:0]

 IBD[15:0]
OBD[15:0]

OE
 OIRQ2
 OIRQ3
 OIRQ4
 OIRQ5
OIRQ10
OIRQ11
OIRQ12
OIRQ15

OCRYSTL
ICRYSTAL

IAFESEL[1]
IAFESEL[0]

 IBYTE
ICASIN

ISLAVEB
IHWPDNB

IRING
ILC-SENSE
ILV-SENSE
IN[4:0]

OPD
OOFF-HOOK
OCID-RELAY
OAFERSTB
OMUTE
OUT[2]
OUT[1]
OUT[0]
OOFF-HOOKB

ISCLK
IFSI
ISDI
IFSX
OFSX
OSDO

OCASOUT

ISA BUS

INTERFACE PARALLEL I/O

INTERFACE

CODEC
SERIAL I/OINTERRUPT

CONTROL BLOCK

FS

TELECON
HC0

HSPMCLK

seclk_hsp

CK

D Q

Q_B

IRING

ILCSENSE

OPD#

OFFHOOK

AFERST#
MUTE

HSPSCLK

SDI

SDO

testhsp

bsc

rst_gab

ireset_before

ibyte_before
iafesel_before0

ihspout_before[15:0]

hsp_intr

hspinitreg

hsp_address

decoder

iiowb
iiorb

iadd[4:0]
cshspb hspinitreg

i_tclk

idin[15:0]

ihspout[15:0]

iaddr288_before[4:0]decode[4:0]

Decoder

To level
Interrupt

Figure 25-2. Circuit Configuration Block Diagram Examples

VR4102
(HSP)

CODEC

DAA

Line

Speaker

IRING
ILCSENSE
OFFHOOK

TELCON

SDO
HSPMCLK
AFERST#

HC0
FS

SDI

HSPSCLK

TXAN

TXAP

RXA

MUTE

3

4

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

483

25.2 REGISTER SET

The HSP registers are listed below.

The data registers can be accessed as the control registers by specifying the INDEX number and then reading

from or writing to.

All registers other than the HSPINIT register are original to the PCT288I.

Table 25-1. HSP Registers

Address R/W Register Symbols Name

0x0C00 0020 R/W HSPINIT HSP Initialize Register

0x0C00 0022 R/W HSPDATA[7:0] HSP Data Register [7:0]

0x0C00 0023 R/W HSPDATA[15:8] HSP Data Register [15:8]

0x0C00 0024 W HSPINDEX HSP Index Register

0x0C00 0028 R HSPID[7:0] HSP ID Register

0x0C00 0029 R HSPPCS[7:0] HSP I/O Address Program Confirmation Register

0x0C00 0029 W HSPPCTEL[7:0] HSP Signature Checking Port

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

484

25.2.1 HSP Initialize Register

(1) HSPINIT (0x0C00 0020)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved OPD AFESEL BYTE BSC HSPRST

R/W R R R R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:5] Reserved Write 0 when writing. 0 is returned after read.

D[4] OPD Power-down CODEC (indicates OPD# pin’s state)

1 : High level

0 : Low level

D[3] AFESEL CODEC interface mode switch

1 : ST7546, STLC7546(SGS), T7525(AT)

0 : TLC320C44, TLC320AC01/02(TI)

D[2] BYTE HSP data bus width setting

1 : 8 bits

0 : 16 bits

D[1] BSC CODEC interface control

1 : Normal

0 : Initial value

D[0] HSPRST HSP unit reset (same as hardware reset)

1 : Reset

0 : Do not reset

This register is used to control the HSP.

BSC bit is used to control the CODEC interface. This bit must be set to 1 when using the HSP.

The hardware reset and the reset by the HSPRST bit result the same function.

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

485

25.2.2 HSP Data Register, HSP Index Register

HSPDATA[15..0] is a 16-bit data port. This register can be accessed as control registers according to the

HSPINDEX[15..0] setting.

HSPINDEX[15..0] is a write-only index register. The role of the data register changes according to the values set

to this register.

The correspondence between INDEX numbers and registers is shown below.

Table 25-2. Control Register Definitions

INDEX WRITE READ

Higher Byte Lower Byte Higher Byte Lower Byte

0 HSPTxData[15..8] HSPTxData[7..0] HSPRxData[15..8] HSPRxData[7..0]

1 HSPCNTL[9..8] HSPCNTL[7..0] HSPSTS[15..8] HSPSTS[7..0]

2 Reserved HSPEXTOUT[7..0] HSPID[7..0] HSPEXTIN[7..0]

3 HSPTOC[3..0] HSPMCLK1[4..0] HSPERRCNT[11..8] HSPERRCNT[7..0]

4 Reserved HSPFFSZ[6..0] Reserved

5 to 15 Reserved Reserved

16 to 255 Setting prohibited Setting prohibited

Described below are control registers.

(1) HSPTxData (0x0C00 0022: Index 0, Write)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name TxData[15] TxData[14] TxData[13] TxData[12] TxData[11] TxData[10] TxData[9] TxData[8]

R/W W W W W W W W W

RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Other resets Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TxData[7] TxData[6] TxData[5] TxData[4] TxData[3] TxData[2] TxData[1] TxData[0]

R/W W W W W W W W W

RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Other resets Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit Name Function

D[15:0] TxData[15:0] Transmit data

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

486

(2) HSPCNTL (0x0C00 0022: Index 1, Write)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W W W W W W W W W

RTCRST 0 0 Undefined Undefined Undefined Undefined Undefined Undefined

Other resets 0 0 Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name NTORST ENIRQ START Reserved ENTX IRQS2 IRQS1 IRQS0

R/W W W W W W W W W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:8] Reserved Write 0 when writing.

D[7] NTORST Disable timeout reset

When this bit is “0”, it enables a timeout to occur when a specified number of errors

have been counted, at which point the HSP resets itself.

1 : Disable

0 : Enable

D[6] ENIRQ Interrupt enable

1 : Enable

0 : Disable

D[5] START RX/TX FIFO pointer initialization

When this bit is set to “1”, the RX/TX FIFO pointer is set to its initial position.

1 : Initialize (at rising edge)

0 : Status hold

D[4] Reserved Write 0 when writing.

D[3] ENTX Transfer enable

1 : Enable

0 : Disable

D[2:0] IRQS[2:0] Interrupt signal select. However, IRQ signal is always selected whatever value is set

to these bits.

Caution If 1 is set to ENTX bit, the only way to stop the operation is by resetting the HSP unit.

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

487

(3) HSPEXTOUT (0x0C00 0022: Index 2, Write)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W W W W W W W W W

RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Other resets Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved HC0 TELECON Reserved MUTE AFERST Reserved OFFHOOK

R/W W W W W W W W W

RTCRST Undefined 0 0 0 0 1 0 0

Other resets Undefined 0 0 0 0 1 0 0

Bit Name Function

D[15:7] Reserved Write 0 when writing.

D[6] HC0 Select CODEC mode

This bit is connected to the HC0 pin.

1 : High-level signal output

0 : Low-level signal output

D[5] TELECON Hand set relay control

This bit is connected to the TELECON pin.

1 : High-level signal output

0 : Low-level signal output

D[4] Reserved Write 0 when writing.

D[3] MUTE Mute speaker

This bit is connected to the MUTE pin.

1 : High-level signal output

0 : Low-level signal output

D[2] AFERST CODEC reset

This bit is connected to the AFERST# pin.

1 : High-level signal output

0 : Low-level signal output

D[1] Reserved Write 0 when writing.

D[0] OFFHOOK OFF HOOK relay control

This bit is connected to the OFFHOOK pin.

1 : High-level signal output

0 : Low-level signal output

This register is used to set output values of various signals when the INDEX number is 2.

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

488

(4) HSPTOC and HSPMCLKD (0x0C00 0022: Index 3, Write)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved TOC3 TOC2 TOC1 TOC0

R/W W W W W W W W W

RTCRST Undefined Undefined Undefined Undefined 0 0 0 0

Other resets Undefined Undefined Undefined Undefined 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved MCLKD4 MCLKD3 MCLKD2 MCLKD1 MCLKD0

R/W W W W W W W W W

RTCRST Undefined Undefined Undefined 1 1 1 1 0

Other resets Undefined Undefined Undefined 1 1 1 1 0

Bit Name Function

D[15:12] Reserved Write 0 when writing.

D[11:8] TOC[3:0] High-order 4 bits of timeout count

D[7:5] Reserved Write 0 when writing.

D[4:0] MCLKD[4:0] HSPMCLK divisor to clock input

HSPMCLK frequency = 18.432 MHz / (MCLKD[4:0] + 2)

The upper byte of this register sets the timeout counter value and lower byte sets the HSPMCLK’s division ratio

when the INDEX number is 3.

TOC[3:0] is used to set the high-order four bits of the final count of the timeout counter. The timeout counter is a

12-bit counter and is incremented once for each interrupt signal that is not serviced. The low-order 8 bits are

automatically set to 0 when TOC[3:0] is set. When the specified timeout count value is reached, TO bit of

HSPSTS register is set to 1. The user is responsible for resetting the HSP core to prevent a system hang-up.

MCLKD[4:0] is used to set the division ratio when the 18.432-MHz clock supplied to HSPMCLK pin can be

output using a programmable division ratio. If MCLKD[4:0] is “0”, there is no clock division and the 18.432-MHz

clock is output. Note that an even number must be set to MCLKD[4:0].

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

489

(5) HSPFFSZ (0x0C00 0022: Index 4, Write)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W W W W W W W W W

RTCRST Undefined Undefined Undefined 0 0 0 0 0

Other resets Undefined Undefined Undefined 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved FFSZ5 FFSZ4 FFSZ3 FFSZ2 FFSZ1 FFSZ0

R/W W W W W W W W W

RTCRST Undefined Undefined 1 0 0 0 0 0

Other resets Undefined Undefined 1 0 0 0 0 0

Bit Name Function

D[15:6] Reserved Write 0 when writing.

D[5:0] FFSZ[5:0] FIFO size control

When the INDEX number is 4, this register is used to set the transmit/receive buffer size, and can be set up to

32 (0x20). If buffer-full interrupt is enabled, an interrupt will occur when the data in the transmit/receive buffer

reaches to the size set in this register.

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

490

(6) HSPRxData (0x0C00 0022: Index 0, Read)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name RxData[15] RxData[14] RxData[13] RxData[12] RxData[11] RxData[10] RxData[9] RxData[8]

R/W R R R R R R R R

RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Other resets Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RxData[7] RxData[6] RxData[5] RxData[4] RxData[3] RxData[2] RxData[1] RxData[0]

R/W R R R R R R R R

RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Other resets Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit Name Function

D[15:0] RxData[15:0] Receive data from the receive FIFO

This register is used to store the receive data from the receive FIFO when the INDEX number is 0.

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

491

(7) HSPSTS (0x0C00 0022: Index 1, Read)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 Undefined Undefined Undefined

Other resets 0 0 0 0 0 Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name AFESEL1 AFESEL0 IBYTE TO CFGCP IRQS RxOVRUN TxUDRUN

R/W R R R R R R R R

RTCRST Undefined Undefined Undefined 0 0 0 0 0

Other resets Undefined Undefined Undefined 0 0 0 0 0

Bit Name Function

D[15:8] Reserved 0 is returned after read.

D[7:6] AFESEL[1:0] Indicates the AFESEL[1:0] signal (internal) state

D[5] IBYTE Indicates the BYTE signal (internal) state

D[4] TO Error-related timeout

1 : Timeout occurred

0 : No timeout

D[3] CFGCP CODEC configuration complete

1 : Complete

0 : Not complete

D[2] IRQS Pending interrupt exists

1 : Exists

0 : No pending interrupts

D[1] RxOVRUN Receive overrun occurred

1 : Occurred

0 : No receive overruns

D[0] TxUDRUN Transmit underrun occurred

1 : Occurred

0 : No transmit overruns

This register is used to indicate the status in communication when the INDEX number is 1.

TO bit is set (to “1”) when the timeout counter reaches the value specified by the TOC bit of HSPTOC register.

CFGCP bit indicates whether or not CODEC initialization has been completed. Actually, this bit is set (to “1”)

when the START bit of HSPCNTL register has been set as active to reset the FIFO pointer and then 9-word data

has been transmitted (1 word = 16 bits).

IRQS bit indicates whether or not any pending interrupt exists. When an interrupt request from HSP to the CPU

core is in pending, the request is cleared after this register is read.

IRQS, RxOVRUN, TxUDRUN bits are cleared (to “0”) when read.

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

492

(8) HSPID and HSPEXTIN (0x0C00 0022: Index 2, Read)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

R/W R R R R R R R R

RTCRST 0 0 0 1 0 0 0 0

Other resets 0 0 0 1 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved ILCS IRING

R/W R R R R R R R R

RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Other resets Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit Name Function

D[15:8] ID[7:0] Indicates HSP unit’s ID and revision number

D[7:2] Reserved 0 is returned after read.

D[1] ILCS ILCSENSE input pin state indication

D[0] IRING IRING input pin state indication

The upper byte of this register is used to indicate the ID of HSP, and the lower byte is used to indicate the status

of the HSP input signals.

ID[7:0] is divided into two parts. The high-order 4 bits ID[7:4] indicate the ID number of HSP, and the low-order

4 bits ID[3:0] indicate the revision number of HSP.

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

493

(9) HSPERRCNT (0x0C00 0022: Index 3, Read)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved ERRCNT11 ERRCNT10 ERRCNT9 ERRCNT8

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name ERRCNT7 ERRCNT6 ERRCNT5 ERRCNT4 ERRCNT3 ERRCNT2 ERRCNT1 ERRCNT0

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15:12] Reserved 0 is returned after read.

D[11:0] ERRCNT[11:0] Error count

This register is used to indicate the number of errors when the INDEX number is 3.

This register indicates the number of overrun or underrun errors that have occurred. This is used for

synchronizing software and hardware.

25.2.3 HSP ID Register, HSP I/O Address Program Confirmation Register

The specific values are displayed to HSPID[7:0] and HSPPCS[7:0] registers following normal access of

HSPPCTEL register.

25.2.4 HSP Signature Checking Port

HSPPCTEL[7:0] register must be accessed when to start using HSP unit. 0xA5 can be read from the HSPPCS

register by writing a certain value. Other registers cannot be accessed unless this processing is executed. It must

be executed during initialization.

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

494

25.3 POWER CONTROL

Power control of the CODEC and AFE can be performed using the OPD# pin and the BSC bit (HSPINIT). The

following is an example of a control method using these units.

Figure 25-3. Block Diagram of HSP Interface Power Control

VR4102

Voltage

control unit

L: ON

H: OFF

CODEC AFE

Telephone

line

OPD# pin
BSC bit

HSP interface

other than OPD#

(1) After RTC reset

Item OPD# pin BSC bit HSP bus state VR4102 power CODEC/AFE

power

1 When initialized L 0 Note ON OFF

2 During power-on of CODEC or AFE H 0 Note ON ON

3 When HSP bus’s gate is set to “ON” H 1 Normal ON ON

4 Software modem control H 1 Normal ON ON

Note Refer to 2.3 PIN STATUS UPON A SPECIFIC STATE .

(2) During power-down (V R4102: Fullspeed/Standby/Suspend mode)

Item OPD# pin BSC bit HSP bus state VR4102 power CODEC/AFE

power

1 Operation complete H 1 Normal ON ON

2 When HSP bus’s gate is set to “OFF” H 0 Note ON ON

3 When CODEC or AFE power is set to

“OFF”

L 0 Note ON OFF

4 If necessary, execute STANDBY/

SUSPEND command

L 0 Note ON OFF

Note Refer to 2.3 PIN STATUS UPON A SPECIFIC STATE .

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

495

(3) During recovery from power-down (V R4102: Fullspeed/Standby/Suspend mode)

Item OPD# pin BSC bit HSP bus state VR4102 power CODEC/AFE

power

1 Power down status L 0 Note ON OFF

2 During power-on of CODEC or AFE H 0 Note ON ON

3 When HSP bus’s gate is set to “ON” H 1 Normal ON ON

4 Use HSP unit H 1 Normal ON ON

Note Refer to 2.3 PIN STATUS UPON A SPECIFIC STATE .

(4) When changing to Hibernate mode (the following processing must occur before entering Hibernate mode)

Item OPD# pin BSC bit HSP bus state VR4102 power CODEC/AFE

power

1 Operation complete H 1 Normal ON ON

2 When HSP bus’s gate is set to “OFF” H 0 Note ON ON

3 When CODEC or AFE power is set to

“OFF”

L 0 Note ON OFF

4 Execute HIBERNATE command L 0 Note ON OFF

Note Refer to 2.3 PIN STATUS UPON A SPECIFIC STATE .

(5) During recovery from Hibernate mode to use HSP unit

Item OPD# pin BSC bit HSP bus state VR4102 power CODEC/AFE

power

1 During Hibernate mode L 0 Note ON OFF

2 During power-on of CODEC or AFE H 0 Note ON ON

3 When HSP bus’s gate is set to “ON” H 1 Normal ON ON

4 Use HSP unit H 1 Normal ON ON

Note Refer to 2.3 PIN STATUS UPON A SPECIFIC STATE .

496

[MEMO]

497

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

The FIR operation and register settings are described below.

26.1 GENERAL

This unit supports the IrDA 1.1 high-speed infrared communication physical layer standard.

Supported FIR (Fast SIR) transfer rates include 0.576 Mbps, 1.152 Mbps, and 4 Mbps.

SIR (up to 115.2 kbps) is not supported.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

498

26.2 REGISTER SET

The FIR registers are listed below.

Table 26-1. FIR Registers

Address R/W Register symbols Function

0x0C00 0040 R/W FRSTR FIR Reset register

0x0C00 0042 R/W DPINTR DMA Page Interrupt register

0x0C00 0044 R/W DPCNTR DMA Control register

0x0C00 0050 W TDR Transmit Data register

0x0C00 0052 R RDR Receive Data register

0x0C00 0054 R/W IMR Interrupt Mask register

0x0C00 0056 R/W FSR FIFO Setup register

0x0C00 0058 R/W IRSR1 Infrared Setup register 1

0x0C00 005C R/W CRCSR CRC Setup register

0x0C00 005E R/W FIRCR FIR Control register

0x0C00 0060 R/W MIRCR MIR Control register

0x0C00 0062 R/W DMACR DMA Control register

0x0C00 0064 R/W DMAER DMA Enable register

0x0C00 0066 R TXIR Transmit Indication register

0x0C00 0068 R RXIR Receive Indication register

0x0C00 006A R IFR Interrupt Flag register

0x0C00 006C R RXSTS Receive Status register

0x0C00 006E R/W TXFL Transmit Frame Length

0x0C00 0070 R/W MRXF Maximum Receive Frame Length

0x0C00 0074 R RXFL Receive Frame Length register

These registers are described in detail below.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

499

26.2.1 FRSTR (0x0C00 0040)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved FRST

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D1 Reserved Write 0 when writing. 0 is returned after a read.

D0 FRST FIR reset. Set 0 when releasing reset.

0: Normal

1: Reset

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

500

26.2.2 DPINTR (0x0C00 0042)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved FDPINT5 FDPINT4 FDPINT3 FDPINT2 FDPINT1

R/W R R R R R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D5 Reserved Write 0 when writing. 0 is returned after a read.

D4 FDPINT5 This bit indicates an FIR macro interrupt occurs. Cleared to 0 when 1 is written.

0: Normal

1: Occurred

D3 FDPINT4 This bit indicates that the DMA buffer (receive side) becomes full (2 pages).

Cleared to 0 when 1 is written.

0: Normal

1: Occurred (DMA request is stopped)

Caution The last data of the transfer data is not guaranteed.

D2 FDPINT3 This bit indicates that the DMA buffer (transmit side) becomes full (2 pages).

Cleared to 0 when 1 is written.

0: Normal

1: Occurred (DMA request is stopped)

Caution The last data of the transfer data is not guaranteed.

D1 FDPINT2 This bit indicates that the DMA buffer (receive side) becomes full (1 page).

Cleared to 0 when 1 is written.

0: Normal

1: Occurred (when bit 0 of DPCNTR is 1, DMA request is stopped)

Caution When 1-page transfer is set, the last data of the transfer data is not

guaranteed.

D0 FDPINT1 This bit indicates that the DMA buffer (transmit side) becomes full (1 page).

Cleared to 0 when 1 is written.

0: Normal

1: Occurred (when bit 0 of DPCNTR is 1, DMA request is stopped)

Caution When 1-page transfer is set, the last data of the transfer data is not

guaranteed.

This register is used to indicate the generation of FIR’s DMA page interrupt request.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

501

26.2.3 DPCNTR (0x0C00 0044)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved FDPCNT

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D1 Reserved Write 0 when writing. 0 is returned after a read.

D0 FDPCNT DMA transfer stopping boundary.

0: 2-page boundary (the last data of the second page is not guaranteed)

1: 1-page boundary (the last data of the first page is not guaranteed)

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

502

26.2.4 TDR (0x0C00 0050)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W W W W W W W W W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TDR7 TDR6 TDR5 TDR4 TDR3 TDR2 TDR1 TDR0

R/W W W W W W W W W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 to D0 TDR7 to 0 Transmit FIFO

[Function]

This register is used to store the address to which data is written for the transmit data store FIFO.

Up to 64- or 32-byte data (determined by bit 3 of FSR) is stored to the transmit data store FIFO.

Transmit data FIFO is used as follows.

(1) Write

Data is written to the transmit data store FIFO while the IrDA is operating.

When a write operation is completed, the write pointer of the transmit data store FIFO is incremented. However,

if data is written when this write pointer is full, it is not incremented.

After the data of frame size is written to the TXFL register in a status other than the transmit busy status (start

enable), if the data written to this register reaches frame size, data transfer starts even if the number of write to

this register is short of the threshold.

This is Start 1.

After that, data is always transferred if it reaches frame size, even if it is short of the threshold. This is Start 2.

(2) Read

After frame transfer is completed, the sequencer reads the transmit data during the data transfer sequence, and

the read pointer is incremented.

If read is done while the transmit FIFO is empty, a transmit underrun error occurs. This stops the current frame

transmission and then starts the abort frame transmission. The following frames scheduled to be transmitted

next are not transferred.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

503

26.2.5 RDR (0x0C00 0052)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RDR7 RDR6 RDR5 RDR4 RDR3 RDR2 RDR1 RDR0

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 to D0 RDR7 to 0 Receive FIFO

[Function]

This register is used to store the address from which data is read for the receive data store FIFO.

Up to 64- or 32-byte data (determined by bit 3 of FSR) is stored to the receive data store FIFO.

Receive data is used as follows.

(1) Write

During a frame data reception, the sequencer writes the receive data during the data transfer sequence, and the

write pointer is incremented.

If data is written when the unread data in the receive FIFO reaches the maximum volume, the receive overrun

error occurs and the current frame reception is ended.

The write pointer is not incremented.

After the receive FIFO is cleared, if the number of received frames is less than 7 frames, it is possible to

continue frame reception.

To receive 8 or more frames, read all the data and frames that are already received from the receive FIFO, then

clear the receive FIFO and restart reception.

(2) Read

Data is read from the receive data store FIFO while the IrDA is operating.

When a read operation is completed, the read pointer of the receive data store FIFO is incremented. However, it

is not incremented when the receive FIFO is empty.

When the number of read frames reaches the receive frame size, an interrupt occurs and bit 7 of the RXSTS

register is set to 1.

[Caution]

If data is read when the receive FIFO is empty (read pointer = write pointer), it may contend with the sequencer’s

write operation. This may cause undefined data.

The error generated by read underrun is not reported in this macro.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

504

26.2.6 IMR (0x0C00 0054)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name IMR7 IMR6 IMR5 IMR4 IMR3 IMR2 IMR1 IMR0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 to D0 IMR7 to 0 These bits are used to enable/prohibit interrupt output.

This register sets whether or not to inform outside when the interrupt is generated.

Each bit corresponds to the equivalent IFR register bit.

When interrupt output is enabled and corresponding bit is 1, interrupt output is

active.

IMRn Interrupt output

0

1

Prohibit

Enable

[Caution]

The IFR register is set irrespective of this register’s setting.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

505

26.2.7 FSR (0x0C00 0056)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RX_TH1 RX_TH0 TX_TH1 TX_TH0 F_SIZE TXF_CLR RXF_CLR TX_STOP

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 and D6 RX_TH1, 0 These bits are used to specify the receive FIFO’s threshold.

