NEC

Preliminary User’'s Manual

VR4102™

64/32-bit Microprocessor

uPD30102

Document No. U12739EJ2VOUMOO0 (2nd edition)
Date Published January 1998 N CP(K)

© NEC Corporation 1997
© MIPS Technologies, Inc. 1996
Printed in Japan

[MEMO]

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

® HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

Vr3000, Vr4000, VR4100, VrR4101, Vr4102, VR4200, VrR4400, and VR Series are trademarks of NEC
Corporation.

MIPS is a trademark of MIPS Technologies, Inc.

iIAPX is a trademark of Intel Corp.

DEC VAX is a trademark of Digital Equipment Corp.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.

Exporting this product or equipment that include this product may require a governmental license from
the U.S.A. for some countries because this product utilizes technologies limited by the export control
regulations of the U.S.A.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M7 96.5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

« Device availability
+ Ordering information

« Product release schedule

Availability of related technical literature

+ Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics ltaliana s.r.1.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-719-2377

Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

J97.8

[MEMO]

PREFACE

Readers This manual targets users who intends to understand the functions of the VR4102
and to design application systems using this microprocessor.

Purpose This manual introduces the architecture and hardware functions of the VrR4102 to
users, following the organization described below.

Organization This manual consists of the following contents:

« Introduction

¢ Pipeline operation

« Cache organization and memory management system
« Exception processing

« Initialization interface

* Interrupts

 Peripheral units

« Instruction set details

How to read this manual It is assumed that the reader of this manual has general knowledge in the fields of
electric engineering, logic circuits, and microcomputers.

The VR4000™ in this manual includes the VR4400™.

To learn in detail about the function of a specific instruction,
— Read Chapter 3 CPU Instruction Set Summary and Chapter 27 CPU
Instruction Set Details

To learn about the overall functions of the VR4102,
— Read this manual in sequential order.

To learn about electrical specifications,
— Refer to Data Sheet which is separately available.

Legend Data significance: Higher on left and lower on right
Active low: XXX# (trailing # after pin and signal names)
Numeric representation: binary/decimal ... XXXX
hexadecimal ... OXXXXX
Prefixes representing an exponent of 2 (for address space or memory capacity):
K (kilo) 2 =1024
M (mega) 2= 1024’
G (giga) 2%*=1024°
T (tera) 2" =1024"
P (peta) 2% =1024°
E (exa) 2% =1024°

Related Documents

The related documents indicated here may include preliminary version.

preliminary versions are not marked as such.

¢ User’'s manual
VR4102 User’'s Manual This manual
VR4100™ User's Manual U10050E

* Data sheet
VR4102 Data Sheet U12543E

« Application note
VR4102 Application Note To be prepared
VR Series™ Application Note programming guide U10710J™°

Note This document number is that of the Japanese version.

However,

CONTENTS

CHAPTER 1 [INTRODUGCTION ...uuiiiiiiiiiiiiie ettt e ettt s e e e s e e e aa b e e e e e e e eesaas s e eeaaeeastnnns senrennn 29
L.l FEATURES ..ttt e et et e e e e et e et e et e e e e e e e eeatataeaee teeeerrnen 29
1.2 ORDERING INFORMATION ...t esetneeteessssnessesesesnseessnnennnnnes 30
1.3 64-BIT ARCHITECTURE.......c ittt e e e e e e e e e e st b e as 30
1.4 VRA102 PROCESSOR ... ssnesssnsnsanssnssnsnnsnnnnnnnnns 30

1.4.1 Internal BIOCK STTUCTUIE.coi ettt ettt e e e e ettt e e e e e e et eeaeaaaas eneeeeeaeann 31
N 1 (@ I = LYo 15 =1 £ PRSPPI 33
1.5 VRAL00 CPU CORE .. ittt ittt e e e e e e e et e et s e e e e e eeaestanaaeeaeeeesenes 43
1.5.1 VRAL00 CPU COTE ..utviieiiiiiteeitieee ettt eite e sttt e et e e e sttt e e e a bt e e e et b e e e e enabe e e e snbee e e e anbbeeesanbeeeesnnees 43
1.5.2 CPU REQISIEIS ...oiieiitiieeiiitite ettt ettt s et e e skt e e e s et e e sn e e e e s et e e et e e e s annee feeeannneneeannne 45
1.5.3 CPU INSIIUCLION St OVEIVIEW.ceiiiiiieiiiiieeeiiiie ettt ettt e e st e s e e s snbe e e e sste e e s snbeeessines eenees 46
1.5.4 Data FOrmats and AAUArESSINGcceiiiriieiiiiiieiiiiee e e e nrre e nanee nees 47
1.5.5 COProCeSSOrS (CPO-CP3).....cciiiiiiiiiiiiiiiete e e e ettt e e e e e et e e e e e e s e e r e e e e e e e s s s bbb areaeeaeaes teaeaeeas 49
1.5.6 Floating-Point UNit (FPU)..........ooiiiiiiiii ettt rreeennnes 51
T A O Vo o1 T PP PTPPPP PSP 51
1.6 CPU CORE MEMORY MANAGEMENT SYSTEM (MMU).....ccccciiiiiiiiiiiiiieeeiiieeeee e 52
1.6.1 Translation Lookaside BUffer (TLB)ccuiiiiiieiiiiiiiiee e .. b2
1.6.2 OPErating MOUESccoiiiiieeiiiie ettt ettt e et e s e e st e e st e e e e e es eeanneeesnnes 52
1.7 INSTRUCTION PIPELINE ...t taeseaeesseesesesesesesesssesnsssenennnnnes 53
1.8 CLOCK INTERFACE.. ... oottt e e e e et e e e e e e et e e et aaaaaes on 53

CHAPTER 2 PIN FUNCTIONS. ... ittt s e e e ettt e e e e e e aaa e s e e e e aeesasaa e seenrenen 57
2.1 PIN CONFIGURATION. .. .cttttiiit ettt e e e ettt e e e e e e e e e aa e e e e e e eaabananseeeeeeeaeseanns . 57
2.2 PIN FUNCTION DESCRIPTIONuuutuututuiuuuueueueueueneneeeeaeenemeeenereeeeererereeeeeeeeeeerrrr 62

2.2.1 System BUS INterface SIGNAIS.........cciiiiiiiiiiiiice e eeene 63
2.2.2 CIOCK INtEIfACE SIGNaAIS.....cciiiiiiiiiiie et e e e e e e e e s ae e e e e e e e i eeenaarreeeas 65
2.2.3 Battery Monitor INterface SIgNAISccooviieiiiiiiiieee et e 65
2.2.4 Initialization Interface SIgNalS...........oceiiiiiiiiiiiie e e 66
2.2.5 RS-232-C INtEIfACE SIGNQAIS....cciiiiiiiiiieee ittt e s e nrrees rneeenan 67
2.2.6 IrDA INErfaCe SIgNaAlSueiiiiiiiiiiiiii et e e e e e e e e e e s e e e e s eeeanaraaees 68
2.2.7 Debug Serial INterface SIgNaAIS.........ccciiiiiiiiiiiiiie et eeenn 68
2.2.8 Keyboard INterface SigNalS........c.ccoiiiiiiiiiii et e s e e e erres arraeeas 69
2.2.9 AUIO INEITACE SIGNAISciiriiieiiii et nne aarreeeaan 69
2.2.10 Touch Panel/General Purpose A/D Interface SignalsSccccvvevveeiiiiiiiieree e 69
2.2.11 General-purpose /O SIGNAISccccuviiiiiiiieiiie ettt e eeenn 70
2.2.12 HSP MODEM INterface SIigNaAlSccoeiiiiiiiiiiiiee et e ettt e e e e e e e e eennes eas 71
2.2.13 LED INtErface SIGN@Icciiiiiiiiiiiieiieee ettt ettt e e e s e nne eeanneeenan 71
2.2.14 Dedicated V pb and GND SigNalScccuiiieiieii ittt e e e e e e e saarae e e e 72
2.3 PIN STATUS UPON SPECIFIC STATES ...t 73
2.3.1 Pin StatuS UPON RESEL....uiiiiiiiiiiiiiiie ettt e e e e s et e e e e e e s stbae e e e e e aes aaraaraeeeas 73
2.3.2 Connection of Unused Pins and Pin [/O CirCUILSccuuiiiiieeiiiiieiee e eiieeeee e 76
2.3.3 PN /O CIFCUILS ...vtieeiiiii ettt ettt e ettt e e e bt e e s smbe e e e snbb e e e s abbeeees oabbeeesantneeeanns 79

CHAPTER 3 CPU INSTRUCTION SET SUMMARYooiiiiiiiiiiiiee et 81

3.1 CPU INSTRUCTION FORMATSeiiiiiiiuuiuuuenentnenunentarnrnraraeereaneerereeeeeerersrerararernrsrererernrnrnnes 81
3.2 INSTRUCTION CLASSES.ot e e e e e e e e e e e et e aaaaae 82
3.2.1 Load and Store INSIIUCHIONS......ccoiuiiiiiiiie ettt e et e e st e e s srbeeeentne eeneneeas 82
3.2.2 Computational INSIIUCHIONScoureeeiiiiie et reee eaneneees 86
3.2.3 Jump and Branch INSIIUCLIONS.ccouiiiiiie et es aeaea 92
3.2.4 SPECIAI INSIIUCTIONSeeeiiitiee ittt e e et e s e sine e e e anne anneeesnnneees 96

3.2.5 System Control Coprocessor (CP0) INSIrUCHIONSeviiieiiiiiiiiiieee et 97
CHAPTER 4 VRAL102 PIPELINE ... 99
o R e I NS 1 1 P 99
4.1.1 PiIPElING ACHVITIESiiiieiieiee ittt ettt e et n e et e e e s e e reeenaneee e 100
A = 4 A NN [I I 1 I 102
4.3 LOAD DELAY .ottt e et e e e et e et aeaa——a, s 102
4.4 PIPELINE OPERATION. .. oottt e et e s e e e e e e e aabb e e e e e e eeeeenen . 102
45 INTERLOCK AND EXCEPTION HANDLING.......ouiiiiiiiiiiieicin et eeaaan e e e e e eens 109
4.5.1 EXCePtioN CONAItIONS. ..ottt et e e s e e e e e e s et e e e e e e s seaanee aarbeeeeaeas 112
N S - || @] o 11T ISR 113
T IS {1 o I O] g o 11 T0] o 1= SRR 114
S A Y o T L1 o T TP PPPR 115
4.6 CODE COMPATIBILITY oottt e s e s ss e nnnnnnsnnnnnnnnes 115
CHAPTER 5 MEMORY MANAGEMENT SYSTEM....ccciiiiiiiiiiiiiiiiisissss s ssnnnnnees 117
5.1 TRANSLATION LOOKASIDE BUFFER (TLB)..iiiiiiiiiiiiiiiieee e e e 117
5.2 VIRTUAL ADDRESS SPACEo oottt a et a e e e 117
5.2.1 Virtual-to-Physical ADdress Translationccccuveieeeiiiiiiiiii e . 118
5.2.2 32-bit Mode Address TranSIationoooi i e e 119
5.2.3 64-bit Mode Address TranSIationc..cei it aeeas 120
5.2.4 OPEratiNng MOAESooiiiiiieiiiiee ettt ettt e e st e e sn e e s e e aa anreeennneees 121
5.2.5 User Mode Virtual AdAreSSINGuuvviiiiiiiiiiiiii e et e et e e e et e e e e e s stbane e e e e e e aies aeans 121
5.2.6 Supervisor-mode Virtual AAAreSSINgGcuveeiirrieiiiiie et . 124
5.2.7 Kernel-mode Virtual AdAreSSiNg........cuueiieiiiiiiiiiiiee e esiiie et e s e e e s r e e e e e s stvarr e e e e e aes aaeas 127
5.3 PHYSICAL ADDRESS SPACE ...ttt e e e s e e e an e e e aaees 135
LR Tt R {1V 0 o = Lo PP 137
5.3.2 SYSIEM BUS SPACE ...t e e a e s eeeeeeaaaan 138
5.3.3 INEINAI I/O SPACEvviiiie ittt ettt e e et e e e e e e e e e e e e e e e st a et e e e e aaaiats arrreeeeeesaan 139
5.3.4 LCD SPACEeiteeiieeeiieiteie et e e e e e e e e e e e e e e n e e e e sannrnreeeeea e 140
5.3.5 DRAM SPACE ... i iiiiieieee e 140
54 SYSTEM CONTROL COPROCESSORciuiiiiiiiiiiiiiiiiie ettt e et s e s eaar e 141
5.4.1 FOrmat Of @ TLB BNV ...cii ittt e e e e e e e e e e e e e s e eabaa e e e e e s sannaes eeeeeeesaanns 142
5.5 CPO REGISTERSttt et e e e e et e et s e e e e e e e e et e e e e e e e eeaa s 146
LN A [(o Lo = LYo £ (= () PP SOOUPPRPPR 146
5.5.2 RANAOM REGISIET (L) .oouuieieiitiieeeiii ettt e e st e e s e e s snn e e e ane sreeesnnnenes 146