RX_TH 1, 0 F_SIZE = 0 F_SIZE = 1

00

01

10

11

1 byte

4 bytes

16 bytes

26 bytes

1 byte

8 bytes

32 bytes

48 bytes

D5 and D4 TX_TH1, 0 These bits are used to specify the transmit FIFO’s threshold.

TX_TH 1, 0 F_SIZE = 0 F_SIZE = 1

00

01

10

11

1 byte

8 bytes

16 bytes

26 bytes

1 byte

16 bytes

32 bytes

48 bytes

D3 F_SIZE This bit is used to specify the maximum size of transmit/receive FIFO.

F_SIZE FIFO maximum

size

0

1

32 bytes

64 bytes

D2 TXF_CLR Transmit FIFO clear trigger (read value = 0)

When this bit is set to 1, the pointers of the transmit data FIFO and transmit frame

size FIFO are initialized.

D1 RXF_CLR Receive FIFO clear trigger (read value = 0)

When this bit is set to 1, the pointers of the receive data FIFO, receive frame size

FIFO, and receive status FIFO are initialized.

D0 TX_STOP Transmission stop trigger (read value = 0)

When this bit is set to 1, the current frame transmission is stopped and the abort

frame transmission starts. The following frames scheduled to be transmitted next

are not transferred. Setting 1 to this bit also stops DMA operation and generates

the DMA completion interrupt.

This register is used to specify the settings for the transmit/receive FIFOs.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

506

[Caution]

During transmission/reception, the contents of bits 7 through 3 of the FSR register must not be changed (refresh

is possible). The data in the FIFO is not cleared by FIFO clear.

Regardless of transmission/reception, after data transfer is completed, set the TX_STOP bit and stop the DMA

operation. When reception, confirm the transfer data command bit and stop the DMA operation.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

507

26.2.8 IRSR1 (0x0C00 0058)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name IRDA_EN Reserved Reserved Reserved Reserved Reserved IRDA_MD MIR_MD

R/W R/W R R R R R R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 IRDA_EN This bit is used to control (enable/prohibit) IrDA macro operation.
When this bit is set to 1, peripheral main block’s reset is released and clock supply
starts.
0: Prohibit
1: Enable

D6 to D2 Reserved Write 0 when writing. 0 is returned after a read.

D1 and D0 IRDA_MD/ These bits are used to specify the IrDA/MIR mode.

MIR_MD IRDA_MD MIR_MD Operation mode Frequency Modulation
method

0
1
1

1 or 0
0
1

FIR mode
MIR full mode
MIR half mode

8 MHz
1.152MHz
0.576 MHz

4 PPM
Bit stream/stuff
Bit stream/stuff

[Caution]

During transmission/reception, the contents of this register must not be changed (refresh is possible).

When the IRDA_EN bit is set, the peripheral main part reset is released and the clock supply starts.

Pulse output level changes according to operation mode changes.

The operation mode should be changed after changing the IrDA operation to prohibit state (by setting bit (bit 7) to

0).

Once the mode is changed, be sure to switch bit inversion of I/O data ON/OFF by setting bit 0 of the CRCSR

register.

The output level does not change because output latch is reset.

Example) Sequence of changing operation mode from FIR mode to MIR full mode

clr1 0x7, IRSR1 Prohibit IrDA operation
set1 0x1, IRSR1 Change the mode
set1 0x0, CRCSR Set bit inversion
set1 0x7, IRSR1 Enable IrDA operation

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

508

26.2.9 CRCSR (0x0C00 005C)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TX_EN RX_EN 4PPM_DIS DPLL_DIS Reserved NON_CRC CRC_INV DATA_INV

R/W R/W R/W R/W R/W R R/W R/W R/W

RTCRST 0 0 0 0 0 1 0 0

Other resets 0 0 0 0 0 1 0 0

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 TX_EN This bit is used to control (enable/prohibit) masking of transmit start enable flag.

Masking sequence transition to transmission enable state entered by writing the

TXFL register is:

0: Prohibited

1: Enabled

D6 RX_EN This bit is used to control (enable/prohibit) receive operation.

Releasing masking of receive line, sampling data, and generating receive clocks are:

0: Prohibited

1: Enabled

D5 4PPM_DIS This bit is used to control (enable/prohibit) the 4PPM modulation (for debugging).

The 4PPM modulation of transmit data is:

0: Enabled

1: Prohibited

D4 DPLL_DIS This bit is used to control (enable/prohibit) the bit correction (for debugging).

Bit correction of received data is:

0: Enabled

1: Prohibited

D3 Reserved Write 0 when writing. 0 is returned after a read.

D2 NON_CRC This bit is used to control whether or not a CRC is added for frames to be transmitted

(for debugging).

0: Add CRC

1: Do not add CRC

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

509

Bit Name Function

D1 CRC_INV This bit is used to set whether or not a CRC is inverted to create an incorrect CRC

in the normal routine.

0: Normal CRC (not inverted)

1: Inverted CRC

D0 DATA_INV This bit is used to set whether or not received/transmitted data I/O is inverted.

0: Normal (not inverted)

1: Inverted

Be sure to set as normal in FIR, and set as inverted in MIR.

[Caution]

During transmission/reception, the contents of this register must not be changed (refresh is possible).

26.2.10 FIRCR (0x0C00 005E)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name PA_LEN2 PA_LEN1 PA_LEN0 W_PULSE1 W_PULSE0 F_WIDTH2 F_WIDTH1 F_WIDTH0

R/W R/W R/W R/W R R R/W R/W R/W

RTCRST 1 0 0 0 0 1 0 1

Other resets 1 0 0 0 0 1 0 1

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

510

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 to D5 PA_LEN2 to PA_LEN0 These bits are used to specify the number of PA (preamble) added to FIR’s
transmit frame.

PA_LEN2 to 0 Number of PA

001
010
011

100 (default)
111

1
2
4
16
32

Others 16 (reserved)

D4 and D3 W_PULSE1 and
W_PULSE0

These bits are used to specify the undefined receive pulse width area.
Pulse width within the undefined receive pulse width area = recognized as single pulse
Pulse width within other than the undefined receive pulse width area = recognized as double
pulse

W_PULSE 1 and 0 Undefined receive pulse
width area

00 7 to 8 clocks

01 (default) 8 to 9 clocks

10 9 to 10 clocks

11 10 to 11 clocks

D2 to D0 F_WIDTH2 to
F_WIDTH0

These bits are used to specify FIR pulse modulation width.
The FIR’s output pulse is modulated to a pulse consisting of the number of
reference clocks (48 MHz) specified by these bits.

F_WIDTH2 to 0 Single pulse Double pulse

000
001
010
011
100

101 (default)

1 clock
2 clocks
3 clocks
4 clocks
5 clocks
6 clocks

7 clocks
8 clocks
9 clocks
10 clocks
11 clocks
12 clocks

Others Setting prohibited

[Function]

Controls the FIR operation.

[Caution]

During transmission/reception, the contents of this register must not be changed.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

511

26.2.11 MIRCR (0x0C00 0060)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name STA_LEN2 STA_LEN1 STA_LEN0 M_WIDTH4 M_WIDTH3 M_WIDTH2 M_WIDTH1 M_WIDTH0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 1 0 0 1 0 0 1

Other resets 0 1 0 0 1 0 0 1

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 to D5 STA_LEN2 to

STA_LEN0

These bits are used to specify the number of STA (start flag) added to MIR’s transmit

frame.

STA_LEN2 to 0 Number of STA

001

010 (default)

011

100

111

1

2

4

16

32

Others 2 (reserved)

D4 to D0 M_WIDTH4 to

M_WIDTH0

These bits are used to specify the MIR pulse modulation width.

The MIR’s output pulse is modulated to a pulse consisting of the number of reference

clocks (48 MHz) specified by these bits.

F_WIDTH4 to 0 Single pulse

00000

00001

:

01001 (default)

:

10100

:

11111

1 clock

2 clocks

:

10 clocks

:

21 clocks

:

32 clocks

[Function]

Controls the MIR operation.

The nominal pulse width of MIR is 1/4. Therefore, be sure to set as follows:

MIR full mode (1.152 MHz) = 01001 (rate 10/42)

MIR half mode (0.576 MHz) = 10100 (rate 21/83)

[Caution]

During transmission/reception, the contents of this register must not be changed.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

512

26.2.12 DMACR (0x0C00 0062)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name ACES_MD TRANS_MD Reserved Reserved Reserved DEMAND2 DEMAND1 DEMAND0

R/W R/W R/W R R R R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 ACES_MD This bit is used to select the access mode. Write 0 when writing. 0 is returned

after a read.

D6 TRANS_MD This bit is used to specify the transfer direction.

TRANS_MD Transfer direction

0

1

Memory o TDR

RDR o Memory

D5 to D3 Reserved Write 0 when writing. 0 is returned after a read.

D2 to D0 DEMAND2 to These bits are used to specify the demand size.

DEMAND0 DEMAND2 to 0 Demand size

000

001

010

011

100

101

110

1

2

3

4

5

6

7

111 Free size

[Caution]

During the DMA operation (both the master side and IrDA side), the contents of this register must not be changed.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

513

26.2.13 DMAER (0x0C00 0064)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Reserved Reserved Reserved Reserved Reserved Reserved DMA_BUSY DMA_EN

R/W R R R R R R R R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D2 Reserved Write 0 when writing. 0 is returned after a read.

D1 DMA_BUSY DMA busy status

1: Busy

0: Not Busy

D0 DMA_EN This bit is used as a DMA operation enable trigger.

1: Enable

0: Disable

Note that the DMA is not stopped by clearing this bit (to 0).

[Function]

The DMA_BUSY bit is set automatically by setting the DMA_EN bit to 1.

The DMA_BUSY bit is cleared when bit 0 of the FSR register is set or when all frame transmit data is written.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

514

26.2.14 TXIR (0x0C00 0066)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TX_BUSY Reserved LAST_TFL TX_TH_OV Reserved TXF_UNDR TXF_FULL TXF_EMP

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 TX_BUSY Transmission busy.
This bit is set to 1 during the period between PA (in FIR) or STA (in MIR)
transmission and abort transmission.
0: Not Busy
1: Busy

D6 Reserved Write 0 when writing. 0 is returned after a read.

D5 LAST_TFL Last transmission frame status.
This bit indicates whether data exists or not in the transmission frame size FIFO.
This bit changes when the STA transmission sequence ends. Its initial value is 1.
0: Normal
1: Exists

D4 TX_TH_OV Transmission FIFO threshold over status.
This bit indicates whether or not the data size within the transmission FIFO
exceeds the threshold.
0: Normal
1: Excesses

D3 Reserved Write 0 when writing. 0 is returned after a read.

D2 TXF_UNDR Transmission FIFO underrun status.
This bit indicates whether or not data is read when there is no data in the
transmission FIFO.
0: Normal
1: Data is read

D1 TXF_FULL Transmission FIFO full status.
This bit indicates that there is no writable space in the transmission FIFO.
0: Normal
1: No writable space

D0 TXF_EMP Transmission FIFO empty status.
This bit indicates whether or not data to be read exists in the transmission FIFO.
0: Normal
1: Exists

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

515

26.2.15 RXIR (0x0C00 0068)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RX_BUSY END_DATA LAST_RFL RX_TH_O Reserved Reserved RXF_FULL RXF_EMP

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 RX_BUSY Reception busy.
This bit is set to 1 during the period between when PA (in FIR) or STA (in MIR) is
detected and when reception ends.
0: Not Busy
1: Busy

D6 END_DATA Frame last data status.
This bit indicates whether the last data of frame that is received completely exists
or not in the FIFO.
0: Normal
1: Exists

D5 LAST_RFL Last reception frame status.
This bit is set (to 1) when the reception result (frame size and status) of the 7th
frame is stored.
0: Normal
1: Result is stored

D4 RX_TH_O Reception FIFO threshold over status.
This bit indicates whether or not the data size within the reception FIFO exceeds
the threshold.
0: Normal
1: Excesses

D3 and D2 Reserved Write 0 when writing. 0 is returned after a read.

D1 RXF_FULL Reception FIFO full status.
This bit indicates that there is no writable space in the reception FIFO.
0: Normal
1: No writable space

D0 RXF_EMP Reception FIFO empty status.
This bit indicates whether or not data to be read exists in the reception FIFO.
0: Normal
1: Exists

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

516

[Caution]

This register can be read only in IrDA mode.

[Remark]

Initial value is the value immediately after the IrDA operation is enabled or after the reception FIFO is cleared.

0x00 is read while the operation stops.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

517

26.2.16 IFR (0x0C00 006A)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TX_ABORT TX_ERR RX_VALID DMA_END RX_END TX_END TX_WR_RQ RX_RD_RQ

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 TX_ABORT Abort frame transmission end interrupt.

This bit indicates that abort frame is transmitted and the following frame’s transfer

reservation is cancelled.

0: Normal

1: Cancelled

D6 TX_ERR Transmission error interrupt.

This bit indicates that the transmission error occurs.

0: Normal

1: Occurs

D5 RX_VALID Reception result valid interrupt.

This bit indicates that the last data of frame is read from the reception FIFO and the

received status becomes valid.

0: Normal

1: Valid

D4 DMA_END DMA end interrupt.

This bit indicates that the DMA operation ends.

0: Normal

1: Ends

D3 RX_END Reception end interrupt.

This bit indicates that STO is detected for each reception frame.

0: Normal

1: Detected

D2 TX_END Transmission end interrupt.

This bit indicates that STO is transmitted for each transmission frame.

0: Normal

1: Detected

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

518

Bit Name Function

D1 TX_WR_RQ Transmission data write request interrupt.

This bit indicates that a transmission data write request interrupt has occurred.

0: Normal

1: Occurs

D0 RX_RD_RQ Reception data read request interrupt.

This bit indicates that a reception data read request interrupt has occurred.

0: Normal

1: Occurs

[Caution]

If bits 7 through 2 of the IFR register are set, the flags that are set to 1 before a read are all cleared to 0.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

519

26.2.17 RXSTS (0x0C00 006C)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name Valid Reserved Reserved RXF_OV CRC_ERR ABORT MRXF_OV Reserved

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 Valid Valid status in the indication status.

This bit is set to 1 when received data of one frame is read completely.

0: Received data read not completed

1: Received data read completed

D6 and D5 Reserved Write 0 when writing. 0 is returned after a read.

D4 RXF_OV Receive FIFO overrun error.

This bit is set to 1 when a receive operation is stopped by receive FIFO’s overrun.

0: Normal

1: Overrun

D3 CRC_ERR CRC Error.

This bit is set t o 1 when the receive result CRC does not match with expected

value.

0: Normal

1: CRC error

D2 ABORT Abort detection error.

This bit is set to 1 when a receive operation is stopped by abort frame detection.

0: Normal

1: Abort error

D1 MRXF_OV Maximum receive frame size error.

This bit is set to 1 when a receive operation is stopped by maximum receive frame

size overrun.

0: Normal

1: Overrun

D0 Reserved Write 0 when writing. 0 is returned after a read.

[Function]

Reads data from the receive status store FIFO, in which data of up to 7 frames can be stored.

The FIFO is initialized by setting bit 1 of the FSR register.

Received status FIFO is used as follows.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

520

(1) Write (bits 4 to 1)

The receive status is written to this register at the same timing of writing data to the receive frame length

register.

This register shares the write pointer with the receive frame length register.

(2) Write (bit 7)

This bit is set to 1 when the data of receive frame size is read from the FIFO. While this bit is 1, data is

recognized as valid.

(3) Read

This register shares the read pointer with the receive frame length register.

The read pointer is incremented by reading the RXFL (receive frame length) register after valid data is read from

this register.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

521

26.2.18 TXFL (0x0C00 006E)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved TXFL12 TXFL11 TXFL10 TXFL9 TXFL8

R/W R R R R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name TXFL7 TXFL6 TXFL5 TXFL4 TXFL3 TXFL2 TXFL1 TXFL0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to

D13

Reserved Write 0 when writing. 0 is returned after a read.

D12 to D0 TXFL12 to TXFL0 Transmit frame size.

[Function]

This register functions as prebuffer address for data write to the transmit frame size data store FIFO, in which

data of up to 7 frames can be stored.

Setting value = transmit size – 1

Setting range = 1 to 2 Kbytes

The FIFO is initialized by setting bit 2 of the FSR register.

(1) Write

The data transmit size of frames to be transferred is written to this register.

Transmission is enabled when data is written to this register in the state other than transmission busy state (after

FIFO initialization and after transmission completion).

The frames whose number is specified by this register are transferred continuously (back-to-back transfer).

During the single frame transfer, FIFO should be initialized at each 1-frame transfer completion to restart

transmit operation.

(2) Read

The sequencer reads the transmission size from this register after the STA flag of transmission frame is

transmitted completed. Then, the read pointer is incremented.

[Caution]

If data exists in the FIFO when the STO transmit sequence is completed, continuous transfer mode is entered.

When multiple frames are transferred, be sure to write data to the TXFL register before the STO transmit sequence

is completed.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

522

26.2.19 MRXF (0x0C00 0070)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved MRXF12 MRXF11 MRXF10 MRXF9 MRXF8

R/W R R R R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name MRXF7 MRXF6 MRXF5 MRXF4 MRXF3 MRXF2 MRXF1 MRXF0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to

D13

Reserved Write 0 when writing. 0 is returned after a read.

D12 to D0 MRXF12 to MRXF0 Specifies receivable maximum frame size.

MRXF MAX Tx Frame length

0x0000 1 byte

0x0001 2 bytes

: :

0x1FFF 2 Kbytes

[Function]

The maximum frame size is stored in this register.

When a 1-frame receive data is transferred to the receive FIFO exceeding the receivable maximum frame size set

by this register, an error occurs even under frame reception to end the current frame reception. This sets bit 1 of the

RXSTS register.

After the receive FIFO is cleared, if the number of received frames is less than 7 frames, it is possible to continue

frame reception.

To receive 8 or more frames, read all the data and frames that are already received from the receive FIFO, then

clear the receive FIFO and restart reception.

When receiving data via the DMA operation, set the transfer size value by the following expression:

DMA receivable capacitance = set value x 7 frames

Caution The data exceeding the maximum size cannot be transferred to the FIFO.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

523

26.2.20 RXFL (0x0C00 0074)

Bit D15 D14 D13 D12 D11 D10 D9 D8

Name Reserved Reserved Reserved RXFL12 RXFL11 RXFL10 RXFL9 RXFL8

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 D0

Name RXFL7 RXFL6 RXFL5 RXFL4 RXFL3 RXFL2 RXFL1 RXFL0

R/W R R R R R R R R

RTCRST 0 0 0 0 0 0 0 0

Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D15 to

D13

Reserved Write 0 when writing. 0 is returned after a read.

D12 to D0 RXFL12 to RXFL0 Receive frame size.

[Function]

This register functions as prebuffer address for data read from the receive frame size data store FIFO, in which

data of up to 7 frames can be stored.

Setting value = transmit size – 1

Setting range = 1 to 2 Kbytes

The FIFO is initialized by setting bit 1 of the FSR register.

(1) Write

When the frame reception is completed after its data is transferred (even if only 1 byte) to the receive FIFO, the

sequencer writes the current transfer data size to this register, and the write pointer is incremented.

When the frame reception is completed before its data is transferred to the receive FIFO, write operation is not

performed (lost frame).

(2) Read

The read pointer is enabled to be incremented by reading valid data from the RXSTS register, and the next data

can be read.

[Caution]

If a receive operation ends abnormally, the data size transferred to the receive FIFO at that time is written to this

register.

When the data of 7 frames are stored, the receive line is automatically masked. Therefore, the frame whose

receive result cannot be stored is not transferred to the FIFO.

The update condition of the read pointer of the receive frame size store FIFO is also valid in the test mode.

524

[MEMO]

525

CHAPTER 27 CPU INSTRUCTION SET DETAILS

This chapter provides a detailed description of the operation of each VR4102 instruction in both 32- and 64-bit

modes. The instructions are listed in alphabetical order.

27.1 INSTRUCTION NOTATION CONVENTIONS

In this chapter, all variable subfields in an instruction format (such as rs, rt, immediate, etc.) are shown in

lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in the formats of specific instructions.

For example, we use rs = base in the format for load and store instructions. Such an alias is always lower case,

since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at the end of this chapter, and the bit

encoding also accompanies each instruction.

In the instruction descriptions that follow, the Operation section describes the operation performed by each

instruction using a high-level language notation. The VR4102 can operate as either a 32- or 64-bit microprocessor

and the operation for both modes is included with the instruction description.

Special symbols used in the notation are described in Table 27-1.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

526

Table 27-1. CPU Instruction Operation Notations

Symbol Meaning

<- Assignment.

|| Bit string concatenation.

xy Replication of bit value x into a y-bit string. x is always a single-bit value.

xy:z Selection of bits y through z of bit string x. Little-endian bit notation is always used. If y is less
than z, this expression is an empty (zero length) bit string.

+ 2’s complement or floating-point addition.

- 2’s complement or floating-point subtraction.

* 2’s complement or floating-point multiplication.

div 2’s complement integer division.

mod 2’s complement modulo.

/ Floating-point division.

< 2’s complement less than comparison.

and Bit-wise logical AND.

or Bit-wise logical OR.

xor Bit-wise logical XOR.

nor Bit-wise logical NOR.

GPR [x] General-Register x. The content of GPR [0] is always zero. Attempts to alter the content of
GPR [0] have no effect.

CPR [z, x] Coprocessor unit z, general register x.

CCR [z, x] Coprocessor unit z, control register x.

COC [z] Coprocessor unit z condition signal.

BigEndianMem Big-endian mode as configured at reset (0 -> Little, 1 -> Big). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory), and the endianness of Kernel and
Supervisor mode execution.
However, this value is always 0 since the VR4102 supports the little endian order only.

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in
User mode only, and is effected by setting the RE bit of the Status register. Thus,
ReverseEndian may be computed as (SR25 and User mode).
However, this value is always 0 since the VR4102 supports the little endian order only.

BigEndianCPU The endianness for load and store instructions (0 -> Little, 1 -> Big). In User mode, this
endianness may be reversed by setting SR25. Thus, BigEndianCPU may be computed as
BigEndianMem XOR ReverseEndian.
However, this value is always 0 since the VR4102 supports the little endian order only.

T + i: Indicates the time steps between operations. Each of the statements within a time step are
defined to be executed in sequential order (as modified by conditional and loop constructs).
Operations which are marked T + i: are executed at instruction cycle i relative to the start of
execution of the instruction. Thus, an instruction which starts at time j executes operations
marked T + i: at time i + j. The interpretation of the order of execution between two instructions
or two operations which execute at the same time should be pessimistic; the order is not
defined.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

527

(1) Instruction notation examples

The following examples illustrate the application of some of the instruction notation conventions:

Example #1:
GPR [rt] <- immediate || 016

Sixteen zero bits are concatenated with an immediate value (typically 16 bits), and the 32-bit string (with
the lower 16 bits set to zero) is assigned to General-purpose register rt.

Example #2:
(immediate15)16 || immediate15...0

Bit 15 (the sign bit) of an immediate value is extended for 16 bit positions, and the result is concatenated
with bits 15 through 0 of the immediate value to form a 32-bit sign extended value.

27.2 LOAD AND STORE INSTRUCTIONS

In the VR4102 implementation, the instruction immediately following a load may use the loaded contents of the

register. In such cases, the hardware interlocks, requiring additional real cycles, so scheduling load delay slots is

still desirable, although not required for functional code.

In the load and store descriptions, the functions listed in Table 27-2 are used to summarize the handling of virtual

addresses and physical memory.

Table 27-2. Load and Store Common Functions

Function Meaning

Address Translation Uses the TLB to find the physical address given the virtual address. The function fails and an

exception is taken if the required translation is not present in the TLB.

Load Memory Uses the cache and main memory to find the contents of the word containing the specified physical

address. The low-order three bits of the address and the Access Type field indicate which of each

of the four bytes within the data word need to be returned. If the cache is enabled for this access,

the entire word is returned and loaded into the cache.

Store Memory Uses the cache, write buffer, and main memory to store the word or part of word specified as data in

the word containing the specified physical address. The low-order three bits of the address and the

Access Type field indicate which of each of the four bytes within the data word should be stored.

As shown in Table 27-3, the Access Type field indicates the size of the data item to be loaded or stored.