5.5.3 EntryHi (10), EntryLoO (2), EntryLol (3), and PageMask (5) RegiSters.........ccccccvevuvrerreeennnnns 147
R SR VT =T l =T o 151 (] o () TS OO PPPR P 148

10

5.5.5 Processor Revision Identifier (PRIA) REgIStEr (15)coccvriieiieeiiiiiiiiee et eiinree e 149

5.5.6 CONfig REGISIET (16)vveeeiitiieeiiiiie ettt e e e st e e s e e e st e e s e e an eeessrneeenan 150

5.5.7 Load Linked Address (LLAAr) REGISIETN (17) ...ueiiieiiiiiiiieiie ettt e e 151

5.5.8 Cache Tag Registers (TagLo (28) and TagHi (29))vveerririeiiiiieiiiiee e 152
5.5.9 Virtual-to-Physical Address Translationcooiiiiiiieiieeiiiiiiieer e e e e e e e . 153
5.5.10 TLB MISSESceueiitiieiit ettt ettt ettt ettt et et e s ab e e e b bt e s hb e e e kbt e ahb e e e kb e e abe e e nbbeenbee heeebeeenaeeetes 155
5.5.11 TLB INSITUCTIONSetitiitiieiiteee st ee ettt e ettt ettt e e et e e e s bee e e sk b e e e e anbe e e s snneeeesbbeeeaasbees beeessseeessnes 155
CHAPTER 6 EXCEPTION PROGCESSINGcittiiiiiiiitieiiee ettt e s e e s eeeeee s 157
6.1 HOW EXCEPTION PROCESSING WORKS........ooiiiiiiiiiiiiiiet e 157
6.2 PRECISION OF EXCEPTIONS ... ebebaenees 158
6.3 EXCEPTION PROCESSING REGISTERSootiiiiiiiiiiiiiee et 159
6.3.1 CONEXE REGISEN (4) .eiueteeeiitiee ettt ettt ettt e ettt e e e sb e e e s s e e sannreean eeeesnneeenan 160
(SR I =T (o |V /Ao o [= oo 1) (=L) ST 161
6.3.3 COUNE REGISTEN () 1 ueteieiiiteie ettt ettt e et e s et e e s e e e s b e e e s anbr e e aane reeessnneeenans 161
(SR A Ofe] 4] o F= LY R T=To 1 (=] i (1) RO SO 162
6.3.5 StAtUS REGISTET (12) ..eeviiiieieeiiiiiie ettt e e e e st et e st e s s e e e e et e e e nnree seeesrneeenns 162
6.3.6 CaUSE REGISIEI (13)...uuuiiiiieeeiiiiitiii et e e et e e e e et e e e e e s e s e e e e e e s e st b e e e e e e s s aatbaereaaees aeeeararreees 165

6.3.7 Exception Program Counter (EPC) RegISter (14)vvviiiiiieiiiiieeiiee et 167
6.3.8 WatchLo (18) and WatChHi (19) REQISIEISccciiiiiiiieiiee ettt 16 8
6.3.9 XCoNteXt REGISLEN (20) ... eeiurreeeiiriieiiieee sttt e et e e e st e s e e sn e e e s e e s e e e nne eeanneeenan 169
6.3.10 Parity Error REGISIET (26)uueiiieeiiiiiiieiee e e e e ettt e e e e s s ettt e e e e e s e st e e e e e e s eeabrr e e e e e e s e sanane aarsarreees 170
6.3.11 Cache Error REGISTET (27) ..cccuveieiiieee ettt sttt et e s e e aann rneeenans 171
6.3.12 EITOrEPC REGISIEN (B0) .oiiiiiiiiiiiiiiiee ettt e ettt e et e e e e e s e et e e e e e s s st b e e e e e e eaans aeaneaeeeas 171
6.4 DETAILS OF EXCEPTIONSoiitiiiiiitiiuiitiiuieieteieieisiesesessessesssesseseesseeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeees 173
[A (ot =Y o] 1o o T I8/ L= T PSPPSR 173
6.4.2 EXCeption VECIOr LOCALIONSiiiiiiiiiiiiiee ittt e e aeeenans 173
6.4.3 Priority Of EXCEPLONS .. .uviiiiiii e ittt e e e e e e e e e e e e st e e e e e e s s atnaareees eeeeiaeaeees 176
6.4.4 COld RESEE EXCEPLION ...eeiiiiiieiiieie ettt s ettt et e et e e s e e e s nr e e e aannees aannneeenan 177
6.4.5 SOft RESEL EXCEPLION . ..vvviiiiie ittt e s e e e e s et e e e e e e e s satbaereaeees oeanasrreees 178
6.4.6 NMI EXCEPLIONeveieiiiiie ettt sttt e e s e e e s e e e e ssne e e s sneeeeas reeessnnneeennns 179
6.4.7 AdAreSS ErrOr EXCEPLONciiii ittt e e ettt e e et e e e e e et e e e e e s s et e e e e e e s eaanrreraeeees oaeveeeas 180
6.4.8 TLB EXCEPLIONSevviiiitiieeiii ittt ettt s et ekt e e et e e s e e sk e e e as b r e e e nnnneens eeeearneeenn 181
6.4.9 Cache Error EXCEPLON.cuviiiiii ettt e e e e e et e e e e e s st e e e e e e s setaraee aaraaereeeas 184
6.4.10 BUS EFTOr EXCEPUON.ciuiiiiiiiiie ittt e st ennnee teanneeenans 185
6.4.11 SyStem Call EXCEPLON......uuiiieiiiiiciiiieee et e et e e e s et e e e e s e et e e e e e e s sasantberaees ararveeeas 186
6.4.12 Breakpoint EXCEPLIONcoiiiiiiiiiiee ittt ettt e e e s st e e s e e e arneeenan 186
6.4.13 Coprocessor Unusable EXCEPLION.........uuiiii it e et e e e e e e e s s s e e aae e an . 187
6.4.14 Reserved INSruction EXCEPLIONcoccvviiiiiiieiiiiie ettt ... 188
(SR ST I = Vol (o= o) o] o [PPSR 188
6.4.16 Integer OVErfloW EXCEPLIONcciiiiiieiiiii ettt e e reeenans 189
6.4.17 WALCh EXCEPLON ..ottt ettt e e e s et e e e e e s et a e e e e e s e e aatbaeeaaes eeeasaaraeeeas 189
6.4.18 INtEITUPL EXCEPLION ...oeiiiiieie ettt e e s e e teeanneeenan 190
6.5 EXCEPTION PROCESSING AND SERVICING FLOWCHARTS......ccooiiiiiiiieeee e 191

11

CHAPTER 7 [INITIALIZATION INTERFACE ...ttt 199

7.1 RESET FUNGCTION ... uuiititttittiutitiuieteueuueeeeneueeererererereaeeere—————————————.———.—.m 199

05 00 T G IO T Y ST 199

A A N 1Y PSS PPP 201

0 T B =T Vo [4 F= g ST (o o PR SOUUTSPRR 202

7.1.4 SOFtWAre SNUIHOWNcoiiiiiiiiiiiie ettt e ettt e s b e e s bb e e e srnteee e s areeesnsneeas 203

7.1.5 HALTIMEI SRULHOWN ..ottt ettt e e e e e ettt et e e e e e e nnteeeaaaeeaannnnee eeeeeeaanns 204

7.2 POWERON SEQUENCE ... sesessassnesssenessnssenenennnrnnes 205

7.3 RESET OF THE CPU CORE ...ttt e e e e e aaaaaaas 207

RS T8 R 0o [0 =TT RS SUPPP 207

7.3.2 SOMt RESEL. ... eeeeiie ettt e e e et e e e e e e et e et e e e e e e e ntaeeaaae 2eeeannreeeeaaeeaanns 208

7.4 VRA102 PROCESSOR MODES.......ccii oo iiiiiiiiesieieie s nsnnnnnnnnnnnnes 210

T 4.1 POWEE MOUESeeeiiieeeiiitee ettt e e ettt e e e e e ettt e e e e e s sttt e e e e e e eaanntbeeeaaeeeaannbeeeeas nnseeeeeeesannes 210

A o (V1 T=To TNV oo L PP SSUPRPPR 211

7.4.3 REVEISE ENUIAN ...ttt e e e e ettt e e e e e e sttt et e e e e aaanneee snreeeeeeesannn 211

7.4.4 Bootstrap EXCeption VECIOr (BEV) ...ccccoiiiiiiiiiie ettt e e et ae e e e .o 211

7.4.5 CaChe ErTOr CRECKcoii ittt ettt e ettt e e e e e e ettt e e e e e s annaneee feeeeeeeeannns 212

7.4.6 Parity Error Profibit..........cooiiiiiiiiiic et e e as rreeaeeesaan 212

7.4.7 INterrupt ENADIE (IE)eeeeiiiiie ettt e e eanneee s 212

CHAPTER 8 CACHE MEMORY ..ottt e ettt s e s e e e s e e aab s e e e e e e e aeabaa s s eeaaans saaees 213

8.1 MEMORY ORGANIZATION ..ottt ettt e ettt s e e e e e e e e st s e e e e e e eaatananeeaaaaees 213

8.2 CACHE ORGANIZATION. .. ctiteitiieeteeieeeeeeeeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeerererererererererrerrrrrrrrrr 214
8.2.1 Organization of the Instruction Cache (I-Cache)coccviiiiiiii i 214

8.2.2 Organization of the Data Cache (D-Cache)eeiieiiiiiiiie e 21 5

8.2.3 ACCESSING the CACNES ... e eeaneeas 216

8.3 CACHE OPERATIONS . ..ottt 217

8.3.1 CAChE WHIE PONICYeeeeiitiiee ettt e s ee anneeesnneees 217

S A O 1 O o | R 1 = TSP 218

8.5 CACHE STATE TRANSITION DIAGRAMS ... s 219

8.5.1 Data Cache State TranSItIONcooiiiiiiiiiiie ittt e et e e snneeeen eanereeas 219

8.5.2 Instruction Cache State TranSItiONeiiiiiiiiiiiii e ees aae 219

8.6 CACHE DATA INTEGRITY .oottiiiiiiiiiieiiieeeeieeeeeeeeeeeeeeeeeeeerererereresetetetatetatetetetetetetetetetareaeraeaeee 220

8.7 MANIPULATION OF THE CACHES BY AN EXTERNAL AGENTcccccciiiiiiiieieeeeeiiienn 230

CHAPTER 9 CPU CORE INTERRUPTS ...ttt e e et e e e e e e e eeraaan e aeaaaees 231

9.1 NON-MASKABLE INTERRUPT (NMI) ..ottt 231

9.2 ORDINARY INTERRUP TS L. ittt e tnesensnsnseensnensnsenesnnnne 231

9.3 SOFTWARE INTERRUPTS GENERATED IN CPU COREcccoooiiiiiiiiiiiciieeeeeeveeve 232

9.4 TIMER INTERRUPT ..ottt e e et e e e e e e e e e bbb e e e aeeeeeaeas 232

9.5 ASSERTING INTERRUPTS ...ttt e e e e e e s e e e e e eeaaannans 232

9.5.1 Detecting HardwWare INTEITUPLSuvviiieieiiiiiiiii e ettt e et e e e e e e e e e s sstranr e e e e e s ens aeeans 232