Regardless of access type or byte-numbering order (endianness), the address specifies the byte which has the

smallest byte address in the addressed field. This is the rightmost byte in the VR4102 since it supports the little-

endian order only.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

528

Table 27-3. Access Type Specifications for Loads/Stores

Access Type Mnemonic Value Meaning

DOUBLEWORD

SEPTIBYTE

SEXTIBYTE

QUINTIBYTE

WORD

TRIPLEBYTE

HALFWORD

BYTE

7

6

5

4

3

2

1

0

8 bytes (64 bits)

7 bytes (56 bits)

6 bytes (48 bits)

5 bytes (40 bits)

4 bytes (32 bits)

3 bytes (24 bits)

2 bytes (16 bits)

1 byte (8 bits)

The bytes within the addressed doubleword which are used can be determined directly from the access type and

the three low-order bits of the address.

27.3 JUMP AND BRANCH INSTRUCTIONS

All jump and branch instructions have an architectural delay of exactly one instruction. That is, the instruction

immediately following a jump or branch (that is, occupying the delay slot) is always executed while the target

instruction is being fetched from storage. A delay slot may not itself be occupied by a jump or branch instruction;

however, this error is not detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction during a delay slot, the hardware sets the

EPC register to point at the jump or branch instruction that precedes it. When the code is restarted, both the jump or

branch instructions and the instruction in the delay slot are reexecuted.

Because jump and branch instructions may be restarted after exceptions or interrupts, they must be restartable.

Therefore, when a jump or branch instruction stores a return link value, register r31 (the register in which the link is

stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and Link Register instruction must use a

register which contains an address whose two low-order bits are zero. If these low-order bits are not zero, an

address exception will occur when the jump target instruction is subsequently fetched.

27.4 SYSTEM CONTROL COPROCESSOR (CP0) INSTRUCTIONS

There are some special limitations imposed on operations involving CP0 that is incorporated within the CPU.

Although load and store instructions to transfer data to/from coprocessors and to move control to/from coprocessor

instructions are generally permitted by the MIPS architecture, CP0 is given a somewhat protected status since it has

responsibility for exception handling and memory management. Therefore, the move to/from coprocessor

instructions are the only valid mechanism for writing to and reading from the CP0 registers.

Several CP0 instructions are defined to directly read, write, and probe TLB entries and to modify the operating

modes in preparation for returning to User mode or interrupt-enabled states.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

529

27.5 CPU INSTRUCTION

This section describes the functions of CPU instructions in detail for both 32-bit mode and 64-bit mode. The

exception that may occur by executing each instruction is shown in the last of each instruction’s description. For

details of exceptions and their processes, see Chapter 6.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

530

ADD Add ADD

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
ADD

1 0 0 0 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:
ADD rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result. The result
is placed into general register rd. In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ (2’s complement overflow). The destination
register rd is not modified when an integer overflow exception occurs.

Operation:

32 T: GPR [rd] <- GPR [rs] + GPR [rt]

64 T: temp <- GPR [rs] + GPR [rt]

GPR [rd] <- (temp31)32 || temp31...0

Exceptions:
Integer overflow exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

531

ADDI Add Immediate ADDI

rs
ADDI

0 0 1 0 0 0
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:
ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The
result is placed into general register rt. In 64-bit mode, the operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2’s complement overflow). The destination
register rt is not modified when an integer overflow exception occurs.

Operation:

32 T: GPR [rt] <- GPR [rs] + (immediate15)16 || immediate15...0

64 T: temp <- GPR [rs] + (immediate15)48 || immediate15...0

GPR [rt] <- (temp31)32 || temp31...0

Exceptions:
Integer overflow exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

532

ADDIU Add Immediate Unsigned ADDIU

rs
ADDIU

0 0 1 0 0 1
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:
ADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The
result is placed into general register rt. No integer overflow exception occurs under any circumstances. In 64-bit
mode, the operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is that ADDIU never causes an integer
overflow exception.

Operation:

32 T: GPR [rt] <- GPR [rs] + (immediate15)16 || immediate15...0

64 T: temp <- GPR [rs] + (immediate15)48 || immediate15...0

GPR [rt] <- (temp31)32 || temp31...0

Exceptions:
None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

533

ADDU Add Unsigned ADDU

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
ADDU

1 0 0 0 0 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:
ADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result. The result
is placed into general register rd. No integer overflow exception occurs under any circumstances. In 64-bit
mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is that ADDU never causes an integer
overflow exception.

Operation:

32 T: GPR [rd] <- GPR [rs] + GPR [rt]

64 T: temp <- GPR [rs] + GPR [rt]

GPR [rd] <- (temp31)32 || temp31...0

Exceptions:
None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

534

AND And AND

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
AND

1 0 0 1 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:
AND rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise logical AND
operation. The result is placed into general register rd.

Operation:

32 T: GPR [rd] <- GPR [rs] and GPR [rt]

64 T: GPR [rd] <- GPR [rs] and GPR [rt]

Exceptions:
None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

535

ANDI And Immediate ANDI

rs
ANDI

0 0 1 1 0 0
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:
ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-wise logical
AND operation. The result is placed into general register rt.

Operation:

32 T: GPR [rt] <- 016 || (immediate and GPR [rs]15...0)

64 T: GPR [rt] <- 048 || (immediate and GPR [rs]15...0)

Exceptions:
None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

536

BC0F Branch On Coprocessor 0 False BC0F

BC
0 1 0 0 0

COPz
0 1 0 0 X X Note

BCF
0 0 0 0 0

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:
BC0F offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If coprocessor 0’s condition signal (CpCond: Status register bit-18
CH field), as sampled during the previous instruction, is false, then the program branches to the target address
with a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at least one instruction
between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition <- not SR18

T: target <- (offset15)14 || offset || 02

T+1: if condition then

PC <- PC + target

endif

64 T-1: condition <- not SR18

T: target <- (offset15)46 || offset || 02

T+1: if condition then

PC <- PC + target

endif

Exceptions:
Coprocessor unusable exception

Note See the opcode table below, or 27.6 CPU INSTRUCTION OPCODE BIT ENCODING.

Opcode Table:

31

0

30

1

29

0

28

0

27

0

26

0

25

0

24

1

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

0

BC0F

Opcode Coprocessor
number

BC sub-opcode Branch condition

CHAPTER 27 CPU INSTRUCTION SET DETAILS

537

BC0FL Branch On Coprocessor 0 False Likely BC0FL

BC
0 1 0 0 0

COPz
0 1 0 0 X X Note

BCFL
0 0 0 1 0

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:
BC0FL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of coprocessor 0’s condition line, as sampled during
the previous instruction, is false, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Because the condition line is sampled during the previous instruction, there must be at least one instruction
between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition <- not SR18

T: target <- (offset15)14 || offset || 02

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

64 T-1: condition <- not SR18

T: target <- (offset15)46 || offset || 02

T+1: if condition then

PC <- PC + target

else

NullifyCurrentlnstruction

endif

Exceptions:
Coprocessor unusable exception

Note See the opcode table below, or 27.6 CPU INSTRUCTION OPCODE BIT ENCODING.

Opcode Table:

31

0

30

1

29

0

28

0

27

0

26

0

25

0

24

1

23

0

22

0

21

0

20

0

19

0

18

0

17

1

16

0

0

BC0FL

Opcode Coprocessor
number

BC sub-opcode Branch condition

CHAPTER 27 CPU INSTRUCTION SET DETAILS

538

BC0T Branch On Coprocessor 0 True BC0T

BC
0 1 0 0 0

COPz
0 1 0 0 X X Note

BCT
0 0 0 0 1

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:
BC0T offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the coprocessor 0’s condition signal (CpCond: Status register bit-
18 CH field) is true, then the program branches to the target address, with a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at least one instruction
between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition <- SR18

T: target <- (offset15)14 || offset || 02

T+1: if condition then

PC <- PC + target

endif

64 T-1: condition <- SR18

T: target <- (offset15)46 || offset || 02

T+1: if condition then

PC <- PC + target

endif

Exceptions:
Coprocessor unusable exception

Note See the opcode table below, or 27.6 CPU INSTRUCTION OPCODE BIT ENCODING.

Opcode Table:

31

0

30

1

29

0

28

0

27

0

26

0

25

0

24

1

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

1

0

BC0T

Opcode Coprocessor
number

BC sub-opcode Branch condition

CHAPTER 27 CPU INSTRUCTION SET DETAILS

539

BC0TL Branch On Coprocessor 0 True Likely BC0TL

BC
0 1 0 0 0

COPz
0 1 0 0 X X Note

BCTL
0 0 0 1 1

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:
BC0TL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of coprocessor 0’s condition line, as sampled during
the previous instruction, is true, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Because the condition line is sampled during the previous instruction, there must be at least one instruction
between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition <- SR18

T: target <- (offset15)14 || offset || 02

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

64 T-1: condition <- SR18

T: target <- (offset15)46 || offset || 02

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:
Coprocessor unusable exception

Note See the opcode table below, or 27.6 CPU INSTRUCTION OPCODE BIT ENCODING.

Opcode Table:

31

0

30

1

29

0

28

0

27

0

26

0

25

0

24

1

23

0

22

0

21

0

20

0

19

0

18

0

17

1

16

1

0

BC0TL

Opcode Coprocessor
number

BC sub-opcode Branch condition

CHAPTER 27 CPU INSTRUCTION SET DETAILS

540

BEQ Branch On Equal BEQ

rs
BEQ

0 0 0 1 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:
BEQ rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general
register rt are compared. If the two registers are equal, then the program branches to the target address, with a
delay of one instruction.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs] = GPR [rt])

T+1: if condition then

PC <- PC + target

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs] = GPR [rt])

T+1: if condition then

PC <- PC + target

endif

Exceptions:
None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

541

BEQL Branch On Equal Likely BEQL

rs
BEQL

0 1 0 1 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:
BEQL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general
register rt are compared. If the two registers are equal, the target address is branched to, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs] = GPR [rt])

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs] = GPR [rt])

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:
None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

542

BGEZ Branch On Greater Than Or Equal To Zero BGEZ

rs
REGIMM

0 0 0 0 0 1
BGEZ

0 0 0 0 1
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:
BGEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit cleared, then
the program branches to the target address, with a delay of one instruction.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 0)

T+1: if condition then

PC <- PC + target

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0)

T+1: if condition then

PC <- PC + target

endif

Exceptions:
None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

543

BGEZAL Branch On Greater Than Or Equal To Zero And Link BGEZAL

rs
REGIMM

0 0 0 0 0 1
BGEZAL
1 0 0 0 1

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BGEZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is
placed in the link register, r31. If the contents of general register rs have the sign bit cleared, then the program
branches to the target address, with a delay of one instruction.

General register rs may not be general register r31, because such an instruction is not restartable. An attempt to
execute this instruction is not trapped, however.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 0)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

544

BGEZALL Branch On Greater Than Or Equal To Zero And Link Likely BGEZALL

rs
REGIMM

0 0 0 0 0 1
BGEZALL
1 0 0 1 1

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BGEZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is
placed in the link register, r31. If the contents of general register rs have the sign bit cleared, then the program
branches to the target address, with a delay of one instruction. General register rs may not be general register
31, because such an instruction is not restartable. An attempt to execute this instruction is not trapped, however.
If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 0)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

545

BGEZL Branch On Greater Than Or Equal To Zero Likely BGEZL

rs
REGIMM

0 0 0 0 0 1
BGEZL

0 0 0 1 1
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BGEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit cleared, then
the program branches to the target address, with a delay of one instruction. If the conditional branch is not taken,
the instruction in the branch delay slot is nullified.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 0)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

546

BGTZ Branch On Greater Than Zero BGTZ

rs
BGTZ

0 0 0 1 1 1
0

0 0 0 0 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BGTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs are compared to zero. If the
contents of general register rs have the sign bit cleared and are not equal to zero, then the program branches to
the target address, with a delay of one instruction.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 0) and (GPR [rs] z 032)

T+1: if condition then

PC <- PC + target

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0) and (GPR [rs] z 064)

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

547

BGTZL Branch On Greater Than Zero Likely BGTZL

rs
BGTZL

0 1 0 1 1 1
0

0 0 0 0 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BGTZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs are compared to zero. If the
contents of general register rs have the sign bit cleared and are not equal to zero, then the program branches to
the target address, with a delay of one instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 0) and (GPR [rs] z 032)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0) and (GPR [rs] z 064)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

548

BLEZ Branch On Less Than Or Equal To Zero BLEZ

rs
BLEZ

0 0 0 1 1 0
0

0 0 0 0 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs are compared to zero. If the
contents of general register rs have the sign bit set, or are equal to zero, then the program branches to the target
address, with a delay of one instruction.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 1) or (GPR [rs] = 032)

T+1: if condition then

PC <- PC + target

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1) or (GPR [rs] = 064)

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

549

BLEZL Branch On Less Than Or Equal To Zero Likely BLEZL

rs
BLEZL

0 1 0 1 1 0
0

0 0 0 0 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs is compared to zero. If the
contents of general register rs have the sign bit set, or are equal to zero, then the program branches to the target
address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 1) or (GPR [rs] = 032)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1) or (GPR [rs] = 064)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

550

BLTZ Branch On Less Than Zero BLTZ

rs
REGIMM

0 0 0 0 0 1
BLTZ

0 0 0 0 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit set, then the
program branches to the target address, with a delay of one instruction.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 1)

T+1: if condition then

PC <- PC + target

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1)

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

551

BLTZAL Branch On Less Than Zero And Link BLTZAL

rs
REGIMM

0 0 0 0 0 1
BLTZAL
1 0 0 0 0

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLTZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is
placed in the link register, r31. If the contents of general register rs have the sign bit set, then the program
branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not restartable. An attempt to
execute this instruction with register 31 specified as rs is not trapped, however.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 1)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

552

BLTZALL Branch On Less Than Zero And Link Likely BLTZALL

rs
REGIMM

0 0 0 0 0 1
BLTZALL
1 0 0 1 0

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLTZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is
placed in the link register, r31. If the contents of general register rs have the sign bit set, then the program
branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not restartable. An attempt to
execute this instruction with register 31 specified as rs is not trapped, however. If the conditional branch is not
taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 1)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

553

BLTZL Branch On Less Than Zero Likely BLTZL

rs
REGIMM

0 0 0 0 0 1
BLTZL

0 0 0 1 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit set, then the
program branches to the target address, with a delay of one instruction. If the conditional branch is not taken, the
instruction in the branch delay slot is nullified.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs]31 = 1)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

554

BNE Branch On Not Equal BNE

rs
BNE

0 0 0 1 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BNE rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general
register rt are compared. If the two registers are not equal, then the program branches to the target address, with
a delay of one instruction.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs] z GPR [rt])

T+1: if condition then

PC <- PC + target

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs] z GPR [rt])

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

555

BNEL Branch On Not Equal Likely BNEL

rs
BNEL

0 1 0 1 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BNEL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general
register rt are compared. If the two registers are not equal, then the program branches to the target address, with
a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target <- (offset15)14 || offset || 02

condition <- (GPR [rs] z GPR [rt])

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

64 T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs] z GPR [rt])

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

556

BREAK Breakpoint BREAK

code
SPECIAL
0 0 0 0 0 0

BREAK
0 0 1 1 0 1

31 26 25 6 5 0

6 20 6

Format:

BREAK

Description:

A breakpoint trap occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32,64 T: BreakpointException

Exceptions:

Breakpoint exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

557

CACHE Cache CACHE

base
CACHE

1 0 1 1 1 1
op offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

CACHE op, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The virtual address is translated to a physical address using the TLB, and the 5-bit sub-opcode specifies a cache
operation for that address.

If CP0 is not usable (User or Supervisor mode) and the CP0 enable bit in the Status register is clear, a
coprocessor unusable exception is taken. The operation of this instruction on any operation/cache combination
not listed below, or on a secondary cache, is undefined. The operation of this instruction on uncached addresses
is also undefined.

The Index operation uses part of the virtual address to specify a cache block.

For a primary cache of 2CACHEBITS bytes with 2LINEBITS bytes per tag, vAddrCACHEBITS...LINEBITS specifies the block.

Index Load Tag also uses vAddrLINEBITS...3 to select the doubleword for reading parity. When the CE bit of the
Status register is set, Fill Cache op uses the PErr register to store parity values into the cache.

The Hit operation accesses the specified cache as normal data references, and performs the specified operation
if the cache block contains valid data with the specified physical address (a hit). If the cache block is invalid or
contains a different address (a miss), no operation is performed.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

558

CACHE Cache CACHE
(Continued)

Write back from a primary cache goes to memory. The address to be written is specified by the cache tag and
not the translated physical address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For Index operations (where the physical
address is used to index the cache but need not match the cache tag) unmapped addresses may be used to
avoid TLB exceptions. This operation never causes a TLB Modified exception.

Bits 17...16 of the instruction specify the cache as follows:

Code Name Cache

0 I Primary instruction

1 D Primary data

2, 3 NA Reserved (undefined)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

559

CACHE Cache CACHE
(Continued)

Bits 20...18 (this value is listed under the Code column) of the instruction specify the operation as follows:

Code Cache Name Operation

0 I Index_Invalidate Set the cache state of the cache block to Invalid.

0 D Index_Write_Back
Invalidate

Examine the cache state and W bit of the primary data cache block at the index
specified by the virtual address. If the state is not Invalid and the W bit is set, then
write back the block to memory. The address to write is taken from the primary
cache tag. Set cache state of primary cache block to Invalid.

1 I, D Index_Load_Tag Read the tag for the cache block at the specified index and place it into the TagLo
CP0 registers, ignoring parity errors. Also load the data parity bits into the ECC
register.

2 I, D Index_Store_Tag Write the tag for the cache block at the specified index from the TagLo and TagHi
CP0 registers.

3 D Create_Dirty_

Exclusive

This operation is used to avoid loading data needlessly from memory when writing
new contents into an entire cache block. If the cache block does not contain the
specified address, and the block is dirty, write it back to the memory. In all cases,
set the cache state to Dirty.

4 I, D Hit_Invalidate If the cache block contains the specified address, mark the cache block invalid.

5 D Hit_Write_Back
Invalidate

If the cache block contains the specified address, write back the data if it is dirty, and
mark the cache block invalid.

5 I Fill Fill the primary instruction cache block from memory. If the CE bit of the Status
register is set, the contents of the ECC register is used instead of the computed
parity bits for addressed doubleword when written to the instruction cache.

6 D Hit_Write_Back If the cache block contains the specified address and the W bit is set, write back the
data to memory and clear the W bit.

6 I Hit_Write_Back If the cache block contains the specified address, write back the data unconditionally.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

560

CACHE Cache CACHE
(Continued)

Operation:

32, 64 T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)

Exceptions:

Coprocessor unusable exception

TLB Refill exception

TLB Invalid exception

Bus Error exception

Address Error exception

Cache Error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

561

DADD Doubleword Add DADD

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DADD

1 0 1 1 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DADD rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result. The result
is placed into general register rd.

An overflow exception occurs if the carries out of bits 62 and 63 differ (2’s complement overflow). The destination
register rd is not modified when an integer overflow exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: GPR [rd] <- GPR [rs] + GPR [rt]

Exceptions:

Integer overflow exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

562

DADDI Doubleword Add Immediate DADDI

rs
DADDI

0 1 1 0 0 0
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

DADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The
result is placed into general register rt.

An overflow exception occurs if carries out of bits 62 and 63 differ (2’s complement overflow). The destination
register rt is not modified when an integer overflow exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: GPR [rt] <- GPR [rs] + (immediate15)48 || immediate15...0

Exceptions:

Integer overflow exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

563

DADDIU Doubleword Add Immediate Unsigned DADDIU

rs
DADDIU

0 1 1 0 0 1
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

DADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The
result is placed into general register rt. No integer overflow exception occurs under any circumstances.

The only difference between this instruction and the DADDI instruction is that DADDIU never causes an overflow
exception.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: GPR [rt] <- GPR [rs] + (immediate15)48 || immediate15...0

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

564

DADDU Doubleword Add Unsigned DADDU

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DADDU

1 0 1 1 0 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result. The result
is placed into general register rd.

No overflow exception occurs under any circumstances.

The only difference between this instruction and the DADD instruction is that DADDU never causes an overflow
exception.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: GPR [rd] <- GPR [rs] + GPR [rt]

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

565

DDIV Doubleword Divide DDIV

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0
DDIV

0 1 1 1 1 0

31 26 25 21 20 16 15 6 5 0

6 5 5 10 6

Format:

DDIV rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as 2’s
complement values. No overflow exception occurs under any circumstances, and the result of this operation is
undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded into special register LO, and the
remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.
Correct operation requires separating reads of HI or LO from writes by two or more instructions. This is defined in
this manner to take account of the VR4000TM hazards (for code compatibility) as well as the VR4100’s own
hazards.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: LO <- GPR [rs] div GPR [rt]

HI <- GPR [rs] mod GPR [rt]

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

566

DDIVU Doubleword Divide Unsigned DDIVU

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DDIVU
0 1 1 1 1 1

6 5

6

Format:

DDIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as
unsigned values. No integer overflow exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

This instruction may be followed by additional instructions to check for a zero divisor, inserted by the programmer.

When the operation completes, the quotient word of the double result is loaded into special register LO, and the
remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.
Correct operation requires separating reads of HI or LO from writes by two or more instructions.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: LO <- (0 || GPR [rs]) div (0 || GPR [rt])

HI <- (0 || GPR [rs]) mod (0 || GPR [rt])

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

567

DIV Divide DIV

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DIV
0 1 1 0 1 0

6 5

6

Format:

DIV rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as 2’s
complement values. No overflow exception occurs under any circumstances, and the result of this operation is
undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded into special register LO, and the
remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.
Correct operation requires separating reads of HI or LO from writes by two or more instructions.

Operation:

32 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: LO <- GPR [rs] div GPR [rt]

HI <- GPR [rs] mod GPR [rt]

64 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: q <- GPR [rs]31..0 div GPR [rt]31..0

r <- GPR [rs]31..0 mod GPR [rt]31..0

LO <- (q31)
32 || q31..0

HI <- (r31)
32 || r31..0

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

568

DIVU Divide Unsigned DIVU

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DIVU
0 1 1 0 1 1

6 5

6

Format:

DIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as
unsigned values. No integer overflow exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor.

When the operation completes, the quotient word of the double result is loaded into special register LO, and the
remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.
Correct operation requires separating reads of HI or LO from writes by two or more instructions.

Operation:

32 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: LO <- (0 || GPR [rs]) div (0 || GPR [rt])

HI <- (0 || GPR [rs]) mod (0 || GPR [rt])

64 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: q <- (0 || GPR [rs]31..0) div (0 || GPR [rt]31..0)

r <- (0 || GPR [rs]31..0) mod (0 || GPR [rt]31..0)

LO <- (q31)
32 || q31..0

HI <- (r31)
32 || r31..0

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

569

DMADD16 Doubleword Multiply and Add 16-bit integer DMADD16

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DMADD16
1 0 1 0 0 1

6 5

6

Format:

DMADD16 rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 16-bit 2’s complement values.
The operand[62:15] must be valid 15-bit, sign-extended values. If not, the result is unpredictable.

This multiplied result and the 64-bit data joined of special register LO is added to form the result as a signed
integer. When the operation completes, the doubleword result is loaded into special register LO.

No integer overflow exception occurs under any circumstances.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

The following table shows hazard cycles between DMADD16 and other instructions.

Instruction sequence No. of cycles

MULT/MULTU -> DMADD16 1 Cycle

DMULT/DMULTU -> DMADD16 4 Cycles

DIV/DIVU -> DMADD16 36 Cycles

DDIV/DDIVU -> DMADD16 68 Cycles

MFHI/MFLO -> DMADD16 2 Cycles

MADD16 -> DMADD16 0 Cycles

DMADD16 -> DMADD16 0 Cycles

CHAPTER 27 CPU INSTRUCTION SET DETAILS

570

DMADD16 Doubleword Multiply and Add 16-bit integer DMADD16
(Continued)

Operation:

64 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: temp <- GPR [rs] * GPR [rt]

temp <- temp + LO

LO <- temp

HI <- undefined

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

571

DMFC0 Doubleword Move From System Control Coprocessor DMFC0

DMF
0 0 0 0 1

COP0
0 1 0 0 0 0

rt rd

31 26 25 21 20 16 15 0

6 5 5 5

0
0 0 0 0 0 0 0 0 0 0 0

11 10

11

Format:

DMFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

This operation is defined for the VR4102 operating in 64-bit mode and in 32-bit kernel mode. Execution of this
instruction in 32-bit user or supervisor mode causes a reserved instruction exception. All 64-bits of the general
register destination are written from the coprocessor register source. The operation of DMFC0 on a 32-bit
coprocessor 0 register is undefined.