9.5.2 Masking INtErrUPt SIGNAIS.uueeiiiiiieiiii et eeeneneees 234

12

CHAPTER 10 BCU (BUS CONTROL UNIT) .oiiiiiiiiiiieirie e 235

L10O.1 GENERAL....coceeeieeteeee ettt ettt et et et et et et e eeeeaeaeaeaeaeaeaeaeaeaaaeeaeaeeeaeaeaeaaaaaaeeaaaaaes srrrernrenes 235
10.2 REGISTER SET ..ottt sttt e e e e et e e e ta bt e e e e e e e eetta s e e eeeeeaesennanseeeessenen 235
10.2.1 BCUCNTREG 1 (OXOBOO 0000)uuvviieiurieeeaiiieeeniietessiseeeestreeessteeessiseeessnsneessnsseessnnseessssneeesn oo 236
10.2.2 BCUCNTREG 2 (OXOBO0 0002)uvvveeiiieeeaiiieeesieeeesssseeeesssreessssseeesssssessssssesssnsssesssssesessssnesan oo 238
10.2.3 BCUSPEEDREG (OXOBOO O00A) ...ceeiutttteiititeaiiteeeesitreeesteeeesneeeesstbeeesasseeessnneeesansneessneeessnsneeens 239
10.2.4 BCUERRSTREG (OXOBO0 O00C)uuutieiitieeeaiiieeesieeressnteeeeaiueeessseeeessssesasssssessssesessnssesssnseeennns 241
10.2.5 BCURFCNTREG (0XOBO0 O00E)cceiiiutiieeiiiieeiiieeesiiieeeaaiiteessieeeessseeesstbeeessnteeeesnneeesansneeesnns 242
10.2.6 REVIDREG (OXOBO0 0010).....ceeiiuuieeeiiureeieereeaaiteeessensessssseeesssneeesassssessssseesssssesessssseesssesess sensees 243
10.2.7 BCURFCOUNTREG (0XOB0OO0 0012)cuvveeeiuiiieeiiieeesiiieeeaaitieessieeeesnseeesssbeeessnseeessnneeessnsneeesnne 244
10.2.8 CLKSPEEDREG (OXOBOO0 0014) ...ccciitiieeiiiiireeiieeeesiieeeeseeeesssseeesssseeessssesesssnseseanssseesnssesessssenens . 245
10.3 CONNECTION OF ADDRESS PINS.....ccoiiiiiii i 246
10.4 NOTES ON USING BCU ...ttt ettt e e e s e e e e e e e e e e eearanan s 247
10.4.1 CPU COre BUS MOUESuviiieiiiiie ittt iitee ettt ettt sttt e sttt e e sttt e e s bt e e s sab e e s anbeeeesnteae e teennnees 247
10.4.2 ACCESS DALA SIZE.....eeiiiiiiiiiiei ettt ettt e e e e e e ettt e e e e e e e nba et e e e e e e e anaee neaeeeeeaeaaan 247
O B o (@ 1Y N [01 1= 4 7= ot PP 248
10.4.4 Flash MemOry INTEIACEuviiiiiiii it ne eeeennes 249
10.4.5 LCD CONLrOl INTEITACEuvviiiiiiiieiiiie ettt ettt e et e e snnteee s beeessanees 250
10.4.6 lllegal ACCESS NOLIFICALION.ccciiiiiiiiriee ittt e e ereeennes 251
O = L0 S @ o] 1 N N [N SR 252
F0.5.1 ROM ACCESS ... etk ekttt s ks s sttt ettt et e e e e b en s 252
10.5.2 SYSTEM BUS ACCESS ..uuvuuururtririrtrererertressssssssseseseesteeeseeeeeeeree——————. .- 256
10.5.3 LCD INEEITACE ... teeieeeeei ittt ettt e e e e e ettt e e e e e e nat et e e e e e e e anntbeeeaaeeeaanneee 2eennnnneeeeaeeaan 263
10.5.4 DRAM ACCESS (EDO TYPE) ..coiiiiteiiiieeeieiiitet e e e e e ettt e e e e e ettt e e e e e e e et e e e e e e s e s snabbaeeeaeeeasnrans aeean 264
L0.5.5 REITESN ..ottt e e e e et e e e e e e teeeeaanarraaaaaaaan 267
10.5.8 BUS HOIA ...ttt ettt e et e e sttt e e e st e e e anbne bbeeeeaneeeeennnes 268
CHAPTER 11 DMAAU (DMA ADDRESS UNIT)iiiiiiiiiiiiiiiiie e e s ciiiiieee e e e s sssisieeee e e e e s snnnnieeee e e e s e snnnnnees 271
L11.1 GENERAL ..ottt ettt et et et et et e e e e e e e e e ee aaeaaaeaaaeaaaeaaaaaes rrrernrnnes 271
11.2 REGISTER SET .ottt ettt e e e e ettt e e e e e e e eetaa s e e e e eeeaestnnaeeeeeensenen 272
11.2.1 AIU IN DMA Base AdAress REQISIEIScccciuiiiiieeiiiiiiiiei e e ettt e e e e st e e e e e e satraneea e e e s nanees 2 73
11.2.2 AIU IN DMA AdAreSS REQISIEIS.ceiiiiiiieiiiiie ettt e e e s e 275
11.2.3 AIU OUT DMA Base AddreSs REJISIEISuuviiiiiiiiiiiiiiee ettt a e 276
11.2.4 AlU OUT DMA AJAreSS REQISIEIS.......uviieiiiiieiiiiie ettt . 278
11.2.5 FIR DMA Base AdAress REQISIEISccuuuiiiiei ettt s et e e e et e e e e e e s e enavaee s . 279
11.2.6 FIR DMA AJAreSs REGISIEIS.uviiiiiiiieiiieee ittt e e e e anes 280
CHAPTER 12 DCU (DMA CONTROL UNIT) cittiiiiiiiiiiiieie ettt e e e e s snebeeeeaa e 281
12,1 GENERAL. ..ottt e e et et e e e e e et e ettt e e e e et e e e e e aaaes aaeeaarraa, 281
12.2 DMA PRIORITY CONTROL ...cottitiiiiiiiiieieeeeeeeee ettt ettt ettt et e e e e e e e e e aeaeaeaaaaaaaaaaaaaaes 281
12.3 REGISTER SET ..ottt ettt r e e e e et e ettt e e e e e et eetaa s e e eeeaeeestnnnseeeensenen 281
12.3.1 DMARSTREG (OXOBO00 0040)ceeitrieeiutieeaaiiieeeaieteesiteeeastbeeesssteeesssbeeessntreesssseeessnneeessnneeesan oes 282
12.3.2 DMAIDLEREG (OXOBO0 0042)ceeiiuieieiiiiieeesieeeeaieeeeasiueeessseasesssseeesssaessansseeessnsesesssessesnsens oos 283
12.3.3 DMASENREG (OXOBOO 0044)ccciiuteteiiiieeeaiitee e ettt e e st ee et eee s sttt e e saee e e s ntbeeessnteee s snneeaeantneeeen oes 284
12.3.4 DMAMSKREG (OXOBOO 0046)ceeiiueereeiiiireesinreesiueeeesssueeessseasessseeaesssaeeesnsseeessssessssseeeesnsenes o 285