Operation:

64 T: data <- CPR [0, rd]

T+1: GPR [rt] <- data

Exceptions:

Coprocessor unusable exception (user mode and supervisor mode if CP0 not enabled)

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

572

DMTC0 Doubleword Move To System Control Coprocessor DMTC0

DMT
0 0 1 0 1

COP0
0 1 0 0 0 0

rt rd

31 26 25 21 20 16 15 0

6 5 5 5

0
0 0 0 0 0 0 0 0 0 0 0

11 10

11

Format:

DMTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of the CP0.

This operation is defined for the VR4102 operating in 64-bit mode or in 32-bit kernel mode. Execution of this
instruction in 32-bit user or supervisor mode causes a reserved instruction exception.

All 64-bits of the coprocessor 0 register are written from the general register source. The operation of DMTC0 on
a 32-bit coprocessor 0 register is undefined.

Because the state of the virtual address translation system may be altered by this instruction, the operation of
load instructions, store instructions, and TLB operations immediately prior to and after this instruction are
undefined.

Operation:

64 T: data <- GPR [rt]

T+1: CPR [0, rd] <- data

Exceptions:

Coprocessor unusable exception (In user and supervisor mode if CP0 not enabled)

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

573

DMULT Doubleword Multiply DMULT

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DMULT
0 1 1 1 0 0

6 5

6

Format:

DMULT rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 2’s complement values. No
integer overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of HI or LO from writes by a minimum of two other instructions.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: t <- GPR [rs] * GPR [rt]

LO <- t63..0

HI <- t127..64

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

574

DMULTU Doubleword Multiply Unsigned DMULTU

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DMULTU
0 1 1 1 0 1

6 5

6

Format:

DMULTU rs, rt

Description:

The contents of general register rs and the contents of general register rt are multiplied, treating both operands as
unsigned values. No overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of HI or LO from writes by a minimum of two instructions.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: t <- (0 || GPR [rs]) * (0 || GPR [rt])

LO <- t63..0

HI <- t127..64

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

575

DSLL Doubleword Shift Left Logical DSLL

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSLL

1 1 1 0 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low-order bits. The result is
placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: s <- 0 || sa

GPR [rd] <- GPR [rt](63 - s)..0 || 0
s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

576

DSLLV Doubleword Shift Left Logical Variable DSLLV

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DSLLV

0 1 0 1 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSLLV rd, rt, rs

Description:

The contents of general register rt are shifted left by the number of bits specified by the low-order six bits
contained in general register rs, inserting zeros into the low-order bits. The result is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: s <- GPR [rs]5..0

GPR [rd] <- GPR [rt](63 - s)..0 || 0
s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

577

DSLL32 Doubleword Shift Left Logical + 32 DSLL32

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSLL32

1 1 1 1 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSLL32 rd, rt, sa

Description:

The contents of general register rt are shifted left by 32 + sa bits, inserting zeros into the low-order bits. The
result is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: s <- 1 || sa

GPR [rd] <- GPR [rt](63 - s)..0 || 0
s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

578

DSRA Doubleword Shift Right Arithmetic DSRA

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSRA

1 1 1 0 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-extending the high-order bits. The result is
placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: s <- 0 || sa

GPR [rd] <- (GPR [rt]63)
s || GPR [rt] 63..s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

579

DSRAV Doubleword Shift Right Arithmetic Variable DSRAV

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DSRAV

0 1 0 1 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order six bits of
general register rs, sign-extending the high-order bits. The result is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: s <- GPR [rs]5..0

GPR [rd] <- (GPR [rt]63)
s || GPR [rt] 63..s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

580

DSRA32 Doubleword Shift Right Arithmetic + 32 DSRA32

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSRA32

1 1 1 1 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRA32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, sign-extending the high-order bits. The result
is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: s <- 1 || sa

GPR [rd] <- (GPR [rt]63)
s || GPR [rt]63..s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

581

DSRL Doubleword Shift Right Logical DSRL

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSRL

1 1 1 0 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the high-order bits. The result is
placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: s <- 0 || sa

GPR [rd] <- 0s || GPR [rt]63..s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

582

DSRLV Doubleword Shift Right Logical Variable DSRLV

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DSRLV

0 1 0 1 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order six bits of
general register rs, inserting zeros into the high-order bits. The result is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: s <- GPR [rs]5..0

GPR [rd] <- 0s || GPR [rt]63..s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

583

DSRL32 Doubleword Shift Right Logical + 32 DSRL32

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSRL32

1 1 1 1 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRL32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, inserting zeros into the high-order bits. The
result is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: s <- 1 || sa

GPR [rd] <- 0s || GPR [rt]63..s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

584

DSUB Doubleword Subtract DSUB

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DSUB

1 0 1 1 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result. The
result is placed into general register rd.

The only difference between this instruction and the DSUBU instruction is that DSUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 62 and 63 differ (2’s complement overflow).
The destination register rd is not modified when an integer overflow exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: GPR [rd] <- GPR [rs] - GPR [rt]

Exceptions:

Integer overflow exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

585

DSUBU Doubleword Subtract Unsigned DSUBU

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DSUBU

1 0 1 1 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result. The
result is placed into general register rd.

The only difference between this instruction and the DSUB instruction is that DSUBU never traps on overflow. No
integer overflow exception occurs under any circumstances.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: GPR [rd] <- GPR [rs] - GPR [rt]

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

586

ERET Exception Return ERET

CO

1

COP0
0 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERET
0 1 1 0 0 0

31 26 25 24 6 5 0

6 1 19 6

Format:

ERET

Description:

ERET is the VR4102 instruction for returning from an interrupt, exception, or error trap. Unlike a branch or jump
instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR2 = 1), then load the PC from the ErrorEPC register and clear the
ERL bit of the Status register (SR2). Otherwise (SR2 = 0), load the PC from the EPC register, and clear the EXL
bit of the Status register (SR1).

Operation:

32, 64 T: if SR2 = 1 then

PC <- ErrorEPC

SR <- SR31..3 || 0 || SR1..0

else

PC <-EPC

SR <- SR31..2 || 0 || SR0

endif

Exceptions:

Coprocessor unusable exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

587

HIBERNATE Hibernate HIBERNATE

CO

1

COP0
0 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HIBERNATE
1 0 0 0 1 1

31 26 25 24 6 5 0

6 1 19 6

Format:

HIBERNATE

Description:

HIBERNATE instruction starts mode transition from Fullspeed mode to Hibernate mode.

When the HIBERNATE instruction finishes the WB stage, the VR4102 wait by the SysAD bus is idle state, after
then the internal clocks and the system interface clocks will shut down, thus freezing the pipeline.

Once the VR4102 is in Hibernate mode, the Cold Reset sequence will cause the VR4102 to exit Hibernate mode
and to enter Fullspeed mode.

Operation:

32, 64 T:

 T+1: Hibernate operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Chapter 15 for details about the operation of the peripheral units at mode transition.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

588

J Jump J

J
0 0 0 0 1 0

target

31 26 25 0

6 26

Format:

J target

Description:

The 26-bit target address is shifted left two bits and combined with the high-order four bits of the address of the
delay slot. The program unconditionally jumps to this calculated address with a delay of one instruction.

Operation:

32 T: temp <- target

T+1: PC <- PC31..28 || temp || 02

64 T: temp <- target

T+1: PC <- PC63..28 || temp || 02

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

589

JAL Jump And Link JAL

JAL
0 0 0 0 1 1

target

31 26 25 0

6 26

Format:

JAL target

Description:

The 26-bit target address is shifted left two bits and combined with the high-order four bits of the address of the
delay slot. The program unconditionally jumps to this calculated address with a delay of one instruction. The
address of the instruction after the delay slot is placed in the link register, r31.

Operation:

32 T: temp <- target

GPR [31] <- PC + 8

T+1: PC <- PC31..28 || temp || 02

64 T: temp <- target

GPR [31] <- PC + 8

T+1: PC <- PC63..28 || temp || 02

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

590

JALR Jump And Link Register JALR

rs
SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0

rd
0

0 0 0 0 0
JALR

0 0 1 0 0 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

JALR rs

JALR rd, rs

Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of one instruction.
The address of the instruction after the delay slot is placed in general register rd. The default value of rd, if
omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction does not have the same effect when
re-executed. However, an attempt to execute this instruction is not trapped, and the result of executing such an
instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register instruction must specify a target register (rs)
which contains an address whose two low-order bits are zero. If these low-order bits are not zero, an address
error exception will occur when the jump target instruction is subsequently fetched.

Operation:

32,64 T: temp <- GPR [rs]

GPR [rd] <- PC + 8

 T+1: PC <- temp

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

591

JR Jump Register JR

rs
SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 0

6 5 15

JR
0 0 1 0 0 0

6 5

6

Format:

JR rs

Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of one instruction.

Since instructions must be word-aligned, a Jump Register instruction must specify a target register (rs) which
contains an address whose two low-order bits are zero. If these low-order bits are not zero, an address error
exception will occur when the jump target instruction is subsequently fetched.

Operation:

32,64 T: temp <- GPR [rs]

 T+1: PC <- temp

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

592

LB Load Byte LB

base
LB

1 0 0 0 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the byte at the memory location specified by the effective address are sign-extended and loaded
into general register rt.

Operation:

32 T: vAddr <- ((offset15)
16 || offset15..0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1..3 || (pAddr2..0 xor ReverseEndian3)

mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte <- vAddr2..0 xor BigEndianCPU3

GPR [rt] <- (mem7 + 8* byte)
24 || mem7 + 8* byte..8* byte

64 T: vAddr <- ((offset15)
48 || offset15..0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1..3 || (pAddr2..0 xor ReverseEndian3)

mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte <- vAddr2..0 xor BigEndianCPU3

GPR [rt] <- (mem7 + 8* byte)
56 || mem7 + 8* byte..8* byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

593

LBU Load Byte Unsigned LBU

base
LBU

1 0 0 1 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LBU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the byte at the memory location specified by the effective address are zero-extended and loaded
into general register rt.

Operation:

32 T: vAddr <- ((offset15)
16 || offset15..0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1..3 || (pAddr2..0 xor ReverseEndian3)

mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte <- vAddr2..0 xor BigEndianCPU3

GPR [rt] <- 024 || mem7 + 8* byte..8* byte

64 T: vAddr <- ((offset15)
48 || offset15..0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1..3 || (pAddr2..0 xor ReverseEndian3)

mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte <- vAddr2..0 xor BigEndianCPU3

GPR [rt] <- 056 || mem7 + 8* byte..8* byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

594

LD Load Doubleword LD

base
LD

1 1 0 1 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the 64-bit doubleword at the memory location specified by the effective address are loaded into
general register rt.

If any of the three least-significant bits of the effective address are non-zero, an address error exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: vAddr <- ((offset15)
48 || offset15..0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

data <- LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR [rt] <- data

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

595

LDL Load Doubleword Left LDL

base
LDL

0 1 1 0 1 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LDL rt, offset (base)

Description:

This instruction can be used in combination with the LDR instruction to load a register with eight consecutive
bytes from memory, when the bytes cross a doubleword boundary. LDL loads the left portion of the register with
the appropriate part of the high-order doubleword; LDR loads the right portion of the register with the appropriate
part of the low-order doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the doubleword in memory which contains
the specified starting byte. From one to eight bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-order (left-most) byte of
the register; then it loads bytes from memory into the register until it reaches the low-order byte of the doubleword
in memory. The least-significant (right-most) byte(s) of the register will not be changed.

address 8

address 0

memory

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0 A B C D E F G H

12 11 10 9 8 F G H

before

after

$24

$24

register

LDL $24, 12 ($0)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

596

LDL Load Doubleword Left LDL
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed
between an immediately preceding load instruction which specifies register rt and a following LDL (or LDR)
instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: vAddr <- ((offset15)
48 || offset15..0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1..3 || (pAddr2..0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddrPSIZE - 1..3 || 0
3

endif

byte <- vAddr2..0 xor BigEndianCPU3

mem <- LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPR [rt] <- mem7 + 8* byte..0 || GPR [rt]55 - 8* byte..0

CHAPTER 27 CPU INSTRUCTION SET DETAILS

597

LDL Load Doubleword Left LDL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LDL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

LDL

vAddr2..0 BigEndianCPU = 0

destination type offset

(LEM)

0

1

2

3

4

5

6

7

P B C D E F G H

O P C D E F G H

N O P D E F G H

M N O P E F G H

L M N O P F G H

K L M N O P G H

J K L M N O P H

I J K L M N O P

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

LEM Little-endian memory (BigEndianMem = 0)

Type AccessType (see Table 3-2) sent to memory

Offset pAddr2..0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

598

LDR Load Doubleword Right LDR

base
LDR

0 1 1 0 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LDR rt, offset (base)

Description:

This instruction can be used in combination with the LDL instruction to load a register with eight consecutive
bytes from memory, when the bytes cross a doubleword boundary. LDR loads the right portion of the register
with the appropriate part of the low-order doubleword; LDL loads the left portion of the register with the
appropriate part of the high-order doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the doubleword in memory which contains
the specified starting byte. From one to eight bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-order (right-most) byte of
the register; then it loads bytes from memory into the register until it reaches the high-order byte of the
doubleword in memory. The most significant (left-most) byte(s) of the register will not be changed.

address 8

address 0

memory

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0 A B C D E F G H

A B C D E 7 6 5

before

after

$24

$24

register

LDR $24, 5 ($0) register

CHAPTER 27 CPU INSTRUCTION SET DETAILS

599

LDR Load Doubleword Right LDR
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed
between an immediately preceding load instruction which specifies register rt and a following LDR (or LDL)
instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: vAddr <- ((offset15)
48 || offset15..0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1..3 || (pAddr2..0 xor ReverseEndian3)

if BigEndianMem = 1 then

pAddr <- pAddrPSIZE - 1..3 || 0
3

endif

byte <- vAddr2..0 xor BigEndianCPU3

mem <- LoadMemory (uncached, DOUBLEWORD-byte, pAddr, vAddr, DATA)

GPR [rt] <- GPR [rt]63..64 – 8 * byte || mem63..8 * byte

CHAPTER 27 CPU INSTRUCTION SET DETAILS

600

LDR Load Doubleword Right LDR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LDR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

LDR

vAddr2..0 BigEndianCPU = 0

destination type offset

(LEM)

0

1

2

3

4

5

6

7

I J K L M N O P

A I J K L M N O

A B I J K L M N

A B C I J K L M

A B C D I J K L

A B C D E I J K

A B C D E F I J

A B C D E F G I

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7

LEM Little-endian memory (BigEndianMem = 0)

Type AccessType (see Table 3-2) sent to memory

Offset pAddr2..0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

601

LH Load Halfword LH

base
LH

1 0 0 0 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the halfword at the memory location specified by the effective address are sign-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

32 T: vAddr <- ((offset15)
16 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU2 || 0)

GPR [rt] <- (mem15 + 8 * byte)
16 || mem15 + 8 * byte...8 * byte

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU2 || 0)

GPR [rt] <- (mem15 + 8 * byte)
48 || mem15 + 8 * byte...8 * byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

602

LHU Load Halfword Unsigned LHU

base
LHU

1 0 0 1 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LHU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the halfword at the memory location specified by the effective address are zero-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

32 T: vAddr <- ((offset15)
16 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU2 || 0)

GPR [rt] <- 016 || mem15 + 8 * byte...8 * byte

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU2 || 0)

GPR [rt] <- 048 || mem15 + 8 * byte...8 * byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus Error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

603

LUI Load Upper Immediate LUI

0
0 0 0 0 0

LUI
0 0 1 1 1 1

rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LUI rt, immediate

Description:

The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of zeros. The result is placed into general
register rt. In 64-bit mode, the loaded word is sign-extended.

Operation:

32 T: GPR [rt] <- immediate || 016

64 T: GPR [rt] <- (immediate15)
32 || immediate || 016

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

604

LW Load Word LW

base
LW

1 0 0 0 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the word at the memory location specified by the effective address are loaded into general
register rt. In 64-bit mode, the loaded word is sign-extended.

If either of the two least-significant bits of the effective address is non-zero, an address error exception occurs.

Operation:

32 T: vAddr <- ((offset15)
16 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian || 02))

mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU || 02)

GPR [rt] <- mem31 + 8 * byte...8 * byte

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian || 02))

mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU || 02)

GPR [rt] <- (mem31 + 8 * byte)
32 || mem31 + 8 * byte...8 * byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

605

LWL Load Word Left LWL

base
LWL

1 0 0 0 1 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LWL rt, offset (base)

Description:

This instruction can be used in combination with the LWR instruction to load a register with four consecutive bytes
from memory, when the bytes cross a word boundary. LWL loads the left portion of the register with the
appropriate part of the high-order word; LWR loads the right portion of the register with the appropriate part of the
low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the word in memory which contains the
specified starting byte. From one to four bytes will be loaded, depending on the starting byte specified. In 64-bit
mode, the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-order (left-most) byte of
the register; then it loads bytes from memory into the register until it reaches the low-order byte of the word in
memory. The least-significant (right-most) byte(s) of the register will not be changed.

address 4

address 0

memory

7 6 5 4

3 2 1 0 before

after

$24

$24

register

LWL $24, 4 ($0)

A B C D

4 B C D

CHAPTER 27 CPU INSTRUCTION SET DETAILS

606

LWL Load Word Left LWL
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed
between an immediately preceding load instruction which specifies register rt and a following LWL (or LWR)
instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

Operation:

32 T: vAddr <- ((offset15)
16 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddrPSIZE - 1...2 || 0
2

endif

byte <- vAddr1...0 xor BigEndianCPU2

word <- vAddr2 xor BigEndianCPU

mem <- LoadMemory (uncached, byte, pAddr, vAddr, DATA)

temp <- mem32 * word + 8 * byte + 7...32 * word || GPR [rt]23 – 8 * byte...0

GPR [rt] <- temp

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddrPSIZE - 1...2 || 0
2

endif

byte <- vAddr1...0 xor BigEndianCPU2

word <- vAddr2 xor BigEndianCPU

mem <- LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

temp <- mem32 * word + 8 * byte + 7...32 * word || GPR [rt]23 – 8 * byte...0

GPR [rt] <- (temp31)32 || temp

CHAPTER 27 CPU INSTRUCTION SET DETAILS

607

LWL Load Word Left LWL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LWL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

LWL

vAddr2..0 BigEndianCPU = 0

destination type offset

(LEM)

0

1

2

3

4

5

6

7

S S S S P F G H

S S S S O P G H

S S S S N O P H

S S S S M N O P

S S S S L F G H

S S S S K L G H

S S S S J K L H

S S S S I J K L

0

1

2

3

0

1

2

3

0

0

0

0

4

4

4

4

LEM Little-endian memory (BigEndianMem = 0)

Type AccessType (see Table 3-2) sent to memory

Offset pAddr2...0 sent to memory

S sign-extend of destination31

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

608

LWR Load Word Right LWR

base
LWR

1 0 0 1 1 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LWR rt, offset (base)

Description:

This instruction can be used in combination with the LWL instruction to load a register with four consecutive bytes
from memory, when the bytes cross a word boundary. LWR loads the right portion of the register with the
appropriate part of the low-order word; LWL loads the left portion of the register with the appropriate part of the
high-order word.

The LWR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the word in memory which contains the
specified starting byte. From one to four bytes will be loaded, depending on the starting byte specified. In 64-bit
mode, the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-order (right-most) byte of
the register; then it loads bytes from memory into the register until it reaches the high-order byte of the word in
memory. The most significant (left-most) byte(s) of the register will not be changed.

address 4

address 0

memory

7 6 5 4

3 2 1 0 before

after

$24

register

LWR $24, 1 ($0)

A B C D

A 3 2 1 $24

CHAPTER 27 CPU INSTRUCTION SET DETAILS

609

LWR Load Word Right LWR
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed
between an immediately preceding load instruction which specifies register rt and a following LWR (or LWL)
instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

Operation:

32 T: vAddr <- ((offset15)
16 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 1 then

pAddr <- pAddrPSIZE - 1...3 || 0
3

endif

byte <- vAddr1...0 xor BigEndianCPU2

word <- vAddr2 xor BigEndianCPU

mem <- LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

temp <- GPR [rt]31...32 – 8 * byte || mem31 + 32 * word...32 * word + 8 * byte

GPR [rt] <- temp

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 1 then

pAddr <- pAddrPSIZE - 1...3 || 0
3

endif

byte <- vAddr1...0 xor BigEndianCPU2

word <- vAddr2 xor BigEndianCPU

mem <- LoadMemory (uncached, WORD-byte, pAddr, vAddr, DATA)

temp <- GPR [rt]31...32 – 8 * byte || mem31 + 32 * word...32 * word + 8 * byte

GPR [rt] <- (temp31)
32 || temp

CHAPTER 27 CPU INSTRUCTION SET DETAILS

610

LWR Load Word Right LWR
(Continued)

Given a word in a register and a word in memory, the operation of LWR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

LWR

vAddr2..0 BigEndianCPU = 0

destination type offset

(LEM)

0

1

2

3

4

5

6

7

S S S S M N O P

S S S S E M N O

S S S S E F M N

S S S S E F G M

S S S S I J K L

S S S S E I J K

S S S S E F I J

S S S S E F G I

3

2

1

0

3

2

1

0

0

1

2

3

4

5

6

7

LEM Little-endian memory (BigEndianMem = 0)

Type AccessType (see Table 3-2) sent to memory

Offset pAddr2...0 sent to memory

S sign-extend of destination31

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

611

LWU Load Word Unsigned LWU

base
LWU

1 0 1 1 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LWU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the word at the memory location specified by the effective address are loaded into general
register rt. The loaded word is zero-extended.

If either of the two least-significant bits of the effective address is non-zero, an address error exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

32 T: vAddr <- ((offset15)
16 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian || 02))

mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU || 02)

GPR [rt] <- 032 || mem31 + 8 * byte...8 * byte

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian || 02))

mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU || 02)

GPR [rt] <- 032 || mem31 + 8 * byte...8 * byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

612

MADD16 Multiply and Add 16-bit integer MADD16

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DMADD16
1 0 1 0 0 0

6 5

6

Format:

MADD16 rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 16-bit 2’s complement values.
The operand[62:15] must be valid 15-bit, sign-extended values. If not, the results is unpredictable.

This multiplied result and the 64-bit data joined special register HI to LO are added to form the result.

No integer overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register HI.

The following Table are hazard cycles between MADD16 and other instructions.

Instruction sequence No. of cycles

MULT/MULTU -> MADD16 1 Cycle

DMULT/DMULTU -> MADD16 4 Cycles

DIV/DIVU -> MADD16 36 Cycles

DDIV/DDIVU -> MADD16 68 Cycles

MFHI/MFLO -> MADD16 2 Cycles

DMADD16 -> MADD16 0 Cycles

MADD16 -> MADD16 0 Cycles

Operation:

32, 64 T: temp1<- GPR [rs] * GPR [rt]

temp2<- temp1 + (HI31...0 || LO31...0)

LO <- (temp131)
32 || temp231...0

HI <- (temp263)
32 || temp263...32

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

613

MFC0 Move From System Control Coprocessor MFC0

MF
0 0 0 0 0

COP0
0 1 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 5

11 10

11

rd

Format:

MFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

When using a register used by the MFC0 by means of instructions before and after it, refer to Chapter 28 and
place the instructions in the appropriate location.

Operation:

32 T: data <- CPR [0, rd]

T+1: GPR [rt] <- data

64 T: data <- CPR [0, rd]

T+1: GPR [rt] <- (data31)
32 || data31...0

Exceptions:

Coprocessor unusable exception (user and supervisor mode if CP0 not enabled)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

614

MFHI Move From HI MFHI

0
0 0 0 0 0 0 0 0 0 0

SPECIAL
0 0 0 0 0 0

31 26 25 11 1016 15 0

6 10 5 6

rd
0

0 0 0 0 0
MFHI

0 1 0 0 0 0

5

6 5

Format:

MFHI rd

Description:

The contents of special register HI are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two instructions which follow a MFHI instruction may
not be any of the instructions which modify the HI register: MULT, MULTU, DIV, DIVU, MTHI, DMULT, DMULTU,
DDIV, DDIVU.