12.3.5 DMAREQREG (OXOBO0 0048)vvovveeeeeoeeeeereeseseeseeesseeeseessssessesessessssessssessssesseessesssseeeses oos 286

12.3.6 TDREG (OXOBOO O04A)oeeiiueiieiiiiieeeeiiteeeiteeeassteaaasstteesssaeeesssseeeaassaeeeasseeesnnsesessssenesansns 2enssees 287
CHAPTER 13 CMU (CLOCK MASK UNIT) oottt ettt a e e e e e e e enne 289
R Tt R € N PPN 289
13.2 REGISTER SET ..iiituiiututtutuutuuuueeuueneeueueeeeeseseeeaeeeeesseeeeeeeeeeeeeeeeeeeeeererererererererr ... 289
13.2.1 CMUCLKMSK (OXOBOO O060)eeveeiueieeesrereesieeeeastreeesseesesssseeesasseeesnssesessssseesssseeessnssnessnnes oen 290
CHAPTER 14 ICU (INTERRUPT CONTROL UNIT) .ottt a e 291
I R € = N N I SRR 291
14.2 REGISTER SET ..iiitiiiuuutiutuutuuuuueuneeueueueaeeeeeeeeeaeeeeesseeeeeeeeeeeeeeeeeeeeeeeerererereretet ... 294
14.2.1 SYSINTIREG (OXOBOO 0080)......cceiuureeiurraesiurreeanneneessneeeeaereeeassseeesssseeessssesessnsesessnsseesannees sees 295
14.2.2 PIUINTREG (OXOBO0 0082)uuiteeiuiiieeiiiieeiitieeeasiteeeasiieeeesstteeesteeeesssseeesssbeeesssseeessnneeesansne seeeens 297
14.2.3 AIUINTREG (OXOBO0 0084cccciuuiieiuiieesiiiieeeanteeessteeaeastueeesassesesssseeeasssseesanssesessssesesnsseeens seeeens 298
14.2.4 KIUINTREG (OXOBOO OQ086)ccciuuiieiurieeiittireaaitriessiteeeeantreesssteeesssseeessstseesasseessneeessnsneeess veeeens 299
14.2.5 GIUINTLREG (OXOBOO 0088)cuuvreeiurireeiiieeeaiseieesisteeeasseesessseesessseseasssseesasesesssessssssssessnns ees 300
14.2.6 DSIUINTREG (OXOBOO O08A)....cccuuiieiiutieeeiiieeeaiieeesniteeeasibeeessbeeessnnseeestbeeesanteeessnneeeeantneessns seens 301
14.2.7 MSYSINTLIREG (OXOBOO O08C)ccuvvreeiuiieeesiiieeeaiareesneeeeasiteeessssesesssseeassseseesnssesessssesesssseeennn o 302
14.2.8 MPIUINTREG (OXOBOO O08E)......cccciuueteiuieeeiiitieeaairieesueeeeaiteeesssteeesssneeesssteeessnsseessnsseessnsnees eens 304
14.2.9 MAIUINTREG (OXOBOO 0090)uutieiueieeiiieeeaaieeeessnseeeesseeeeesssseesnsseseasssseesasssessssesessnsseeesnns sees 305
14.2.10 MKIUINTREG (0OXOBOO 0092)cciiuiiieitieeeaiiieesniieeeesiteeessteeeesseeeeataeeesanseeessnneeesansneessnnee oenn 306
14.2.11 MGIUINTLREG (OXOBO0 0094)cccuiieeiiiieeaiiieessteeeessteeeesneeeessseseasssseesansesesssnessssssseessnssees o 307
14.2.12 MDSIUINTREG (OXOB0OO 0096)uvviiiuiiieeiiiieeeiiieesniieeeeanireeesieeeesnsaeeesssteeessnseeessnseeessnsneeesns s 308
14.2.13 NMIREG (OXOBO0 0098)ceeiurireiiiieeaaiiieeessereessteeeaasteeeasseeesssseeesssseessasssessssseesssssesesns asneees 309
14.2.14 SOFTINTREG (OXOBO0 O09A)iiiitiieeiiiieeetiieeasiteeeeaiteeeestteeesbeeeeastbeeesanbeeessnbeeeeantaeeesanees oan 310
14.2.15 SYSINT2REG (OXOBO0 0200) ... ccccuvreeiureeeiireeeasieeeasnreeessseresessssreesssseeesssseesssssesesssseeessnsrees een 311
14.2.16 GIUINTHREG (OXOBOO 0202)ccciuuiieiuiieeiiitieeeaiieeessieeeeaiteeessteeesssseeesssteeessnseeessneeessnsneees sens 312
14.2.17 FIRINTREG (OXOBOO 0204)coeiiiiieeiiiiaeaiieeeeiteeessuteeeassaeeeesseseessaeeesssseeesassesessssenessnsnes seeens 313
14.2.18 MSYSINT2REG (OXOBOO 0206)ceeeeiuueeeeiirieesiieeeaniieeeesireeesteeeessnseeesssseessanseeesssneeessnsseessn e 314
14.2.19 MGIUINTHREG (OXOBO0 0208)cuveeiuiereiiiiieeeainreesneeeeaieeeessseesesssseeessseesessssssessnssesssnsseenns o 315
14.2.20 MFIRINTREG (OXOBOO D20A)......utieiuiieeiitieeeatetessieeeeatteeesiteeesssbeeeassbeeessseeeesnseeeansbeeesnnee oens 316

14.3 NOTES FOR REGISTER SETTINGcoiiitiiiiiiiiiiiiiiis ettt e e s e e eaavnnn s e e aaaes 317
CHAPTER 15 PMU (POWER MANAGEMENT UNIT) ..ottt 319
15,1 GENERAL ..ot e et et e e e e et e et e e e e e e e e et aaaaaee aaaeeerran, 319
15.1.1 RESEE CONMIOL.....eiiiiiiiie ittt ettt e e st e e st e e st eeens teesnteeesnneeas 319
15.1.2 ShULAOWN CONIIOLttt e e e ettt e e e e e sttt e e e e e e snntbeneeaaeaas eeeeeeesannns 320
15.1.3 POWET-0N CONITOl ...iitiiiiiiiiie ettt sttt e e ettt e e enb e e e ane breeesnneeas 321
15.1.4 POWEE IMOUE ... it e ettt e oottt e e e e e skttt e e e e e e e e n e bttt eeeeeeaannnbseeeaaeeaann nnseeeeaeesannns 324

15.2 REGISTER SET ..iiitiiittutiutuuuuuueueuneneeueeeeeeeeeeeaeaeeeeeeeereeeeaeeseeeeeereereeeereeererrrererr .. 327
15.2.1 PMUINTREG (OXOBOO O0AQD) ..eeeiiueiteeiutieeeaiiieeeatereesnsseeesssteeessnsasessssesassssesesnssesessssesessssenesnnse sen 328
15.2.2 PMUCNTREG (OXOBOO O0A2)uuviiiiiieeeiiiieeaiteeeseiteeeeaiteeesateeeessseeesstbeeessnteeessnneeeeanteeessnnee oan 330
15.2.3 PMUINT2REG (OXOBOO O0AZ)eiieiiiieeeeiiieeeeiieeesiteeesstaeeessstaaessnseeaasnsseeessseeesnnseeesnssenesnnsns oan 332
15.2.4 PMUCNT2REG (OXOBOO O0AB)eteiiuuieeeiuiieeeatieeesitteeasiteeessteeessssseeesntbeeesanteeesanneeessnseeessnnees s 333

14

CHAPTER 16 RTC (REALTIME CLOCK UNIT) .ottt 335

L16.1 GENERAL....cooiiiii ettt e ettt e e e e e s e et e e e e e e b e et e e e e e e r e e e rereeeeeaan 335
16.2 REGISTER SET ...iiiiiiiiiiiitiiutitttutitttatttababebatteebste sttt et s s st s s s st st s s 52225522 e s e et e e e e e e eeeeeeeeeeeeeeeeeeeesrnnnnns 336
16.2.1 ElIapSed TiMeE REQISIEIS.uuviiiiei i ittt e e e e ettt e e e e s e e e e e e s et e e e e e s s et e b e e e e e e s sasnnnees eeeeeesan 337
16.2.2 Elapsed Time COMPAre REGISEIScoiuuiiiiiiieeiiiit et e e . 339
16.2.3 RTC LONG L REGISIEIS . .eiiiiiiiiiitiiiie e e e ettt e et e e e e e e e e e s e st r e e e e e e st aaeeeaeeaais sveeeeeesan 341
16.2.4 RTC LONG 1 COUNt REQISTETS ..ccueviiiiiiiee ittt ettt e e e e nes 343
16.2.5 RTC LONG 2 REGISIEIS ...iiiiiiiiiitiiiit e e ettt e e ettt e e e e e e e e e e e st e e e e e e e st aeaeeeeeaais sveeeeeesan 345
16.2.6 RTC LONG 2 COUNt REQISTETS ..ciuueiiiiiiiiee ittt ettt e e e nes 347
16.2.7 TCIOCK COUNEN REQISIEISuiiiiiiiiee ettt e e e e e e et e e e e e s st ae e e e e e e saes aaeeeaan 349
16.2.8 TClock Counter COUNt REGISTEIScoiuriiiiiiiie e .. 351
16.2.9 RTC INtEITUPE REGISIETcc ittt e e e e e e e e e e s st e e e e e e s aas seveeeeeenan 353
CHAPTER 17 DSU (DEADMAN'S SWITCH UNIT) ciiiiiiiiiiiiiiie e 355
L17.1 GENERAL....ceciie ettt e ettt e e e s e s a b e e e e e e e e s e s bbb e et e e e e e e e r e e e reeeeeeaaan 355
17.2 REGISTER SET .. .iiiiiiiiiiiitiiutitutititetatibababettbeteb ittt sttt st s st st 55222t 25255222 e 2 e s e e e et e e e e eeeeeeaeeeeeeeaeeeeesrnnnnes 355
17.2.1 DSUCNTREG (0XOBOO0 O0ED)ccicuiiririiiieeririe st st e sttt e sttt ettt e snee s ees 356
17.2.2 DSUSETREG (0XOBO0 O0E2).......cccueeiitiaiiiieiiieesieeestieesieeesteeesieeasbeeasbeesbeesbeesnbeesbeesaneesnneeses beas 357
17.2.3 DSUCLRREG (OXOBOO O0EA4)c.ueiiiiiitiiiieeetis sttt sttt ettt et sne et eene s nnee s eas 358
17.2.4 DSUTIMREG (OXOBOO O0EB)eeeiueeeurieriieeiieasieeatieasteesteeateessbeessbeesibeesiteesineesineesaneesineenns beas 359

17.3 REGISTER SETTING FLOW ...ttt ettt e e e e e e s s snnrnnneeee s 360
CHAPTER 18 GIU (GENERAL PURPOSE /O UNIT) ittt 361
L18.1 GENERAL....ceiiiiei ettt e ettt e e e e e s et e e e e e e e e et e e e e e a e r e e e rreeeeeaaan 361
18.2 REGISTER SET ...iiiiiuiituuitututututututututttatatatataeesssesesssssssesssssssssssssssssssseseseseseseseseeseeeeseeeeeeeesssnsnnns 362
18.2.1 GIUIOSELL (OXOBOO 0100)cuuteteieuitaireeriiaieesresateesine et e st sine e st sine e st e sine s e e nbne e caeneas 363
18.2.2 GIUIOSELH (OXOB0O0 0102).......cceuetetreaieeateeateeateeasteessteeaseessbeesiseessbeessseesbseessseestseesseeenns sanneas 364
18.2.3 GIUPIODL (OXOBOO 0104)cc.ttiiieieiiteieeeiee ettt ste e sttt et sie et sbe et nbe e e b e e neeean eeneneas 365
18.2.4 GIUPIODH (OXOBOO OL106)......ccccuetiteeaieeiteeaieeaiteessteesiseesireesiseessseesbseesseeesseeasseeesteesneeanses sessneas 366
18.2.5 GIUINTSTATL (OXOBOO 0L08).....cccuuieiurieririeiiienireeitrtasteeeneeaiee st e s sree s sineeseneesineenes rees 367
18.2.6 GIUINTSTATH (OXOBOO OL0A).....ccueeetiiaieeaitieatee sttt et ettt siee et esibe e sbe e e sbeeenbeeesbeeabeeebeeene beas 368
18.2.7 GIUINTENL (OXOBOO OL10C)vieirieirieniriesirieniet et e siee ettt e s seneas 369
18.2.8 GIUINTENH (OXOBOO OLOE)ccuuieiuiieiiiesiieentteesieeetieesteesbeeasbeesbeeabeessbeesmbeessbeesnteesaneesaneen seneas 370
18.2.9 GIUINTTYPL (OXOBOO 0110cccuuieirieieieieeeteeaieeereesireesre e s e sineesineesine e st e sseeestneenneeennee seneas 371
18.2.10 GIUINTTYPH (OXOBOO OL12).....cciuiieiieiiieaieeaieeaiteeaibeesieeesiteessseessseesseeesbneesneeesbeesneeesbeeens neas 372
18.2.11 GIUINTALSELL (OXOBOO O114)ciiiiiiieiitieitee ettt sttt ettt ettt s 373
18.2.12 GIUINTALSELH (OXOBOO O116) ... ueeeteeiieeaitieiiieesiteesiteesiteesiseesiseesieeesiseesineesneeesbeesnneeesseesnne s 374
18.2.13 GIUINTHTSELL (OXOBO0O O118)cciutiiiirieirieiirieiiiiesieeesieeesiee et sestee st sne s sne e s sneeneneen s 375
18.2.14 GIUINTHTSELH (OXOBO0 OLLA)eiiiiiiiieitieeiee ettt ettt sttt sib et sine e e e snneennneas . 376
18.2.15 GIUPODATL (OXOBOO0 OL1LC)....0ciiuiiririeiiriesiriesitee sttt e st ettt sie e sie et e abe e sne e bees 378
18.2.16 GIUPODATH (OXOBO0 OLL1E) ...cueiiiitieiiiieiieieniiee sttt esieeesieeesiee et e bttt e bt et eenbeesnbeesnneennnee s oas 380