Operation:

32, 64 T: GPR [rd] <- HI

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

615

MFLO Move From LO MFLO

0
0 0 0 0 0 0 0 0 0 0

SPECIAL
0 0 0 0 0 0

31 26 25 11 1016 15 0

6 10 5 6

rd
0

0 0 0 0 0
MFLO

0 1 0 0 1 0

5

6 5

Format:

MFLO rd

Description:

The contents of special register LO are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two instructions which follow a MFLO instruction may
not be any of the instructions which modify the LO register: MULT, MULTU, DIV, DIVU, MTLO, DMULT,
DMULTU, DDIV, DDIVU.

Operation:

32, 64 T: GPR [rd] <- LO

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

616

MTC0 Move To Coprocessor0 MTC0

0
0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

31 26 25 11 1016 15 0

6 1155

rt rd
MT

0 0 1 0 0

5

21 20

Format:

MTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of coprocessor 0.

Because the state of the virtual address translation system may be altered by this instruction, the operation of
load instructions, store instructions, and TLB operations immediately prior to and after this instruction are
undefined.

When using a register used by the MTC0 by means of instructions before and after it, refer to Chapter 28 and
place the instructions in the appropriate location.

Operation:

32, 64 T: data <- GPR [rt]

 T+1: CPR [0, rd] <- data

Exceptions:

Coprocessor unusable exception (user and supervisor mode if CP0 not enabled)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

617

MTHI Move To HI MTHI

rs
SPECIAL
0 0 0 0 0 0

MTHI
0 1 0 0 0 1

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 6 5 0

6 5 615

Format:

MTHI rs

Description:

The contents of general register rs are loaded into special register HI.

If a MTHI operation is executed following a MULT, MULTU, DIV, or DIVU instruction, but before any MFLO, MFHI,
MTLO, or MTHI instructions, the contents of special register HI are undefined.

Operation:

32, 64 T-2: HI <- undefined

 T-1: HI <- undefined

 T: HI <- GPR [rs]

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

618

MTLO Move To LO MTLO

rs
SPECIAL
0 0 0 0 0 0

MTLO
0 1 0 0 1 1

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 6 5 0

6 5 615

Format:

MTLO rs

Description:

The contents of general register rs are loaded into special register LO.

If an MTLO operation is executed following a MULT, MULTU, DIV, or DIVU instruction, but before any MFLO,
MFHI, MTLO, or MTHI instructions, the contents of special register LO are undefined.

Operation:

32, 64 T-2: LO <- undefined

 T-1: LO <- undefined

 T: LO <- GPR [rs]

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

619

MULT Multiply MULT

rs
SPECIAL
0 0 0 0 0 0

MULT
0 1 1 0 0 0

0
0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 6 5 0

6 5 610

rt

5

16 15

Format:

MULT rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 32-bit 2’s complement values.
No integer overflow exception occurs under any circumstances. In 64-bit mode, the operands must be valid 32-
bit, sign-extended values.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of HI or LO from writes by a minimum of two other instructions.

Operation:

32 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: t <- GPR [rs] * GPR [rt]

LO <- t31...0

HI <- t63...32

64 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: t <- GPR [rs]31...0 * GPR [rt]31...0

LO <- (t31)
32 || t31...0

HI <- (t63)
32 || t63...32

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

620

MULTU Multiply Unsigned MULTU

rs
SPECIAL
0 0 0 0 0 0

MULTU
0 1 1 0 0 1

0
0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 6 5 0

6 5 610

rt

5

16 15

Format:

MULTU rs, rt

Description:

The contents of general register rs and the contents of general register rt are multiplied, treating both operands as
unsigned values. No overflow exception occurs under any circumstances. In 64-bit mode, the operands must be
valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of HI or LO from writes by a minimum of two instructions.

Operation:

32 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: t <- (0 || GPR [rs]) * (0 || GPR [rt])

LO <- t31...0

HI <- t63...32

64 T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: t <- (0 || GPR [rs]31...0) * (0 || GPR [rt]31...0)

LO <- (t31)
32 || t31...0

HI <- (t63)
32 || t63...32

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

621

NOR Nor NOR

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
NOR

1 0 0 1 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

NOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise logical NOR
operation. The result is placed into general register rd.

Operation:

32, 64 T: GPR [rd] <- GPR [rs] nor GPR [rt]

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

622

OR Or OR

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
OR

1 0 0 1 0 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

OR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise logical OR
operation. The result is placed into general register rd.

Operation:

32, 64 T: GPR [rd] <- GPR [rs] or GPR [rt]

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

623

ORI Or Immediate ORI

rs
ORI

0 0 1 1 0 1
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

ORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-wise logical
OR operation. The result is placed into general register rt.

Operation:

32 T: GPR [rt] <- GPR [rs]31...16 || (immediate or GPR [rs]15...0)

64 T: GPR [rt] <- GPR [rs]63...16 || (immediate or GPR [rs]15...0)

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

624

SB Store Byte SB

base
SB

1 0 1 0 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The least-significant byte of register rt is stored at the effective address.

Operation:

32 T: vAddr <- ((offset15)
16 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian3))

byte <- vAddr2...0 xor BigEndianCPU3

data <- GPR [rt]63 – 8 * byte...0 || 0
8 * byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian3))

byte <- vAddr2...0 xor BigEndianCPU3

data <- GPR [rt]63 – 8 * byte...0 || 0
8 * byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

625

SD Store Doubleword SD

base
SD

1 1 1 1 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of general register rt are stored at the memory location specified by the effective address.

If either of the three least-significant bits of the effective address are non-zero, an address error exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

data <- GPR [rt]

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

626

SDL Store Doubleword Left SDL

base
SDL

1 0 1 1 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SDL rt, offset (base)

Description:

This instruction can be used with the SDR instruction to store the contents of a register into eight consecutive
bytes of memory, when the bytes cross a doubleword boundary. SDL stores the left portion of the register into
the appropriate part of the high-order doubleword of memory; SDR stores the right portion of the register into the
appropriate part of the low-order doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which may specify an arbitrary byte. It alters only the word in memory which contains that byte. From
one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the specified byte in memory;
then it copies bytes from register to memory until it reaches the low-order byte of the word in memory.

No address error exceptions due to alignment are possible.

address 8

address 0

memory

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
A B C D E F G H

before

after

$24

register

SDL $24, 8 ($0)

address 8

address 0

15 14 13 12 11 10 9 A

7 6 5 4 3 2 1 0

CHAPTER 27 CPU INSTRUCTION SET DETAILS

627

SDL Store Doubleword Left SDL
(Continued)

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddrPSIZE - 1...3 || 0
3

endif

byte <- vAddr2...0 xor BigEndianCPU3

data <- 056 – 8 * byte || GPR [rt]63...56 – 8 * byte

Storememory (uncached, byte, data, pAddr, vAddr, DATA)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

628

SDL Store Doubleword Left SDL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SDL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

SDL

vAddr2..0 BigEndianCPU = 0

destination type offset

(LEM)

0

1

2

3

4

5

6

7

I J K L M N O A

I J K L M N A B

I J K L M A B C

I J K L A B C D

I J K A B C D E

I J A B C D E F

I A B C D E F G

A B C D E F G H

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

LEM Little-endian memory (BigEndianMem = 0)

Type AccessType (see Table 3-2) sent to memory

Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

629

SDR Store Doubleword Right SDR

base
SDR

1 0 1 1 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SDR rt, offset (base)

Description:

This instruction can be used with the SDL instruction to store the contents of a register into eight consecutive
bytes of memory, when the bytes cross a boundary between two doublewords. SDR stores the right portion of
the register into the appropriate part of the low-order doubleword; SDL stores the left portion of the register into
the appropriate part of the low-order doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which may specify an arbitrary byte. It alters only the word in memory which contains that byte. From
one to eight bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it to the specified byte in
memory; then it copies bytes from register to memory until it reaches the high-order byte of the word in memory.
No address error exceptions due to alignment are possible.

address 8

address 0

memory

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
A B C D E F G H

before

after

$24

register

SDR $24, 1 ($0)

address 8

address 0

15 14 13 12 11 10 9 8

B C D E F G H 0

CHAPTER 27 CPU INSTRUCTION SET DETAILS

630

SDR Store Doubleword Right SDR
(Continued)

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddrPSIZE - 1...3 || 0
3

endif

byte <- vAddr2...0 xor BigEndianCPU3

data <- GPR [rt]63 – 8 * byte || 0
8 * byte

StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr, DATA)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

631

SDR Store Doubleword Right SDR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SDR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

SDR

vAddr2..0 BigEndianCPU = 0

destination type offset

(LEM)

0

1

2

3

4

5

6

7

A B C D E F G H

B C D E F G H P

C D E F G H O P

D E F G H N O P

E F G H M N O P

F G H L M N O P

G H K L M N O P

H J K L M N O P

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7

LEM Little-endian memory (BigEndianMem = 0)

Type AccessType (see Table 2-2) sent to memory

Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

632

SH Store Halfword SH

base
SH

1 0 1 0 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form an unsigned
effective address. The least-significant halfword of register rt is stored at the effective address. If the least-
significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

32 T: vAddr <- ((offset15)
16 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

byte <- vAddr2...0 xor (BigEndianCPU2 || 0)

data <- GPR [rt]63 – 8 * byte...0 || 0
8 * byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

byte <- vAddr2...0 xor (BigEndianCPU2 || 0)

data <- GPR [rt]63 – 8 * byte...0 || 0
8 * byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

633

SLL Shift Left Logical SLL

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
SLL

0 0 0 0 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register. It is sign extended for
all shift amounts, including zero; SLL with zero shift amount truncates a 64-bit value to 32 bits and then sign
extends this 32-bit value. SLL, unlike nearly all other word operations, does not require an operand to be a
properly sign-extended word value to produce a valid sign-extended word result.

Operation:

32 T: GPR [rd] <- GPR [rt]31 - sa...0 || 0
sa

64 T: s <- 0 || sa

temp <- GPR [rt]31 - s...0 || 0
s

GPR [rd] <- (temp31)
32 || temp

Exceptions:

None

Remark SLL with a shift amount of zero may be treated as a NOP by some assemblers, at some optimization
levels. If using SLL with a zero shift to truncate 64-bit values, check the assembler you are using.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

634

SLLV Shift Left Logical Variable SLLV

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SLLV

0 0 0 1 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SLLV rd, rt, rs

Description:

The contents of general register rt are shifted left the number of bits specified by the low-order five bits contained
in general register rs, inserting zeros into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register. It is sign extended for
all shift amounts, including zero; SLLV with zero shift amount truncates a 64-bit value to 32 bits and then sign
extends this 32-bit value. SLLV, unlike nearly all other word operations, does not require an operand to be a
properly sign-extended word value to produce a valid sign-extended word result.

Operation:

32 T: s <- GPR [rs]4...0

GPR [rd] <- GPR [rt](31 - s)...0 || 0
s

64 T: s <- 0 || GPR [rs]4...0

temp <- GPR [rt](31 - s)...0 || 0
s

GPR [rd] <- (temp31)
32 || temp

Exceptions:

None

Remark SLLV with a shift amount of zero may be treated as a NOP by some assemblers, at some optimization
levels. If using SLLV with a zero shift to truncate 64-bit values, check the assembler you are using.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

635

SLT Set On Less Than SLT

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SLT

1 0 1 0 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SLT rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs. Considering both
quantities as signed integers, if the contents of general register rs are less than the contents of general register rt,
the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction
used during the comparison overflows.

Operation:

32 T: if GPR [rs] < GPR [rt] then

GPR [rd] <- 031 || 1

else

GPR [rd] <- 032

endif

64 T: if GPR [rs] < GPR [rt] then

GPR [rd] <- 063 || 1

else

GPR [rd] <- 064

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

636

SLTI Set On Less Than Immediate SLTI

rs
SLTI

0 0 1 0 1 0
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs. Considering both
quantities as signed integers, if rs is less than the sign-extended immediate, the result is set to one; otherwise the
result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction
used during the comparison overflows.

Operation:

32 T: if GPR [rs] < (immediate15)
16 || immediate15...0 then

GPR [rt] <- 031 || 1

else

GPR [rt] <- 032

endif

64 T: if GPR [rs] < (immediate15)
48 || immediate15...0 then

GPR [rt] <- 063 || 1

else

GPR [rt] <- 064

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

637

SLTIU Set On Less Than Immediate Unsigned SLTIU

rs
SLTIU

0 0 1 0 1 1
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SLTIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs. Considering both
quantities as unsigned integers, if rs is less than the sign-extended immediate, the result is set to one; otherwise
the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction
used during the comparison overflows.

Operation:

32 T: if (0 || GPR [rs]) < (0 || (immediate15)
16 || immediate15...0) then

GPR [rt] <- 031 || 1

else

GPR [rt] <- 032

endif

64 T: if (0 || GPR [rs]) < (0 || (immediate15)
48 || immediate15...0) then

GPR [rt] <- 063 || 1

else

GPR [rt] <- 064

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

638

SLTU Set On Less Than Unsigned SLTU

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SLTU

1 0 1 0 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SLTU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs. Considering both
quantities as unsigned integers, if the contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction
used during the comparison overflows.

Operation:

32 T: if (0 || GPR [rs]) < 0 || GPR [rt] then

GPR [rd] <- 031 || 1

else

GPR [rd] <- 032

endif

64 T: if (0 || GPR [rs]) < 0 || GPR [rt] then

GPR [rd] <- 063 || 1

else

GPR [rd] <- 064

endif

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

639

SRA Shift Right Arithmetic SRA

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
SRA

0 0 0 0 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-extending the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: GPR [rd] <- (GPR [rt]31)
sa || GPR [rt]31...sa

64 T: s <- 0 || sa

temp <- (GPR [rt]31)
s || GPR [rt]31...s

GPR [rd] <- (temp31)
32 || temp

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

640

SRAV Shift Right Arithmetic Variable SRAV

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SRAV

0 0 0 1 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order five bits of
general register rs, sign-extending the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: s <- GPR [rs]4...0

GPR [rd] <- (GPR [rt]31)
s || GPR [rt]31...s

64 T: s <- GPR [rs]4...0

temp <- (GPR [rt]31)
s || GPR [rt]31...s

GPR [rd] <- (temp31)
32 || temp

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

641

SRL Shift Right Logical SRL

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
SRL

0 0 0 0 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: GPR [rd] <- 0sa || GPR [rt]31...sa

64 T: s <- 0 || sa

temp <- 0s || GPR [rt]31...s

GPR [rd] <- (temp31)
32 || temp

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

642

SRLV Shift Right Logical Variable SRLV

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SRLV

0 0 0 1 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order five bits of
general register rs, inserting zeros into the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: s <- GPR [rs]4...0

GPR [rd] <- 0s || GPR [rt]31...s

64 T: s <- GPR [rs]4...0

temp <- 0s || GPR [rt]31...s

GPR [rd] <- (temp31)
32 || temp

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

643

STANDBY Standby STANDBY

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

STANDBY
1 0 0 0 0 1

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

STANDBY

Description:

STANDBY instruction starts mode transition from Fullspeed mode to Standby mode.

When the STANDBY instruction finishes the WB stage, the VR4102 wait by the SysAD bus is idle state, after then
the internal clocks will shut down, thus freezing the pipeline. The PLL, Timer/Interrupt clocks and the internal bus
clocks (TClock and MasterOut) will continue to run.

Once the VR4102 is in Standby mode, any interrupt, including the internally generated timer interrupt, NMI, Soft
Reset, and Cold Reset will cause the VR4102 to exit Standby mode and to enter Fullspeed mode.

Operation:

32, 64 T:

 T+1: Standby operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Chapter 15 for details about the operation of the peripheral units at mode transition.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

644

SUB Subtract SUB

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SUB

1 0 0 0 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result. The
result is placed into general register rd. In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUBU instruction is that SUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 30 and 31 differ (2’s complement overflow).
The destination register rd is not modified when an integer overflow exception occurs.

Operation:

32 T: GPR [rd] <- GPR [rs] - GPR [rt]

64 T: temp <- GPR [rs] - GPR [rt]

GPR [rd] <- (temp31)
32 || temp31...0

Exceptions:

Integer overflow exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

645

SUBU Subtract Unsigned SUBU

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SUBU

1 0 0 0 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result.

The result is placed into general register rd.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUB instruction is that SUBU never traps on overflow. No
integer overflow exception occurs under any circumstances.

Operation:

32 T: GPR [rd] <- GPR [rs] - GPR [rt]

64 T: temp <- GPR [rs] - GPR [rt]

GPR [rd] <- (temp31)
32 || temp31...0

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

646

SUSPEND Suspend SUSPEND

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

SUSPEND
1 0 0 0 1 0

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

SUSPEND

Description:

SUSPEND instruction starts mode transition from Fullspeed mode to Suspend mode.

When the SUSPEND instruction finishes the WB stage, the VR4102 wait by the SysAD bus is idle state, after then
the internal clocks including the TClock will shut down, thus freezing the pipeline. The PLL, Timer/Interrupt clocks
and MasterOut, will continue to run.

Once the VR4102 is in Suspend mode, any interrupt, including the internally generated timer interrupt, NMI, Soft
Reset and Cold Reset will cause the VR4102 to exit Suspend mode and to enter Fullspeed mode.

Operation:

32, 64 T:

 T+1: Suspend operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Chapter 15 for details about the operation of the peripheral units at mode transition.

CHAPTER 27 CPU INSTRUCTION SET DETAILS

647

SW Store Word SW

base
SW

1 0 1 0 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of general register rt are stored at the memory location specified by the effective address.

If either of the two least-significant bits of the effective address are non-zero, an address error exception occurs.

Operation:

32 T: vAddr <- ((offset15)
16 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte <- vAddr2...0 xor (BigEndianCPU || 02)

data <- GPR [rt]63 – 8 * byte || 0
8 * byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte <- vAddr2...0 xor (BigEndianCPU || 02)

data <- GPR [rt]63 – 8 * byte || 0
8 * byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

648

SWL Store Word Left SWL

base
SWL

1 0 1 0 1 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SWL rt, offset (base)

Description:

This instruction can be used with the SWR instruction to store the contents of a register into four consecutive
bytes of memory, when the bytes cross a word boundary. SWL stores the left portion of the register into the
appropriate part of the high-order word of memory; SWR stores the right portion of the register into the
appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which may specify an arbitrary byte. It alters only the word in memory which contains that byte. From
one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the specified byte in memory;
then it copies bytes from register to memory until it reaches the low-order byte of the word in memory.

No address error exceptions due to alignment are possible.

address 4

address 0

memory

7 6 5 4

3 2 1 0
before

after

$24

register

SWL $24, 4 ($0)

A B C D

address 4

address 0

7 6 5 A

3 2 1 0

CHAPTER 27 CPU INSTRUCTION SET DETAILS

649

SWL Store Word Left SWL
(Continued)

Operation:

32 T: vAddr <- ((offset15)
16 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddrPSIZE - 1...2 || 0
2

endif

byte <- vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then

data <- 032 || 024 – 8 * byte || GPR [rt]31...24 – 8 * byte

else

data <- 024 – 8 * byte || GPR [rt]31...24 – 8 * byte || 0
32

endif

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddrPSIZE - 1...2 || 0
2

endif

byte <- vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then

data <- 032 || 024 – 8 * byte || GPR [rt]31...24 – 8 * byte

else

data <- 024 – 8 * byte || GPR [rt]31...24 – 8 * byte || 0
32

endif

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

650

SWL Store Word Left SWL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SWL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

SWL

vAddr2..0 BigEndianCPU = 0

destination type offset

(LEM)

0

1

2

3

4

5

6

7

I J K L M N O E

I J K L M N E F

I J K L M E F G

I J K L E F G H

I J K E M N O P

I J E F M N O P

I E F G M N O P

E F G H M N O P

0

1

2

3

0

1

2

3

0

0

0

0

4

4

4

4

LEM Little-endian memory (BigEndianMem = 0)

Type AccessType (see Table 3-2) sent to memory

Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

651

SWR Store Word Right SWR

base
SWR

1 0 1 1 1 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SWR rt, offset (base)

Description:

This instruction can be used with the SWL instruction to store the contents of a register into four consecutive
bytes of memory, when the bytes cross a boundary between two words. SWR stores the right portion of the
register into the appropriate part of the low-order word; SWL stores the left portion of the register into the
appropriate part of the low-order word of memory.

The SWR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which may specify an arbitrary byte. It alters only the word in memory which contains that byte. From
one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it to the specified byte in
memory; then copies bytes from register to memory until it reaches the high-order byte of the word in memory.

No address error exceptions due to alignment are possible.

address 4

address 0

memory

7 6 5 4

3 2 1 0
before

after

$24

register

SWR $24, 1 ($0)

A B C D

address 4

address 0

7 6 5 4

B C D 0

CHAPTER 27 CPU INSTRUCTION SET DETAILS

652

SWR Store Word Right SWR
(Continued)

Operation:

32 T: vAddr <- ((offset15)
16 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 1 then

pAddr <- pAddrPSIZE - 1...2 || 0
2

endif

byte <- vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then

data <- 032 || GPR [rt]31 – 8 * byte...0 || 0
8 * byte

else

data <- GPR [rt]31 – 8 * byte || 0
8 * byte || 032

endif

StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

64 T: vAddr <- ((offset15)
48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 1 then

pAddr <- pAddrPSIZE - 1...2 || 0
2

endif

byte <- vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then

data <- 032 || GPR [rt]31 – 8 * byte...0 || 0
8 * byte

else

data <- GPR [rt]31 – 8 * byte || 0
8 * byte || 032

endif

StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

653

SWR Store Word Right SWR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SWR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

SWR

vAddr2..0 BigEndianCPU = 0

destination type offset

(LEM)

0

1

2

3

4

5

6

7

I J K L E F G H

I J K L F G H P

I J K L G H O P

I J K L H N O P

E F G H M N O P

F G H L M N O P

G H K L M N O P

H J K L M N O P

3

2

1

0

3

2

1

0

0

1

2

3

4

5

6

7

LEM Little-endian memory (BigEndianMem = 0)

Type AccessType (see Table 3-2) sent to memory

Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

654

SYNC Synchronize SYNC

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 26 25 6 5 0

6 20

SYNC
0 0 1 1 1 1

6

Format:

SYNC

Description:

The SYNC instruction is executed as a NOP on the VR4102. This operation maintains compatibility with code
compiled for the VR4000 and VR4400.

Operation:

32, 64 T: SyncOperation ()

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

655

SYSCALL System Call SYSCALL

SPECIAL
0 0 0 0 0 0

Code

31 26 25 6 5 0

6 20

SYSCALL
0 0 1 1 0 0

6

Format:

SYSCALL

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: SystemCallException

Exceptions:

System Call exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

656

TEQ Trap If Equal TEQ

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TEQ
1 1 0 1 0 0

6

6 5

Format:

TEQ rs, rt

Description:

The contents of general register rt are compared to general register rs. If the contents of general register rs are
equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR [rs] = GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

657

TEQI Trap If Equal Immediate TEQI

rs
REGIMM

0 0 0 0 0 1
TEQI

0 1 1 0 0
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TEQI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. If the contents of
general register rs are equal to the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR [rs] = (immediate15)
16 || immediate15...0 then

TrapException

endif

64 T: if GPR [rs] = (immediate15)
48 || immediate15...0 then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

658

TGE Trap If Greater Than Or Equal TGE

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TGE
1 1 0 0 0 0

6

6 5

Format:

TGE rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs. Considering both
quantities as signed integers, if the contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR [rs] > GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

659

TGEI Trap If Greater Than Or Equal Immediate TGEI

rs
REGIMM

0 0 0 0 0 1
TGEI

0 1 0 0 0
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TGEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both
quantities as signed integers, if the contents of general register rs are greater than or equal to the sign-extended
immediate, a trap exception occurs.

Operation:

32 T: if GPR [rs] > (immediate15)
16 || immediate15...0 then

TrapException

endif

64 T: if GPR [rs] > (immediate15)
48 || immediate15...0 then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

660

TGEIU Trap If Greater Than Or Equal Immediate Unsigned TGEIU

rs
REGIMM

0 0 0 0 0 1
TGEIU

0 1 0 0 1
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TGEIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both
quantities as unsigned integers, if the contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation:

32 T: if (0 || GPR [rs]) > (0 || (immediate15)
16 || immediate15...0) then

TrapException

endif

64 T: if (0 || GPR [rs]) > (0 || (immediate15)
48 || immediate15...0) then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

661

TGEU Trap If Greater Than Or Equal Unsigned TGEU

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TGEU
1 1 0 0 0 1

6

6 5

Format:

TGEU rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs. Considering both
quantities as unsigned integers, if the contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if (0 || GPR [rs]) > (0 || GPR [rt]) then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

662

TLBP Probe TLB For Matching Entry TLBP

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

TLBP
0 0 1 0 0 0

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

TLBP

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi
register. If no TLB entry matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references associated with the instruction immediately
after a TLBP instruction, nor is the operation specified if more than one TLB entry matches.

Operation:

32 T: Index <- 1 || 025 || Undefined6

for i in 0...TLBEntries - 1

if (TLB [i]95...77 = EntryHi31...13) and (TLB [i]76 or

(TLB [i]71...64 = EntryHi7...0)) then

Index <- 026 || i5...0

endif

endfor

64 T: Index <- 1 || 025 || Undefined6

for i in 0...TLBEntries - 1

if (TLB [i]167...141 and not (015 || TLB [i]216...205))

= (EntryHi39...13) and not (015 || TLB [i]216...205)) and

(TLB [i]140 or (TLB [i]135...128 = EntryHi7...0)) then

Index <- 026 || i5...0

endif

endfor

Exceptions:

Coprocessor unusable exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

663

TLBR Read Indexed TLB Entry TLBR

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

TLBR
0 0 0 0 0 1

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

TLBR

Description:

The G bit (which controls ASID matching) read from the TLB is written into both of the EntryLo0 and EntryLo1
registers.

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry pointed at by the contents of the
TLB Index register. The operation is invalid (and the results are unspecified) if the contents of the TLB Index
register are greater than the number of TLB entries in the processor.

Operation:

32 T: PageMask <- TLB [Index5...0]127...96

EntryHi <- TLB [Index5...0]95...64 and not TLB [Index5...0]127...96

EntryLo1 <- TLB [Index5...0]63...33 || TLB [Index5...0]76

EntryLo0 <- TLB [Index5...0]31...1 || TLB [Index5...0]76

64 T: PageMask <- TLB [Index5...0]255...192

EntryHi <- TLB [Index5...0]191...128 and not TLB [Index5...0]255...192

EntryLo1 <- TLB [Index5...0]127...65 || TLB [Index5...0]140

EntryLo0 <- TLB [Index5...0]63...1 || TLB [Index5...0]140

Exceptions:

Coprocessor unusable exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

664

TLBWI Write Indexed TLB Entry TLBWI

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

TLBWI
0 0 0 0 1 0

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

TLBWI

Description:

The TLB entry pointed at by the contents of the TLB Index register is loaded with the contents of the EntryHi and
EntryLo registers.

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and EntryLo1 registers.

The operation is invalid (and the results are unspecified) if the contents of the TLB Index register are greater than
the number of TLB entries in the processor.

Operation:

32, 64 T: TLB [Index5...0] <-

PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Exceptions:

Coprocessor unusable exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

665

TLBWR Write Random TLB Entry TLBWR

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

TLBWR
0 0 0 1 1 0

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

TLBWR

Description:

The TLB entry pointed at by the contents of the TLB Random register is loaded with the contents of the EntryHi
and EntryLo registers.

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and EntryLo1 registers.

Operation:

32, 64 T: TLB [Random5...0] <-

PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Exceptions:

Coprocessor unusable exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

666

TLT Trap If Less Than TLT

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TLT
1 1 0 0 1 0

6

6 5

Format:

TLT rs, rt

Description:

The contents of general register rt are compared to general register rs. Considering both quantities as signed
integers, if the contents of general register rs are less than the contents of general register rt, a trap exception
occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR [rs] < GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

667

TLTI Trap If Less Than Immediate TLTI

rs
REGIMM

0 0 0 0 0 1
TLTI

0 1 0 1 0
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TLTI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both
quantities as signed integers, if the contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:

32 T: if GPR [rs] < (immediate15)
16 || immediate15...0 then

TrapException

endif

64 T: if GPR [rs] < (immediate15)
48 || immediate15...0 then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

668

TLTIU Trap If Less Than Immediate Unsigned TLTIU

rs
REGIMM

0 0 0 0 0 1
TLTIU

0 1 0 1 1
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TLTIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both
quantities as unsigned integers, if the contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:

32 T: if (0 || GPR [rs]) < (0 || (immediate15)
16 || immediate15...0) then

TrapException

endif

64 T: if (0 || GPR [rs]) < (0 || (immediate15)
48 || immediate15...0) then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

669

TLTU Trap If Less Than Unsigned TLTU

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TLTU
1 1 0 0 1 1

6

6 5

Format:

TLTU rs, rt

Description:

The contents of general register rt are compared to general register rs. Considering both quantities as unsigned
integers, if the contents of general register rs are less than the contents of general register rt, a trap exception
occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if (0 || GPR [rs]) < (0 || GPR [rt]) then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

670

TNE Trap If Not Equal TNE

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TNE
1 1 0 1 1 0

6

6 5

Format:

TNE rs, rt

Description:

The contents of general register rt are compared to general register rs. If the contents of general register rs are
not equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR [rs] z GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

671

TNEI Trap If Not Equal Immediate TNEI

rs
REGIMM

0 0 0 0 0 1
TNEI

0 1 1 1 0
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TNEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. If the contents of
general register rs are not equal to the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR [rs] z (immediate15)
16 || immediate15...0 then

TrapException

endif

64 T: if GPR [rs] z (immediate15)
48 || immediate15...0 then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 27 CPU INSTRUCTION SET DETAILS

672

XOR Exclusive Or XOR

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
XOR

1 0 0 1 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

XOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise logical
exclusive OR operation.

The result is placed into general register rd.

Operation:

32, 64 T: GPR [rd] <- GPR [rs] xor GPR [rt]

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

673

XORI Exclusive OR Immediate XORI

rs
XORI

0 0 1 1 1 0
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

XORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-wise logical
exclusive OR operation.

The result is placed into general register rt.

Operation:

32 T: GPR [rt] <- GPR [rs] xor (016 || immediate)

64 T: GPR [rt] <- GPR [rs] xor (048 || immediate)

Exceptions:

None

CHAPTER 27 CPU INSTRUCTION SET DETAILS

674

27.6 CPU INSTRUCTION OPCODE BIT ENCODING

The remainder of this chapter presents the opcode bit encoding for the CPU instruction set (ISA and extensions),

as implemented by the VR4102. Figure 27-2 lists the VR4102 Opcode Bit Encoding.

Figure 27-1. V R4102 Opcode Bit Encoding (1/2)

28...26 Opcode
31...29 0 1 2 3 4 5 6 7

0 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ

1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 COP0 S S * BEQL BNEL BLEZL BGTZL

3 DADDIH DADDIUH LDLH LDRH * * * *

4 LB LH LWL LW LBU LHU LWR LWUH

5 SB SH SWL SW SDLH SDRH SWR CACHEG

6 * S S * * S S LDH

7 * S S * * S S SDH

2...0 SPECIAL function
5...3 0 1 2 3 4 5 6 7

0 SLL * SRL SRA SLLV * SRLV SRAV

1 JR JALR * * SYSCALL BREAK * SYNC

2 MFHI MTHI MFLO MTLO DSLLVH * DSRLVH DSRAVH

3 MULT MULTU DIV DIVU DMULTH DMULTUH DDIVH DDIVUH

4 ADD ADDU SUB SUBU AND OR XOR NOR

5 MADD16 DMADD16 SLT SLTU DADDH DADDUH DSUBH DSUBUH

6 TGE TGEU TLT TLTU TEQ * TNE *

7 DSLLH * DSRLH DSRAH DSLL32H * DSRL32H DSRA32H

18...16 REGIMM rt
20...19 0 1 2 3 4 5 6 7

0 BLTZ BGEZ BLTZL BGEZL * * * *

1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 BLTZAL BGEZAL BLTZALL BGEZALL * * * *

3 * * * * * * * *

CHAPTER 27 CPU INSTRUCTION SET DETAILS

675

Figure 27-1. V R4102 Opcode Bit Encoding (2/2)

23...21 COP0 rs
25, 24 0 1 2 3 4 5 6 7

0 MF DMFH J J MT DMTH J J

1 BC J J J J J J J

2

3
CO

18...16 COP0 rt
20...19 0 1 2 3 4 5 6 7

0 BCF BCT BCFL BCTL J J J J

1 J J J J J J J J

2 J J J J J J J J

3 J J J J J J J J

2...0 CP0 Function
5...3 0 1 2 3 4 5 6 7

0 I TLBR TLBWI I I I TLBWR I

1 TLBP I I I I I I I

2 [I I I I I I I

3 ERET F I I I I I I I

4 I STANDB SUSPEND HIBERNATE I I I I

5 I I I I I I I I

6 I I I I I I I I

7 I I I I I I I I

Key:

* Operation codes marked with an asterisk cause reserved instruction exceptions in all current implementations
and are reserved for future versions of the architecture.

J Operation codes marked with a gamma cause a reserved instruction exception. They are reserved for future
versions of the architecture.

G Operation codes marked with a delta are valid only for VR4102 processors with CP0 enabled, and cause a
reserved instruction exception on other processors.

I Operation codes marked with a phi are invalid but do not cause reserved instruction exceptions in VR4102
implementations.

[Operation codes marked with a xi cause a reserved instruction exception on VR4102 processor.

F Operation codes marked with a chi are valid on R4x00 and VR4102 only.

H Operation codes marked with epsilon are valid when the processor operating as a 64-bit processor. These
instructions will cause a reserved instruction exception if 64-bit operation is not enabled.

S Operation codes marked with a pi are invalid and cause coprocessor unusable exception.

676

[MEMO]

677

CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS

The VR4100 CPU core avoids contention of its internal resources by causing a pipeline interlock in such cases as

when the contents of the destination register of an instruction are used as a source in the succeeding instruction.

Therefore, instructions such as NOP must not be inserted between instructions.

However, interlocks do not occur on the operations related to the CP0 registers and the TLB. Therefore,

contention of internal resources should be considered when composing a program which manipulates the CP0

registers or the TLB. The CP0 hazards define the number of NOP instructions which is required to avoid contention

of internal resources, or the number of instructions unrelated to contention. This chapter describes the CP0 hazards

of the VR4100 CPU core.

The CP0 hazards of the VR4100 CPU core are equally or less stringent than those of the VR4000; Table 28-1 lists

the Coprocessor 0 hazards of the VR4100 CPU core. Code which complies with these hazards will run without

modification on the VR4000.

The contents of the CP0 registers or the bits in the “Source” column of this table can be used as a source after

they are fixed.

The contents of the CP0 registers or the bits in the “Destination” column of this table can be available as a

destination after they are stored.

Based on this table, the number of NOP instructions required between instructions related to the TLB is computed

by the following formula, and so is the number of instructions unrelated to contention:

(Destination Hazard number of A) - [(Source Hazard number of B) + 1]

As an example, to compute the number of instructions required between an MTC0 and a subsequent MFC0

instruction, this is:

(5) - (3 + 1) = 1 instruction

The CP0 hazards do not generate interlocks of pipeline. Therefore, the required number of instruction must be

controlled by program.

CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS

678

Table 28-1. VR4102 Coprocessor 0 Hazards

Source DestinationInstruction or Event

CP0 Data Used,
Stage Used

No. of
cycles

CP0 Data Written,
Stage Available

No. of
cycles

MTC0 CPR [rd] 5

MFC0 CPR [rd] 3

TLBR Index, TLB 2 PageMask, EntryHi,
EntryLo0, EntryLo1

5

TLBWI

TLBWR

Index or Random,
PageMask, EntryHi,
EntryLo0, EntryLo1

2 TLB 5

TLBP PageMask, EntryHi 2 Index 6

ERET EPC or ErrorEPC, TLB 2 Status [EXL, ERL] 4

Status 2

CACHE Index Load
Tag

TagLo, TagHi, PErr 5

CACHE Index Store
Tag

TagLo, TagHi, PErr 3

CACHE Hit ops. cache line 3 cache line 5

Load/Store EntryHi [ASID], Status
[KSU, EXL, ERL, RE],
Config [K0C], TLB

3

Config [AD, EP] 3

WatchHi, WatchLo 3

Load/Store exception EPC, Status, Cause,
BadVAddr, Context, XContext

5

Instruction fetch EPC, Status 4

exception Cause, BadVAddr, Context,
XContext

5

Instruction fetch EntryHi [ASID], Status
[KSU, EXL, ERL, RE],
Config [K0C]

2

TLB 2

Coproc. usable test Status [CU, KSU, EXL,
ERL]

2

Interrupt signals
sampled

Cause [IP], Status [IM, IE,
EXL, ERL]

2

TLB shutdown Status [TS] 2 (Inst.),
4 (Data)

CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS

679

Cautions 1. If the setting of the K0 bit in the Config register is changed to uncached mode by MTC0, the

accessed memory area is switched to the uncached one at the instruction fetch of the third

instruction after MTC0.

2. A stall of several instructions occurs if a jump or branch instruction is executed

immediately after the setting of the ITS bit in the Status register.

Remarks 1. The instruction following MTC0 must not be MFC0.

2. The five instructions following MTC0 to Status register that changes KSU and sets EXL and ERL

may be executed in the new mode, and not kernel mode. This can be avoided by setting EXL first,

leaving KSU set to kernel, and later changing KSU.

3. There must be two non-load, non-CACHE instructions between a store and a CACHE instruction

directed to the same primary cache line as the store.

The status during execution of the following instruction for which CP0 hazards must be considered is described

below.

(1) MTC0

Destination: The completion of writing to a destination register (CP0) of MTC0.

(2) MFC0

Source: The confirmation of a source register (CP0) of MFC0.

(3) TLBR

Source: The confirmation of the status of TLB and the Index register before the execution of TLBR.

Destination: The completion of writing to a destination register (CP0) of TLBR.

(4) TLBWI, TLBWR

Source: The confirmation of a source register of these instructions and registers used to specify a TLB entry.

Destination: The completion of writing to TLB by these instructions.

(5) TLBP

Source: The confirmation of the PageMask register and the EntryHi register before the execution of TLBP.

Destination: The completion of writing the result of execution of TLBP to the Index register.

(6) ERET

Source: The confirmation of registers containing information necessary for executing ERET.

Destination: The completion of the processor state transition by the execution of ERET.

(7) CACHE Index Load Tag

Destination: The completion of writing the results of execution of this instruction to the related registers.

CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS

680

(8) CACHE Index Store Tag

Source: The confirmation of registers containing information necessary for executing this instruction.

(9) Coprocessor Usable Test

Source: The confirmation of modes set by the bits of the CP0 registers in the “Source” column.

Examples 1. When accessing the CP0 registers in User mode after the content of the CU0 bit of the Status

register is modified, or when executing an instruction such as TLB instructions, CACHE

instructions, or branch instructions which use the resource of the CP0.

2. When accessing the CP0 registers in the operating mode set in the Status register after the

KSU, EXL, and ERL bits of the Status register are modified.

(10) Instruction Fetch

Source: The confirmation of the operating mode and TLB necessary for instruction fetch.

Examples 1. When changing the operating mode from User to Kernel and fetching instructions after the

KSU, EXL, and ERL bits of the Status register are modified.

2. When fetching instructions using the modified TLB entry after TLB modification.

(11) Instruction Fetch Exception

Destination: The completion of writing to registers containing information related to the exception when an

exception occurs on instruction fetch.

(12) Interrupts

Source: The confirmation of registers judging the condition of occurrence of interrupt when an interrupt

factor is detected.

(13) Loads/Sores

Source: The confirmation of the operating mode related to the address generation of Load/Store

instructions, TLB entries, the cache mode set in the K0 bit of the Config register, and the registers

setting the condition of occurrence of a Watch exception.

Example When Loads/Stores are executed in the kernel field after changing the mode from User to Kernel.

(14) Load/Store Exception

Destination: The completion of writing to registers containing information related to the exception when an

exception occurs on load or store operation.

(15) TLB Shutdown

Destination: The completion of writing to the TS bit of the Status register when a TLB shutdown occurs.

CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS

681

Table 28-2 indicates examples of calculation.

Table 28-2. Calculation Example of CP0 Hazard and the Number of Instructions Inserted

Destination Source Contending
internal

resource

Number of
instructions

inserted

Formula

TLBWR/TLBWI TLBP TLB Entry 2 5 - (2 + 1)

TLBWR/TLBWI Load or Store using newly modified TLB TLB Entry 1 5 - (3 + 1)

TLBWR/TLBWI Instruction fetch using newly modified TLB TLB Entry 2 5 - (2 + 1)

MTC0, Status [CU] Coprocessor instruction which requires the
setting of CU

Status [CU] 2 5 - (2 + 1)

TLBR MFC0 EntryHi EntryHi 1 5 - (3 + 1)

MTC0 EntryLo0 TLBWR/TLBWI EntryLo0 2 5 - (2 + 1)

TLBP MFC0 Index Index 2 6 - (3 + 1)

MTC0 EntryHi TLBP EntryHi 2 5 - (2 + 1)

MTC0 EPC ERET EPC 2 5 - (2 + 1)

MTC0 Status ERET Status 2 5 - (2 + 1)

MTC0 Status [IE] Note Instruction which causes an interrupt Status [IE] 2 5 - (2 + 1)

Note The number of hazards is undefined if the instruction execution sequence is changed by exceptions. In

such a case, the minimum number of hazards until the IE bit value is confirmed may be the same as the

maximum number of hazards until an interrupt request occurs which is pending and enabled.

682

[MEMO]

683

CHAPTER 29 PLL PASSIVE COMPONENTS

The Phase Locked Loop circuit requires several passive components for proper operation, which are connected

to VDDP and GNDP as illustrated in Figure 29-1.

Figure 29-1. Example of Connection of PLL Passive Components

VDD

VDDP

GNDP

GND

VR4102

R

C1 C2 C3

R

Remarks1. C1, C2, C3 capacitors and R resistors are mounted on the printed circuit board.

2. Since the value for the components depends upon the application system, the optimum

values for each system should be decided after repeated experimentation.

It is essential to isolate the analog power and ground for the PLL circuit (VDDP/GNDP) from the regular power and

ground (VDD/GND). Initial evaluations have yielded good results with the following values:

R = 5 : C1 = 1 nF C2 = 2 nF C3 = 10 PF

Since the optimum values for the filter components depend upon the application and the system noise

environment, these values should be considered as starting points for further experimentation within your specific

application. In addition, the chokes (inductors: L) can be considered for use as an alternative to the resistors (R) for

use in filtering the power supply.

684

[MEMO]

685

APPENDIX A DIFFERENCES BETWEEN V R4102 AND VR4101

A.1 SUMMARY OF DIFFERENCES

Item VR4102 VR4101

Cache size Instruction: 4 Kbytes, data: 1 Kbyte Instruction: 2 Kbytes, data: 1 Kbyte

ISA Bus sizing 16-/8-bit dynamic bus sizing Select 16-/8-bit bus with address spaces

interface Bus hold Available Not available

I/O space 64 Mbytes 4 Mbytes

Memory space 64 Mbytes 4 Mbytes

LCD memory space Switches between LCD mode and high-speed

memory mode

Supports only LCD mode

Max. DRAM capacity

(EDO type)

32 Mbytes 8 Mbytes

Max. ROM capacity 32 Mbytes 16 Mbytes

DRAM type 16 Mbits, 64 Mbits 16 Mbits

Memory

controller

ROM type 32 Mbits, 64 Mbits 16 Mbits, 32 Mbits

Power-on factor 4 factors 3 factors

DMA controller Connected to AIU and FIR

Uses a DMA space for each page

Connected to AIU, PIU, KIU, and SIU

Uses a DMA space linearly

Timer, counter 4 channels:

 24 bits x 2 (32.768 kHz)

 48 bits x 1 (32.768 kHz)

 25 bits x 1 (for performance test, TClock)

3 channels:

 24 bits x 1 (32.768 kHz)

 48 bits x 1 (32.768 kHz)

 31 bits x 1 (for performance test, TClock)

Keyboard interface Supports 64/80/96 keys Supports up to 64 keys

Audio interface Supports PCM input/output

On-chip D/A converter

Supports PWM/Buzz output

Touch panel interface On-chip 10-bit A/D converter

On-chip touch panel controller

External 10/12-bit A/D converter

External touch panel controller

Serial interface NS16650 compatible x 1

(Max. data rate: 1.152 Mbps)

NEC original x 1

(Max. data rate: 115.2 kbps Max.)

NEC original x 2

(Max. data rate: 115.2 kbps)

Ports for LED lighting Available Not available

MODEM interface On-chip interface supporting software MODEM

(equivalent to PCT288I)

Not available

IrDA interface FIR (Max. data rate: 4 Mbps) SIR (Max. data rate: 115.2 kbps)

General-purpose I/O ports 49 Max. (including alternate-function pins) 12 Max.

Clock input 32.768 kHz (input to CG),

18.432 MHz (input to CG),

48 MHz (directly connected to on-chip IrDA

interface)

32.768 kHz (input to CG)

Package 216 pin LQFP, 224-pin FBGA 160 pin LQFP

APPENDIX A DIFFERENCES BETWEEN V R4102 AND VR4101

686

A.2 DETAILS OF DIFFERENCES

A.2.1 CPU Core

(1) Cache Size

The instruction cache of the VR4102 is 4K bytes in size, on the other hand, that of the VR4101 is 2K bytes. The

size of the data cache of the VR4102 is 1K bytes which is the same as that of the VR4101.

To specify cache data address used for CACHE instruction, the VR4102 uses bit 31..12 of the TagLo register, in

contrast to the VR4101 which uses bit 31..11. For data cache, both the VR4102 and the VR4101 use bit 13..10 of

the TagLo register.

(2) Settings of the Config Register

Bit 12 of the Config register (CS) indicates cache size mode, bit 11..9 (IC) indicates instruction cache size, and

bit 8..5 (DC) indicates data cache size. In the VR4102, CS is set to 1 (cache of small capacity), IC to 010 (4K

bytes), and DC to 000 (1K bytes). In the VR4101, bit 12..5 of the Config register are not defined and fix to 0 as a

reserved field.

Bit 27..24 of the Config register (EP) indicates transfer data pattern in the cache writeback. This field must be set

to 0000 (DD) in the VR4102, on the other hand, it must be set to 0011 (DxDx) in the VR4101.

A.2.2 Address Mapping

(1) Memory Area

In the VR4102, 16M and 64M bits are selectable for DRAM space size, though only a 16M-bit DRAM can be

connected to the VR4101.

Similarly, 32M and 64M bits are selectable for ROM space size in the VR4102, though only a 32M-bit ROM can

be connected to the VR4101.

(2) LCD Space

The LCD space is mapped to 16M-byte area of 0x0A00 0000 through 0x0AFF FFFF in both the VR4102 and the

VR4101. However, the VR4102 can also use this area as the high speed memory space, and the switching is set

in one of the BCU registers.

(3) ISA Spaces

The ISA memory and I/O spaces have a size of 64M bytes respectively in the VR4102. Those in the VR4101

have 4M bytes in total (2M bytes for 8-bit bus, 2M bytes for 16-bit bus).

In addition, the VR4102 supports 16/8-bit dynamic sizing for the ISA bus.

(4) Internal I/O Space

The internal I/O space is expanded to 32M bytes in the VR4102 compared to that of the VR4101 which has a size

of 16M bytes.

APPENDIX A DIFFERENCES BETWEEN V R4102 AND VR4101

687

A.2.3 BCU

(1) Setting of BCU Transaction

In the VR4101, the intervals of bus transactions and the number of repetitions in the enabled BCU transaction

intervals can be selectable. This function is deleted in the VR4102.

(2) Memory Access Control

16 and 32 bits are selectable as the data bus width with DBUS32 pin at reset in the VR4102 except for ISA

memory area, on the other hand, the bus width is fixed to 16 bits in the VR4101.

Though both the VR4102 and the VR4101 can select three memory types which are DRAM, masked ROM, and

Flash memory, their memory sizes and mapping method are different as summarized below.

Memory type VR4102 VR4101

DRAM 16M-bit/64M-bit EDO x 16 bits (access time: 60 ns) 16M-bit EDO x 16 bits (access time: 60 ns)

Masked ROM 32M-bit/64M-bit ordinary or page type x 16 bits

16-bit bus mode: selected as banks0/1 or 2/3

32-bit bus mode: selected as bank0 or 1

32M-bit ordinary or page type x 16 bits

The whole ROM space is selected

Flash memory 16-bit bus mode: selected as banks0/1 or 2/3

32-bit bus mode: selected as bank0 or 1

To use the whole ROM space can be selected

(3) LCD Space

The LCD space is used only for LCD access in the VR4101, while it can be used for either LCD access or high-

speed memory access in the VR4102. Which of LCD or high-speed memory the LCD space is used for is

selected in BCUCNT1REG register. When high-speed memory is selected, LCDCS# pin becomes active.

The access time for LCD is selectable among 2, 4, 6, and 8 TClock cycles in both the VR4102 and the VR4101.

For high-speed memory in the VR4102, the access time is selectable among 1, 2, 3, 4, 5, 6, 7, and 8 TClock

cycles. These selections of access time are set in BCUSPEEDREG register.

When transferring LCD data, inverting the data values or not is selectable in the VR4102 and is set in

BCUCNT2REG register. On the other hand, the VR4101 always inverts the values at LCD data transfer.

(4) ISA Space

In the VR4102, the bus size is dynamically controlled at every bus cycle with IOCS# and MEMCS# pins. In the

VR4101, the bus size is fixed to 8 or 16 bits and is distinguished by the accessed address space.

(5) Others

The VR4102 has bus hold function and can make ISA, LCD, and memory interfaces into bus hold state. The

VR4101 has no bus hold function, and therefore the CPU is always master state.

Bit 11..8 and bit 3..0 of PREVIDREG register indicate the revision number of the on-chip peripheral units in both

the VR4102 and the VR4101. In addition, bit 15..12 indicates the processor revision number in the VR4102,

though it is fixed to 0 in the VR4101. The remaining bits, bit 7..4, are fixed to 0 in both processors.

APPENDIX A DIFFERENCES BETWEEN V R4102 AND VR4101

688

A.2.4 DMA

(1) Sources of DMA

The VR4102 uses DMA transfer for AIU reception, AIU transmission, and FIR transmission/reception (in priority

order). On the other hand, the VR4101 uses DMA transfer for AIU, PIU, SIU reception, SIU transmission, and

KIU (in priority order).

(2) DMA Operation

The VR4102 reloads the DMA base address every time the DMA transfer reaches page boundary. The VR4101

uses DMA address space linearly which starts at DMA base address. For more details about DMA address

manipulation, see Chapter 11.

A.2.5 ICU

(1) Sources of Interrupts

Compared with the VR4101, five interrupt sources, HSP, LED, FIR, RTC Long timer 2, and TClock counter, are

newly added in the VR4102 ICU. Three more software interrupts which are caused by setting the SOFTINTREG

register are also added. The number of interrupt factors are changed in eight interrupt sources which are SIU,

DSIU, GIU, KIU, AIU, PIU, KIU in Suspend mode, and PIU in Suspend mode.

(2) Notification to the CPU Core

In the VR4102, NMI and Int[3..0] signals are used to notify interrupt requests to the CPU core, in contrast to the

VR4101 which uses NMI and Int[1..0] signals.

A.2.6 PMU

(1) Power-On Function

Compared with the VR4101, GPIO[3..0] and GPIO[12..9] inputs are added in the VR4102 as a CPU activation

factor. Especially, GPIO[3] can be used without any settings immediately after RTCRST.

(2) BATTLOCK and CARDLOCK Notifications

No dedicated pins for BATTLOCK and CARDLOCK functions are assigned in the VR4102. They must be

assigned to either of GPIO[12..9] pins and they are manipulated as two of GIU interrupts.

A.2.7 RTC

(1) RTC Long Timers

The VR4102 has two RTC Long timers, on the other hand the VR4101 has only one.

(2) TClock Counter

TClock counter of the VR4102 is 25-bit long which is 6 bits shorter than that of the VR4101.

TClock counter of the VR4102 is added as one of the interrupt factors, and an interrupt request occurs when its

value becomes 1. In the VR4101, no interrupt request is caused by TClock counter.

APPENDIX A DIFFERENCES BETWEEN V R4102 AND VR4101

689

A.2.8 GIU

(1) GPIO Pins

The VR4102 has 49 general-purpose I/O pins and 33 of them have alternate functions, while the VR4101 has 12

general I/O pins and none of them have alternate functions.

GPIO[15] pin of the VR4102 is assigned as DCD# input which has dedicated pin in the VR4101. In both the

VR4102 and the VR4101, GIU controls DCD# input as well as GPIO pins.

GPIO pins are also used as interrupt request inputs except for GPIO[49..32] of the VR4102, and in which power

modes an interrupt request is enabled is different from each GPIO pin.

The functions of GPIO pins are as summarized below.

Enabled power modePins I/O Interrupt input

VR4102 VR4101

Alternative

functions in

VR4102

Notes

GPIO[49] O N/A Standby - -

GPIO[48] I/O N/A Standby - DBUS32

GPIO[47..44] I/O N/A Standby - DSIU pins

GPIO[43..32] O N/A Standby - KSCAN[11..0]

GPIO[31..16] I/O A Standby - DATA[31..16]

GPIO[15] I A Hibernate - DCD# 1

GPIO[14] I/O A Suspend - -

GPIO[13] I/O A Suspend Hibernate - 2

GPIO[12] I/O A Suspend - -

GPIO[11] I/O A Suspend Standby -

GPIO[10..9] I/O A Suspend Suspend -

GPIO[8..4] I/O A Standby Standby -

GPIO[3..0] I/O A Hibernate Standby -

Notes 1. This pin is assigned as DCD# input in the VR4102.

2. This pin does not exist in the VR4101. DCD input is internally connected to the corresponding

register bits for GPIO[13] in GIU and the VR4101 manipulates those bits as input only.

(2) Interrupt Input Control

In both the VR4102 and the VR4101, either edge, high level, or low level of the input signal is selectable as an

interrupt input trigger.

In the VR4102, whether interrupt requests are held in GIU or not is selectable, while they are not held in the

VR4101.

APPENDIX A DIFFERENCES BETWEEN V R4102 AND VR4101

690

A.2.9 PIU

PIU of the VR4102 is greatly changed from that of the VR4101 as summarized below.

Item VR4102 VR4101

A/D converter On-chip (10 bits) External (10/12 bits)

Data transfer Transfer to buffer in PIU DMA transfer

Data buffers Four buffers (two pages each) for

coordinate data only

Four buffers for A/D scan

One buffer

Scan types Coordinate data scan

Command scan

A/D scan

Coordinate data scan

Command scan

Main battery scan

Sub battery scan

A/D port scan activation states Standby, WaitPen Touch, Interval Standby

Panel applied voltage

stabilization standby time counter

6 bits 4 bits

Panel applied voltage during low-

voltage mode

All four touch panel pins are at low

level

All four touch panel pins are at Hi-Z

Panel state during disable state Touch detection state

(Interrupts do not occur when CPU is

in Hibernate mode.)

All four touch panel pins are at Hi-Z

Handling of valid data when data

loss occurs

Valid data is always retained Valid data is overwritten

Data interrupt Three types of special-purpose

interrupts

(two coordinate data interrupts, A/D

scan interrupt, and command scan

interrupt)

Two types of page boundary

interrupts

PIUDataRdyIntr No Yes

APPENDIX A DIFFERENCES BETWEEN V R4102 AND VR4101

691

A.2.10 AIU

(1) Audio Output Mode

The PCM output is employed in the VR4102 as an audio output mode. In the VR4101, Buzzer or PWM output is

selectable.

(2) Audio Input Mode

The VR4102 has an analog audio input which is connected to the on-chip A/D converter. The VR4101 does not

support any audio inputs.

(3) Audio Data Transfer

The VR4102 uses DMA transfer to prepare PCM data in the output operation and to store sampled data in the

input operation. In the VR4101, output frequency and period for the Buzz mode are set in the AIU registers, or

output high level and low level width for the PWM mode are prepared with DMA transfer.

(4) Volume Control

Volume of the audio outputs is controlled by an external circuit or by shifting data input to D/A converter in the

VR4102. In the VR4101, four steps of audio output volume can be set in the AIUMUTEREG register and are

controlled by an external circuit based on the settings in the register.

A.2.11 KIU

(1) Number of Keys Supported

In the VR4102, the number of scan lines used is selectable among 8, 10, and 12 by setting the SCANLINE

register, which determines the number of keys enabled to either of 64, 80, or 96. The VR4102 can detect when

any of enabled keys are pressed using selected scan lines and 8 detection lines. The VR4101 can detect when

any of 64 keys are pressed using 8 scan lines and 8 detection lines.

When the VR4102 uses only 8 or 10 scan lines, the unused scan lines can be used as general-purpose output

ports. When the KIU is disabled in the VR4102, all the scan lines (KSCAN[11..0] pins) can be used as general-

purpose outputs (GPIO[43..32]).

(2) LCD Brightness Control

The VR4101 has LCD brightness control pins which are alternately used as KCSAN[1..0] pins and indicate the

contents of EVVOLREG register to specify brightness. The VR4102 has no pins for LCD brightness control.

(3) KIU Data Transfer

The VR4102 transfers KIU data by reading data buffers when an interrupt occurs, while the VR4101 transfers with

DMA.

APPENDIX A DIFFERENCES BETWEEN V R4102 AND VR4101

692

A.2.12 DSIU

(1) Hardware Flow Control

The VR4102 has two pins for hardware flow control, DCTS# and DRTS#, while the VR4101 has no pins for it.

(2) Supported Interrupts

The VR4102 DSIU supports receive error interrupt, receive completion interrupt, transmit completion interrupt,

and CTS interrupt. The VR4101 DSIU supports receive error interrupt, receive completion interrupt, and transmit

completion interrupt.

(3) Alternative Functions of DSIU Pins

The VR4102 DSIU pins can be used as general-purpose output port, GPIO[47..44], when DSIU is disabled.

Those of the VR4101 have no alternative functions.

A.2.13 SIU

The VR4102 SIU is newly designed and is functionally compatible with NS16550 in contrast to that of the VR4101

which is originally designed by NEC. Their differences are as summarized below.

Item VR4102 VR4102

Architecture Functionally compatible with NS16550 NEC original

Maximum data rate 1.15 Mbps 115 kbps

IR communication Available Available

Data transfer Read out of FIFO buffers by software DMA

Character length 5, 6, 7, or 8 bits 7 or 8 bits

Stop bit length 1, 1.5 (for 5 bits), or 2 (for 6, 7, or 8 bits) 1 or 2

Parity check Checked/generated is selectable Checked/not generated

(substituted by software)

Framing error Automatically detected Automatically detected

Break transmission Available Available

Break detection Automatically detected Automatically detected

Receive overrun error Automatically detected Occurs receive data lost interrupt

Flow control pins RTS#, CTS#, DTR#, DSR#, DCD# RTS#, CTS#, DTR#, DSR#, DCD

Transmit data flow 16450 mode: from SIUTH register to transmit

shift register

FIFO mode: from FIFO (16 bytes) to

transmit shift register

From DMA (2K bytes) to SIUTXDATREG

Receive data flow 16450 mode: from receive shift register to

SIURB register

FIFO mode: from receive shift register to

FIFO (16 bytes)

From SIURXDATREG to DMA (2K bytes)

APPENDIX A DIFFERENCES BETWEEN V R4102 AND VR4101

693

A.2.14 Newly Added Units

The VR4102 has three newly designed peripheral units as described below which the VR4101 does not have.

(1) LED

This unit is used to control lighting of an LED. This unit features as below:

• High level width (up to 2 seconds), low level width (up to 8 seconds), and the number of blink can be set

• Supports stop interrupt request

• Enabled during Standby, Suspend, and Hibernate modes

(2) HSP

This unit is used to realize a software MODEM with externally connected CODEC and DAA blocks. The HSP unit

of the VR4102 is compatible with PCT288I produced by PCTel.

The assigned functions of software and each block are as below.

Software: protocol calculation, CODEC control, error correction, and OS interface

HSP unit: serial/parallel conversion of 16-bit data, control of status pins, and FIFO buffer management

CODEC: D/A, A/D conversion and operation clock supply based on MCLK of HSP unit

DAA: interface for CODEC data and telephone circuits

(3) FIR

This unit is used for IrDA communication in high-speed data transfer. Supported transfer rates includes 0.576M,

1.152M, and 4M bps.

694

[MEMO]

695

A
A/D converter ... 381, 383, 422
A/D port scan ... 404
Access data size ... 247
Address error exception ... 180
Address translation … 119, 120
Addressing ... 47
AIU ... 31, 409
AIU registers ... 39, 409
AIUIAHREG ... 275
AIUIALREG ... 275
AIUIBAHREG ... 273
AIUIBALREG ... 273
AIUINTREG ... 298
AIUOAHREG ... 278
AIUOALREG ... 278
AIUOBAHREG ... 276
AIUOBALREG ... 276
ASIM00REG ... 438
ASIM01REG ... 439
ASIS0REG ... 444

Audio Interface Unit (AIU) ... 31, 409

B
BadVAddr register ... 161
Baud rates and divisors ... 466
BCU ... 31, 235
BCU registers ... 33, 235
BCUCNTREG 1 ... 236
BCUCNTREG 2 ... 238
BCUERRSTREG ... 241
BCURFCNTREG ... 242
BCURFCOUNTREG ... 244
BCUSPEEDREG ... 239
BEV ... 211
Bootstrap exception vector (BEV) ... 211
BPRM0REG ... 446
Branch address … 93
Branch delay ... 102
Branch instruction ... 92, 528
Breakpoint exception ... 186
Bus Control Unit (BCU) ... 31, 235
Bus error exception ... 185
Bus hold ... 268
Bus interface … 43
Bus mode … 247

Bypassing ... 115

C
Cache … 51
Cache data integrity ... 220
Cache error check ... 212
Cache error exception ... 184
Cache error register ... 171
CACHE instruction … 219, 220
Cache line ... 214, 218
Cache memory … 213
Cache operations ... 217
Cache organization ... 214
Cache state transition … 219
Cache states ... 218
Cause register ... 165
CLKSPEEDREG ... 245
Clock generator … 43
Clock interface ... 53
Clock Mask Unit (CMU) ... 31, 289
Clock oscillator ... 54
CMU ... 31, 289
CMU register ... 34, 289
CMUCLKMSK ... 290
Code compatibility … 115
Cold reset ... 207
Cold reset exception ... 177
Compare register ... 162
Computational instructions ... 86
Config register ... 150
Connection of address pins ... 246
Context register ... 160
Coordinate detection ... 382
Coprocessor 0 (CP0) ... 44, 49, 141
Coprocessor Unusable exception ... 187
Count register ... 161
CP0 ... 44, 49, 141
CP0 hazards ... 677
CP0 registers ... 49, 50, 141, 146
CPU … 43
CPU bus interface … 43
CPU core ... 43
CPU Instruction ... 46, 81, 525
CPU Instruction Set ... 46, 81, 525
CPU registers ... 45
CRCSR ... 508

Crystal oscillation ... 54

APPENDIX B INDEX

APPENDIX B INDEX

696

D
D/A converter ... 421
Data cache ... 44, 215
Data cache addressing … 216
Data formats ... 47, 448
Data loss ... 405
DCU ... 31, 281
DCU registers ... 34, 281
Deadman’s SW shutdown ... 320
Deadman’s Switch ... 202
Deadman’s Switch Unit (DSU) ... 31, 355
Debug Serial Interface Unit (DSIU) ... 32, 435
Defining access types … 82
Direct Memory Access (DMA) … 271, 421, 422, 513,
522
Direct Memory Access Address Unit (DMAAU) ... 31,
271
Direct Memory Access Control Unit (DCU) ... 31, 281
DMA priority levels ... 281
DMAAU ... 31, 271
DMAAU registers ... 33, 272
DMACR ... 512
DMAER ... 513
DMAIDLEREG ... 283
DMAMSKREG ... 285
DMAREQREG ... 286
DMARSTREG ... 282
DMASENREG ... 284
DPCNTR ... 501
DPINTR ... 500
DRAM … 140
DRAM access ... 264
DRAM space ... 140
DSIU ... 32, 435
DSIU registers ... 40, 435
DSIUINTREG ... 301
DSIURESETREG ... 447
DSU ... 31, 355
DSU registers ... 37, 355
DSUCLRREG ... 358
DSUCNTREG ... 356
DSUSETREG ... 357
DSUTIMREG ... 359

DVALIDREG ... 418

E
ECMPHREG ... 340
ECMPLREG ... 339
ECMPMREG ... 339
Elapsed Timer ... 335
Endianness ... 47, 48

EntryHi register ... 147
EntryLo register ... 147
EPC register ... 167
ErrorEPC register ... 171
ETIMEHREG ... 338
ETIMELREG ... 337
ETIMEMREG ... 337
Exception ... 109, 173
Exception conditions ... 112
Exception processing ... 157, 191
Exception processing registers ... 159
Exception Program Counter (EPC) register ... 167
Exception vector locations ... 173

External clock ... 54

F
Fast IrDA Interface Unit (FIR) ... 32, 497
FIFO interrupt modes ... 470
FIFO polling mode ... 471
FIR ... 32, 497
FIR registers ... 42, 497
FIRAHREG ... 280
FIRALREG ... 280
FIRBAHREG ... 279
FIRBALREG ... 279
FIRCR ... 509
FIRINTREG ... 313
Flash memory ... 247
Flash memory interface ... 249
FRSTR … 499
FSR ... 505

Fullspeed mode ... 210, 326

G
General Purpose I/O Unit (GIU) ... 31, 361
GIU ... 31, 361
GIU registers ... 37, 362
GIUINTALSELH ... 374
GIUINTALSELL ... 373
GIUINTENH ... 370
GIUINTENL ... 369
GIUINTHREG ... 312
GIUINTHTSELH ... 376
GIUINTHTSELL ... 375
GIUINTLREG ... 300
GIUINTSTATH ... 368
GIUINTSTATL ... 367
GIUINTTYPH ... 372
GIUINTTYPL ... 371
GIUIOSELH ... 364
GIUIOSELL ... 363

APPENDIX B INDEX

697

GIUPIODH ... 366
GIUPIODL ... 365
GIUPODATH ... 380
GIUPODATL ... 378

H
HALTimer shutdown ... 204, 320
Hardware interrupts ... 232
Hibernate mode ... 211, 327
Hierarchy of memory ... 213
HSP ... 32, 481
HSP registers ... 41, 483
HSPCNTL ... 486
HSPDATA[15..0] ... 485
HSPERRCNT ... 493
HSPEXTIN ... 492
HSPEXTOUT ... 487
HSPFFSZ ... 489
HSPID ... 492
HSPID[7:0] ... 493
HSPINDEX[15..0] ... 485
HSPINIT ... 484
HSPMCLKD ... 488
HSPPCS[7:0] ... 493
HSPPCTEL[7:0] ... 493
HSPRxData ... 490
HSPSTS ... 491
HSPTOC ... 488
HSPTxData ... 485

I
I/O registers ... 33
ICU ... 31, 291
ICU registers ... 35, 294
IE bit … 212
IFR ... 517
Illegal access ... 251
IMR ... 504
Index register ... 146
Initialization interface ... 199
Instruction cache ... 43, 214
Instruction cache addressing … 216
Instruction formats ... 46, 81
Instruction pipeline … 53
Integer overflow exception ... 189
Interlock ... 109
Internal I/O space ... 139
Interrupt … 231
Interrupt control ... 293
Interrupt Control Unit (ICU) ... 31, 291
Interrupt enable (IE) ... 212

Interrupt exception ... 190
Interrupt request signal … 232
INTR0REG ... 445
INTREG ... 420
IRSR1 ... 507

J
Joint TLB ... 52
JTLB … 52
Jump instruction ... 92, 528

K
Kernel expanded addressing mode ... 211
Kernel mode … 127
Kernel mode address space ... 128
Keyboard Interface Unit (KIU) ... 32, 423
KIU ... 32, 423
KIU registers ... 40, 423
KIU sequencer ... 427, 428
KIUDAT0 ... 424
KIUDAT1 ... 424
KIUDAT2 ... 424
KIUDAT3 ... 424
KIUDAT4 ... 424
KIUDAT5 ... 424
KIUGPEN ... 433
KIUINT ... 431
KIUINTREG ... 299
KIURST ... 432
KIUSCANREP ... 425
KIUSCANS ... 427
KIUWKI ... 430
KIUWKS ... 429

L
LCD … 140
LCD control interface ... 250
LCD interface ... 263
LCD space ... 140
LED ... 32, 453
LED Control Unit (LED) ... 32, 453
LED registers ... 41, 453
LEDASTCREG ... 457
LEDCNTREG ... 456
LEDHTSREG ... 454
LEDINTREG ... 458
LEDLTSREG ... 455
Load delay ... 102
Load delay slot ... 82
Load instruction ... 82, 527
Load Linked Address (LLAddr) register ... 151

APPENDIX B INDEX

698

Local loopback ... 473

M
MAIUINTREG ... 305
MasterOut ... 53
MCNTREG ... 416
MCNVRREG ... 417
MDMADATREG ... 410
MDSIUINTREG ... 308
Memory management system (MMU) ... 52, 117
MFIRINTREG ... 316
MGIUINTHREG ... 315
MGIUINTLREG ... 307
MIDATREG ... 415
MIRCR ... 511
MKIUINTREG ... 306
MODEM Interface Unit (HSP) ... 32, 481
MODEMREG ... 437
MPIUINTREG ... 304
MRXF ... 522
MSYSINT1REG ... 302
MSYSINT2REG ... 314

N
NMI exception ... 179
NMIREG ... 309
Non-maskable Interrupt (NMI) ... 231

O
Opcode bit encoding ... 674
Operating modes ... 121
Operation when unbranched … 93
Ordinary Interrupts ... 231
Ordinary ROM ... 248

P
PageMask register ... 143, 147
PageROM ... 248
Parity error prohibit ... 212
Parity error register ... 170
PClock ... 53
Phase lock loop (PLL) … 43
Physical address ... 135
Pin configuration … 57
Pin functions ... 57, 62
Pipeline ... 99
PIU ... 32, 381
PIU registers ... 38, 386
PIUAB0REG ... 400
PIUAB1REG ... 400
PIUAB2REG ... 400

PIUAB3REG ... 400
PIUAMSKREG ... 397
PIUASCNREG ...395
PIUCIVLREG ... 398
PIUCMDREG ... 393
PIUCNTREG ... 387
PIUINTREG (ICU) ... 297
PIUINTREG (PIU) ... 390
PIUPB00REG ... 399
PIUPB01REG ... 399
PIUPB02REG ... 399
PIUPB03REG ... 399
PIUPB04REG ... 399
PIUPB10REG ... 399
PIUPB11REG ... 399
PIUPB12REG ... 399
PIUPB13REG ... 399
PIUPB14REG ... 399
PIUSIVLREG ... 391
PIUSTBLREG ... 392
PLL … 43
PLL passive components ... 683
PMU ... 31, 319
PMU registers ... 35, 327
PMUCNT2REG … 333
PMUCNTREG ... 330
PMUINT2REG … 332
PMUINTREG ... 328
PORTREG ... 436
Power Management Unit (PMU) ... 31, 319
Power mode … 210, 325
Power mode state transition ... 325
Power-on control ... 321
Power-on sequence ... 205
Precision of exceptions ... 158
Priority of exceptions ... 176
Privilege mode ... 211
Processor Revision Identifier (PRId) register ... 149

R
Random register ... 146
RDR ... 503
Real-time Clock Unit (RTC) ... 31, 335
Refresh ... 267
Reserved Instruction exception ... 188
Reset control ... 319
Reset function ... 199
Reverse endian ... 211
REVIDREG ... 243
ROM … 137
ROM access … 252

APPENDIX B INDEX

699

ROM interface ... 248
ROM space ... 137
RSTSW ... 201, 319
RTC ... 31, 335
RTC registers ... 36, 336
RTC reset ... 199, 319
RTCINTREG ... 353
RTCL1CNTHREG ... 344
RTCL1CNTLREG ... 343
RTCL1HREG ... 342
RTCL1LREG ... 341
RTCL2CNTHREG ... 348
RTCL2CNTLREG ... 347
RTCL2HREG ... 346
RTCL2LREG ... 345
RTCLong timer ... 335
RXB0LREG ... 441
RXB0RREG ... 440
RXFL ... 523
RXIR … 515
RXSTS ... 519

S
Scan sequencer ... 383, 425
SCANLINE ... 434
SCNTREG ... 413
SCNVRREG ... 414
SDMADATREG ... 411
SEQREG ... 419
Serial Interface Unit (SIU) ... 32, 461
Shutdown control ... 320
SIU ... 32, 461
SIU registers ... 41, 461
SIUDLL ... 463
SIUDLM ... 465
SIUFC ... 469
SIUIE ... 464
SIUIID ... 467
SIUIRSEL ... 478
SIULC ... 472
SIULS ... 474
SIUMC ... 473
SIUMS ... 476
SIURB ... 462
SIUSC ... 477
SIUTH ... 462
Slip conditions ... 114
SODATREG ... 412
Soft reset ... 208
Soft reset exception ... 178
SOFTINTREG ... 370

Software interrupts ... 232
Software shutdown ... 203, 320
Special instructions ... 96
Stall conditions ... 113
Standby mode ... 210, 326
Status after reset … 164
Status register ... 162
Store delay slot ... 82
Store instruction ... 82, 527
Supervisor expanded addressing mode ... 211
Supervisor mode ... 124
Supervisor mode address space ... 125
Suspend mode ... 210, 326
SYSINT1REG ... 295
SYSINT2REG ... 311
System Call exception ... 186
System Control Coprocessor (CP0) ... 44, 49, 141
System Control Coprocessor (CP0) instructions ...
97, 528

T
TagHi register ... 152
TagLo register ... 152
TCLKCNTHREG ... 352
TCLKCNTLREG ... 351
TCLKHREG ... 350
TCLKLREG ... 349
TClock ... 53
Tclock Counter ... 335
TDR ... 502
TDREG ... 287
Timer interrupt ... 232
TLB … 52, 117
TLB entry ... 142
TLB exceptions ... 181
TLB instructions ... 155
TLB Invalid exception ... 182
TLB Misses … 155
TLB Modified exception ... 183
TLB Refill exception ... 181
Touch panel ... 381
Touch Panel Interface Unit (PIU) ... 32, 381
Touch/release detection ... 404
Translation Lookaside Buffer (TLB) ... 52, 117
Trap exception ... 188
TXFL ... 521
TXIR … 514
TXS0LREG ... 443
TXS0RREG ... 442

APPENDIX B INDEX

700

U
User expanded addressing mode ... 211
User mode ... 121
User mode address space ... 122

V
Virtual address ... 117
Virtual-to-physical address translation ... 118

W
Watch exception ... 189
WatchHi register ... 168
WatchLo register ... 168
Wired register ... 148

X
XContext register ... 169
XTLB Refill exception ... 181

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we©ve taken, you may
encounter problems in the documentation.
Please complete this form whenever
you©d like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Corporation
Semiconductor Solution Engineering Division
Technical Information Support Dept.
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 97.8

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	PREFACE
	CHAPTER 1 INTRODUCTION
	1.1 FEATURES
	1.2 ORDERING INFORMATION
	1.3 64-BIT ARCHITECTURE
	1.4 VR4102 PROCESSOR
	1.4.1 Internal Block Structure
	1.4.2 I/O Registers

	1.5 VR4100 CPU CORE
	1.5.1 VR4100 CPU Core
	1.5.2 CPU Registers
	1.5.3 CPU Instruction Set Overview
	1.5.4 Data Formats and Addressing
	1.5.5 Coprocessors (CP0-CP3)
	1.5.6 Floating-Point Unit (FPU)
	1.5.7 Cache

	1.6 CPU CORE MEMORY MANAGEMENT SYSTEM (MMU)
	1.6.1 Translation Lookaside Buffer (TLB)
	1.6.2 Operating Modes

	1.7 INSTRUCTION PIPELINE
	1.8 CLOCK INTERFACE

	CHAPTER 2 PIN FUNCTIONS
	2.1 PIN CONFIGURATION
	2.2 PIN FUNCTION DESCRIPTION
	2.2.1 System Bus Interface Signals
	2.2.2 Clock Interface Signals
	2.2.3 Battery Monitor Interface Signals
	2.2.4 Initialization Interface Signals
	2.2.5 RS-232-C Interface Signals
	2.2.6 IrDA Interface Signals
	2.2.7 Debug Serial Interface Signals
	2.2.8 Keyboard Interface Signals
	2.2.9 Audio Interface Signals
	2.2.10 Touch Panel/General Purpose A/D Interface Signals
	2.2.11 General-purpose I/O Signals
	2.2.12 HSP MODEM Interface Signals
	2.2.13 LED Interface Signal
	2.2.14 Dedicated VDD and GND Signals

	2.3 PIN STATUS UPON SPECIFIC STATES
	2.3.1 Pin Status upon Reset
	2.3.2 Connection of Unused Pins and Pin I/O Circuits
	2.3.3 Pin I/O Circuits

	CHAPTER 3 CPU INSTRUCTION SET SUMMARY
	3.1 CPU INSTRUCTION FORMATS
	3.2 INSTRUCTION CLASSES
	3.2.1 Load and Store Instructions
	3.2.2 Computational Instructions
	3.2.3 Jump and Branch Instructions
	3.2.4 Special Instructions
	3.2.5 System Control Coprocessor (CP0) Instructions

	CHAPTER 4 VR4102 PIPELINE
	4.1 PIPELINE STAGES
	4.1.1 Pipeline Activities

	4.2 BRANCH DELAY
	4.3 LOAD DELAY
	4.4 PIPELINE OPERATION
	4.5 INTERLOCK AND EXCEPTION HANDLING
	4.5.1 Exception Conditions
	4.5.2 Stall Conditions
	4.5.3 Slip Conditions
	4.5.4 Bypassing

	4.6 CODE COMPATIBILITY

	CHAPTER 5 MEMORY MANAGEMENT SYSTEM
	5.1 TRANSLATION LOOKASIDE BUFFER (TLB)
	5.2 VIRTUAL ADDRESS SPACE
	5.2.1 Virtual-to-Physical Address Translation
	5.2.2 32-bit Mode Address Translation
	5.2.3 64-bit Mode Address Translation
	5.2.4 Operating Modes
	5.2.5 User Mode Virtual Addressing
	5.2.6 Supervisor-mode Virtual Addressing
	5.2.7 Kernel-mode Virtual Addressing

	5.3 PHYSICAL ADDRESS SPACE
	5.3.1 ROM Space
	5.3.2 System Bus Space
	5.3.3 Internal I/O Space
	5.3.4 LCD Space
	5.3.5 DRAM Space

	5.4 SYSTEM CONTROL COPROCESSOR
	5.4.1 Format of a TLB Entry

	5.5 CP0 REGISTERS
	5.5.1 Index Register (0)
	5.5.2 Random Register (1)
	5.5.3 EntryHi (10), EntryLO0 (2), EntryLO1 (3), and PageMask (5) Registers
	5.5.4 Wired Register (6)
	5.5.5 Processor Revision Identifier (PRId) Register (15)
	5.5.6 Config Register (16)
	5.5.7 Load Linked Address (LLAddr) Register (17)
	5.5.8 Cache Tag Registers (TagLo (28) and TagHi (29))
	5.5.9 Virtual-to-Physical Address Translation
	5.5.10 TLB Misses
	5.5.11 TLB Instructions

	CHAPTER 6 EXCEPTION PROCESSING
	6.1 HOW EXCEPTION PROCESSING WORKS
	6.2 PRECISION OF EXCEPTIONS
	6.3 EXCEPTION PROCESSING REGISTERS
	6.3.1 Context Register (4)
	6.3.2 BadVAddr Register (8)
	6.3.3 Count Register (9)
	6.3.4 Compare Register (11)
	6.3.5 Status Register (12)
	6.3.6 Cause Register (13)
	6.3.7 Exception Program Counter (EPC) Register (14)
	6.3.8 WatchLo (18) and WatchHi (19) Registers
	6.3.9 XContext Register (20)
	6.3.10 Parity Error Register (26)
	6.3.11 Cache Error Register (27)
	6.3.12 ErrorEPC Register (30)

	6.4 DETAILS OF EXCEPTIONS
	6.4.1 Exception Types
	6.4.2 Exception Vector Locations
	6.4.3 Priority of Exceptions
	6.4.4 Cold Reset Exception
	6.4.5 Soft Reset Exception
	6.4.6 NMI Exception
	6.4.7 Address Error Exception
	6.4.8 TLB Exceptions
	6.4.9 Cache Error Exception
	6.4.10 Bus Error Exception
	6.4.11 System Call Exception
	6.4.12 Breakpoint Exception
	6.4.13 Coprocessor Unusable Exception
	6.4.14 Reserved Instruction Exception
	6.4.15 Trap Exception
	6.4.16 Integer Overflow Exception
	6.4.17 Watch Exception
	6.4.18 Interrupt Exception

	6.5 EXCEPTION PROCESSING AND SERVICING FLOWCHARTS

	CHAPTER 7 INITIALIZATION INTERFACE
	7.1 RESET FUNCTION
	7.1.1 RTC Reset
	7.1.2 RSTSW
	7.1.3 Deadman's Switch
	7.1.4 Software Shutdown
	7.1.5 HALTimer Shutdown

	7.2 POWERON SEQUENCE
	7.3 RESET OF THE CPU CORE
	7.3.1 Cold Reset
	7.3.2 Soft Reset

	7.4 VR4102 PROCESSOR MODES
	7.4.1 Power Modes
	7.4.2 Privilege Mode
	7.4.3 Reverse Endian
	7.4.4 Bootstrap Exception Vector (BEV)
	7.4.5 Cache Error Check
	7.4.6 Parity Error Prohibit
	7.4.7 Interrupt Enable (IE)

	CHAPTER 8 CACHE MEMORY
	8.1 MEMORY ORGANIZATION
	8.2 CACHE ORGANIZATION
	8.2.1 Organization of the Instruction Cache (I-Cache)
	8.2.2 Organization of the Data Cache (D-Cache)
	8.2.3 Accessing the Caches

	8.3 CACHE OPERATIONS
	8.3.1 Cache Write Policy

	8.4 CACHE STATES
	8.5 CACHE STATE TRANSITION DIAGRAMS
	8.5.1 Data Cache State Transition
	8.5.2 Instruction Cache State Transition

	8.6 CACHE DATA INTEGRITY
	8.7 MANIPULATION OF THE CACHES BY AN EXTERNAL AGENT

	CHAPTER 9 CPU CORE INTERRUPTS
	9.1 NON-MASKABLE INTERRUPT (NMI)
	9.2 ORDINARY INTERRUPTS
	9.3 SOFTWARE INTERRUPTS GENERATED IN CPU CORE
	9.4 TIMER INTERRUPT
	9.5 ASSERTING INTERRUPTS
	9.5.1 Detecting Hardware Interrupts
	9.5.2 Masking Interrupt Signals

	CHAPTER 10 BCU (BUS CONTROL UNIT)
	10.1 GENERAL
	10.2 REGISTER SET
	10.2.1 BCUCNTREG 1 (0x0B00 0000)
	10.2.2 BCUCNTREG 2 (0x0B00 0002)
	10.2.3 BCUSPEEDREG (0x0B00 000A)
	10.2.4 BCUERRSTREG (0x0B00 000C)
	10.2.5 BCURFCNTREG (0x0B00 000E)
	10.2.6 REVIDREG (0x0B00 0010)
	10.2.7 BCURFCOUNTREG (0x0B00 0012)
	10.2.8 CLKSPEEDREG (0x0B00 0014)

	10.3 CONNECTION OF ADDRESS PINS
	10.4 NOTES ON USING BCU
	10.4.1 CPU Core Bus Modes
	10.4.2 Access Data Size
	10.4.3 ROM Interface
	10.4.4 Flash Memory Interface
	10.4.5 LCD Control Interface
	10.4.6 Illegal Access Notification

	10.5 BUS OPERATIONS
	10.5.1 ROM Access
	10.5.2 System Bus Access
	10.5.3 LCD Interface
	10.5.4 DRAM Access (EDO Type)
	10.5.5 Refresh
	10.5.6 Bus Hold

	CHAPTER 11 DMAAU (DMA ADDRESS UNIT)
	11.1 GENERAL
	11.2 REGISTER SET
	11.2.1 AIU IN DMA Base Address Registers
	11.2.2 AIU IN DMA Address Registers
	11.2.3 AIU OUT DMA Base Address Registers
	11.2.4 AIU OUT DMA Address Registers
	11.2.5 FIR DMA Base Address Registers
	11.2.6 FIR DMA Address Registers

	CHAPTER 12 DCU (DMA CONTROL UNIT)
	12.1 GENERAL
	12.2 DMA PRIORITY CONTROL
	12.3 REGISTER SET
	12.3.1 DMARSTREG (0x0B00 0040)
	12.3.2 DMAIDLEREG (0x0B00 0042)
	12.3.3 DMASENREG (0x0B00 0044)
	12.3.4 DMAMSKREG (0x0B00 0046)
	12.3.5 DMAREQREG (0x0B00 0048)
	12.3.6 TDREG (0x0B00 004A)

	CHAPTER 13 CMU (CLOCK MASK UNIT)
	13.1 GENERAL
	13.2 REGISTER SET
	13.2.1 CMUCLKMSK (0x0B00 0060)

	CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)
	14.1 GENERAL
	14.2 REGISTER SET
	14.2.1 SYSINT1REG (0x0B00 0080)
	14.2.2 PIUINTREG (0x0B00 0082)
	14.2.3 AIUINTREG (0x0B00 0084)
	14.2.4 KIUINTREG (0x0B00 0086)
	14.2.5 GIUINTLREG (0x0B00 0088)
	14.2.6 DSIUINTREG (0x0B00 008A)
	14.2.7 MSYSINT1REG (0x0B00 008C)
	14.2.8 MPIUINTREG (0x0B00 008E)
	14.2.9 MAIUINTREG (0x0B00 0090)
	14.2.10 MKIUINTREG (0x0B00 0092)
	14.2.11 MGIUINTLREG (0x0B00 0094)
	14.2.12 MDSIUINTREG (0x0B00 0096)
	14.2.13 NMIREG (0x0B00 0098)
	14.2.14 SOFTINTREG (0x0B00 009A)
	14.2.15 SYSINT2REG (0x0B00 0200)
	14.2.16 GIUINTHREG (0x0B00 0202)
	14.2.17 FIRINTREG (0x0B00 0204)
	14.2.18 MSYSINT2REG (0x0B00 0206)
	14.2.19 MGIUINTHREG (0x0B00 0208)
	14.2.20 MFIRINTREG (0x0B00 020A)

	14.3 NOTES FOR REGISTER SETTING

	CHAPTER 15 PMU (POWER MANAGEMENT UNIT)
	15.1 GENERAL
	15.1.1 Reset Control
	15.1.2 Shutdown Control
	15.1.3 Power-on Control
	15.1.4 Power Mode

	15.2 REGISTER SET
	15.2.1 PMUINTREG (0x0B00 00A0)
	15.2.2 PMUCNTREG (0x0B00 00A2)
	15.2.3 PMUINT2REG (0x0B00 00A4)
	15.2.4 PMUCNT2REG (0x0B00 00A6)

	CHAPTER 16 RTC (REALTIME CLOCK UNIT)
	16.1 GENERAL
	16.2 REGISTER SET
	16.2.1 Elapsed Time Registers
	16.2.2 Elapsed Time Compare Registers
	16.2.3 RTC Long 1 Registers
	16.2.4 RTC Long 1 Count Registers
	16.2.5 RTC Long 2 Registers
	16.2.6 RTC Long 2 Count Registers
	16.2.7 TClock Counter Registers
	16.2.8 TClock Counter Count Registers
	16.2.9 RTC Interrupt Register

	CHAPTER 17 DSU (DEADMAN’S SWITCH UNIT)
	17.1 GENERAL
	17.2 REGISTER SET
	17.2.1 DSUCNTREG (0x0B00 00E0)
	17.2.2 DSUSETREG (0x0B00 00E2)
	17.2.3 DSUCLRREG (0x0B00 00E4)
	17.2.4 DSUTIMREG (0x0B00 00E6)

	17.3 REGISTER SETTING FLOW

	CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)
	18.1 GENERAL
	18.2 REGISTER SET
	18.2.1 GIUIOSELL (0x0B00 0100)
	18.2.2 GIUIOSELH (0x0B00 0102)
	18.2.3 GIUPIODL (0x0B00 0104)
	18.2.4 GIUPIODH (0x0B00 0106)
	18.2.5 GIUINTSTATL (0x0B00 0108)
	18.2.6 GIUINTSTATH (0x0B00 010A)
	18.2.7 GIUINTENL (0x0B00 010C)
	18.2.8 GIUINTENH (0x0B00 010E)
	18.2.9 GIUINTTYPL (0x0B00 0110)
	18.2.10 GIUINTTYPH (0x0B00 0112)
	18.2.11 GIUINTALSELL (0x0B00 0114)
	18.2.12 GIUINTALSELH (0x0B00 0116)
	18.2.13 GIUINTHTSELL (0x0B00 0118)
	18.2.14 GIUINTHTSELH (0x0B00 011A)
	18.2.15 GIUPODATL (0x0B00 011C)
	18.2.16 GIUPODATH (0x0B00 011E)

	CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)
	19.1 GENERAL
	19.1.1 Block Diagrams

	19.2 SCAN SEQUENCER STATE TRANSITION
	19.3 REGISTER SET
	19.3.1 PIUCNTREG (0x0B00 0122)
	19.3.2 PIUINTREG (0x0B00 0124)
	19.3.3 PIUSIVLREG (0x0B00 0126)
	19.3.4 PIUSTBLREG (0x0B00 0128)
	19.3.5 PIUCMDREG (0x0B00 012A)
	19.3.6 PIUASCNREG (0x0B00 0130)
	19.3.7 PIUAMSKREG (0x0B00 0132)
	19.3.8 PIUCIVLREG (0x0B00 013E)
	19.3.9 PIUPBnmREG (0x0B00 02A0 to 0x0B00 02AE, 0x0B00 02BC to 0x0B00 02BE)
	19.3.10 PIUABnREG (0x0B00 02B0 to 0x0B00 02B6)

	19.4 REGISTER SETTING FLOW
	19.5 RELATIONSHIPS AMONG TPX, TPY, AND ADIN PINS AND STATES
	19.6 TIMING
	19.6.1 Touch/Release Detection Timing
	19.6.2 A/D Port Scan Timing

	19.7 DATA LOSS INTERRUPT CONDITIONS
	19.8 COMPARISON OF VR4102 AND VR4101

	CHAPTER 20 AIU (AUDIO INTERFACE UNIT)
	20.1 GENERAL
	20.2 REGISTER SET
	20.2.1 MDMADATREG (0x0B00 0160)
	20.2.2 SDMADATREG (0x0B00 0162)
	20.2.3 SODATREG (0x0B00 0166)
	20.2.4 SCNTREG (0x0B00 0168)
	20.2.5 SCNVRREG (0x0B00 016A)
	20.2.6 MIDATREG (0x0B00 0170)
	20.2.7 MCNTREG (0x0B00 0172)
	20.2.8 MCNVRREG (0x0B00 0174)
	20.2.9 DVALIDREG (0x0B00 0178)
	20.2.10 SEQREG (0x0B00 017A)
	20.2.11 INTREG (0x0B00 017C)

	20.3 OPERATION SEQUENCE
	20.3.1 Output (Speaker)
	20.3.2 Input (MIC)

	CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)
	21.1 GENERAL
	21.2 REGISTER SET
	21.2.1 KIUDATn (0x0B00 0180 to 0x0B00 018A)
	21.2.2 KIUSCANREP (0x0B00 0190)
	21.2.3 KIUSCANS (0x0B00 0192)
	21.2.4 KIUWKS (0x0B00 0194)
	21.2.5 KIUWKI (0x0B00 0196)
	21.2.6 KIUINT (0x0B00 0198)
	21.2.7 KIURST (0x0B00 019A)
	21.2.8 KIUGPEN (0x0B00 019C)
	21.2.9 SCANLINE (0x0B00 019E)

	CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)
	22.1 GENERAL
	22.2 REGISTER SET
	22.2.1 PORTREG (0x0B00 01A0)
	22.2.2 MODEMREG (0x0B00 01A2)
	22.2.3 ASIM00REG (0x0B00 01A4)
	22.2.4 ASIM01REG (0x0B00 01A6)
	22.2.5 RXB0RREG (0x0B00 01A8)
	22.2.6 RXB0LREG (0x0B00 01AA)
	22.2.7 TXS0RREG (0x0B00 01AC)
	22.2.8 TXS0LREG (0x0B00 01AE)
	22.2.9 ASIS0REG (0x0B00 01B0)
	22.2.10 INTR0REG (0x0B00 01B2)
	22.2.11 BPRM0REG (0x0B00 01B6)
	22.2.12 DSIURESETREG (0x0B00 01B8)

	22.3 DESCRIPTION OF OPERATIONS
	22.3.1 Data Format
	22.3.2 Transmission
	22.3.3 Reception

	CHAPTER 23 LED (LED CONTROL UNIT)
	23.1 GENERAL
	23.2 REGISTER SET
	23.2.1 LEDHTSREG (0x0B00 0240)
	23.2.2 LEDLTSREG (0x0B00 0242)
	23.2.3 LEDCNTREG (0x0B00 0248)
	23.2.4 LEDASTCREG (0x0B00 024A)
	23.2.5 LEDINTREG (0x0B00 024C)

	23.3 OPERATION FLOW

	CHAPTER 24 SIU (SERIAL INTERFACE UNIT)
	24.1 GENERAL
	24.2 REGISTER SET
	24.2.1 SIURB (0x0C00 0000: LCR[7] = 0, Read)
	24.2.2 SIUTH (0x0C00 0000: LCR[7] = 0, Write)
	24.2.3 SIUDLL (0x0C00 0000: LCR[7] = 1)
	24.2.4 SIUIE (0x0C00 0001: LCR[7] = 0)
	24.2.5 SIUDLM (0x0C00 0001: LCR[7] = 1)
	24.2.6 SIUIID (0x0C00 0002: Read)
	24.2.7 SIUFC (0x0C00 0002: Write)
	24.2.8 SIULC (0x0C00 0003)
	24.2.9 SIUMC (0x0C00 0004)
	24.2.10 SIULS (0x0C00 0005)
	24.2.11 SIUMS (0x0C00 0006)
	24.2.12 SIUSC (0x0C00 0007)
	24.2.13 SIUIRSEL (0x0C00 0008)

	CHAPTER 25 HSP (MODEM INTERFACE UNIT)
	25.1 GENERAL
	25.2 REGISTER SET
	25.2.1 HSP Initialize Register
	25.2.2 HSP Data Register, HSP Index Register
	25.2.3 HSP ID Register, HSP I/O Address Program Confirmation Register
	25.2.4 HSP Signature Checking Port

	25.3 POWER CONTROL

	CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)
	26.1 GENERAL
	26.2 REGISTER SET
	26.2.1 FRSTR (0x0C00 0040)
	26.2.2 DPINTR (0x0C00 0042)
	26.2.3 DPCNTR (0x0C00 0044)
	26.2.4 TDR (0x0C00 0050)
	26.2.5 RDR (0x0C00 0052)
	26.2.6 IMR (0x0C00 0054)
	26.2.7 FSR (0x0C00 0056)
	26.2.8 IRSR1 (0x0C00 0058)
	26.2.9 CRCSR (0x0C00 005C)
	26.2.10 FIRCR (0x0C00 005E)
	26.2.11 MIRCR (0x0C00 0060)
	26.2.12 DMACR (0x0C00 0062)
	26.2.13 DMAER (0x0C00 0064)
	26.2.14 TXIR (0x0C00 0066)
	26.2.15 RXIR (0x0C00 0068)
	26.2.16 IFR (0x0C00 006A)
	26.2.17 RXSTS (0x0C00 006C)
	26.2.18 TXFL (0x0C00 006E)
	26.2.19 MRXF (0x0C00 0070)
	26.2.20 RXFL (0x0C00 0074)

	CHAPTER 27 CPU INSTRUCTION SET DETAILS
	27.1 INSTRUCTION NOTATION CONVENTIONS
	27.2 LOAD AND STORE INSTRUCTIONS
	27.3 JUMP AND BRANCH INSTRUCTIONS
	27.4 SYSTEM CONTROL COPROCESSOR (CP0) INSTRUCTIONS
	27.5 CPU INSTRUCTION
	27.6 CPU INSTRUCTION OPCODE BIT ENCODING

	CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS
	CHAPTER 29 PLL PASSIVE COMPONENTS
	APPENDIX A DIFFERENCES BETWEEN VR4102 AND VR4101
	A.1 SUMMARY OF DIFFERENCES
	A.2 DETAILS OF DIFFERENCES
	A.2.1 CPU Core
	A.2.2 Address Mapping
	A.2.3 BCU
	A.2.4 DMA
	A.2.5 ICU
	A.2.6 PMU
	A.2.7 RTC
	A.2.8 GIU
	A.2.9 PIU
	A.2.10 AIU
	A.2.11 KIU
	A.2.12 DSIU
	A.2.13 SIU
	A.2.14 Newly Added Units

	APPENDIX B INDEX