15

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT) ccoiiiiiiiiieiie e 381

T1O.1 GENERAL ...ttt e e e e et e e e e e et e e e e e e e et e e e aa teeeaaaaae 381
e T I =1 (o o) QB T o = L PP O PP PP PRI 382
19.2 SCAN SEQUENCER STATE TRANSITIONcutiiiiiiiiiiiiiiiie et 384
19.3 REGISTER SET ..iiiiiitiittittttuietutttetsueueaeaeaesesesesssesssssessessssseesesaeseeesseeeeaeaeae et et eeeeeeasaeaeesesesesssssnnes 386
19.3.1 PIUCNTREG (OXOBOO 0122)oiiiuiiiiiiiiieeiitesiee ettt sttt e nineenen e 387
19.3.2 PIUINTREG (OXOBOO 0L124)uviiiteeiutieatee et atee sttt sttt e site e st essbe e ssbeesineesbneesaneenbneen saneean 390
19.3.3 PIUSIVLREG (OXOBOO O126).....cuutiirieiuiiaireeieiesieeesiesasieessee st e st esnee s e e esneenines reeas 391
19.3.4 PIUSTBLREG (0XOB0O0 0L128)ccuutiiiiieiiieeiitieaireesiteesieeesteeesieeesteeesieeesseeesieesseeasbeesbeeanteesnes cean 392
19.3.5 PIUCMDREG (OXOBOO OL2A) ...cciutiiiiiieiirieiiie sttt st site ettt sis et sin e stneesne st e nneeenineen eeas 393
19.3.6 PIUASCNREG (OXOBO0 0130)......uceiuteeiutieaieeeaureeaiteesireesiseesuseesiseesssesssseessseestneesssessinessssesssnees cen 395
19.3.7 PIUAMSKREG (0OXOBOO 0132)ccuveiiuiiiiiiieiiiieateesiriesiree sttt sine et sine et sine e b e e sineennne oas 397
19.3.8 PIUCIVLREG (OXOBOO OL3E) ...ccuviiiuiieitiiesiiiesireesiteesieeesiteesieeesbeeesseeesbeeesneeesbeeenneessbeeenneesnees beean 398
19.3.9 PIUPBNmMREG (0x0B00 02A0 to 0xOBOO 02AE, 0x0B0OO 02BC to 0xOB0O 02BE) 399
19.3.10 PIUABNREG (0x0BO0O 02B0 t0 OXOBO0 02BB)cciveeririeriiieiiieniieesitiesinee e esineesineesineenneeens 400
19.4 REGISTER SETTING FLOW.....oitiiiiiiiiiiiiiiiit ettt e e s e e e e e s s snnnneeeaeeseannes 401
19.5 RELATIONSHIPS AMONG TPX, TPY, AND ADIN PINS AND STATES..............c...... 403
F9.6 TIMING ...ttt ettt ettt et et et et et et et et et ettt e e eeeeeeeeeeeeaeaeaeeesnnnnnnnnnnnnnns 404
19.6.1 Touch/Release DeteCtion TiMiNgGueeurreiiiieeeeiiiee et e e srree e e e ... 404
19.6.2 A/D POIt SCAN TIMINQG . .uuttiieieeeiiiiiietee e e e s eeiitr e e e e et e et e e e e e s e asaatreeeeaeseasasbaaseeaeessatbrnreaaees seeeeesaanns 404
19.7 DATA LOSS INTERRUPT CONDITIONS ... 405
19.8 COMPARISON OF VR4102 AND VRAL0L™coiiiiiieieiecee ettt 407
CHAPTER 20 AIU (AUDIO INTERFACE UNIT) . iiiiiiiiiiiiiiee ittt 409
20.1 GENERAL ..ottt ettt e oot e et e e e e r et e e e s r e e rrreaeeaes 409
20.2 REGISTER SET ..ttt e 409
20.2.1 MDMADATREG (OXOB00 0160)uvtiieiiiiieireetieaiteesree st e e e . 410
20.2.2 SDMADATREG (OXOBO0 0162)cc.uuiiiieiaiiieiirieitieenieeesteeesieeesieeesieeesseeesbeeesneeesbeeenneessbeeenseesnnes e 411
20.2.3 SODATREG (OXOB0O0 OL166)ccruvieiurieririeiirieriiiesiteesire e st e st e sise st stseesin e sineesne e sbneesneeenine senis 412
20.2.4 SCNTREG (OXOBO0 OLB8)eeeitvieiuieeireanireesiriasieeestreesiseesteeesteeasbeeesseesnbeeasseesseeasseesseesnses sensnes 413
20.2.5 SCNVRREG (OXOBOO OLBA)......etiiiiieiurieiirieaietesirtesiee et e sttt e bt b e sne s sbeesne s nreesnesane senis 414
20.2.6 MIDATREG (OXOBOO OL70) ...cuveettieiuteesiriesireeaireesiseesseessiseessseesiseessseesbseessseesteessneessbseesseesnss sanns 415
20.2.7 MCNTREG (OXOBOO O172)vviiiiieiiieiiiienieee sttt ettt ettt be et ne sttt enenis 416
20.2.8 MCNVRREG (OXOBOO0 0L174)....cccutieiuteeiiiieaiteesiteesitee st e sttt sise et sibe e st eesineesbbeesnneesbneesanees sanes 417
20.2.9 DVALIDREG (OXOBOO OL178).....cuutiuiieieeerieasieesreeasteesnes sttt e st sne e s esnee s enenis 418
20.2.10 SEQREG (OXOBOO OL7A).....ccutteiiuieiitieaiite sttt sttt e sttt sie ettt siee et e sbbeesbe e e sbbeesne e e sbbeennee et 2ennnes 419
20.2.11 INTREG (OXOBOO OL7C) ..eeeuiiiirietiieieeeiee ettt ettt sttt e e sine eeeneas 420
20.3 OPERATION SEQUENCEo 421
20.3.1 OULPUL (SPEAKE) ...ttt ie ettt ettt e e e ettt e e e e e e ettt e e e e e e e stb b e e e eeesessntbasaeaaeaes rveeeseesanes 421
20.3.2 INPUL (MIC) ..ttt ettt etttk ab e bt h bt e s bb e e bt e e s b bt e abe e e nbb e e ebeeesbeeeneeeneas 422
CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT) . .uuiiiiiiiiiiiiiiiiei et 423
A N R €1 = N L PP PPN 423
21.2 REGISTER SET .ottt ettt e e e e st e e e e e e st bbb e et e e e e e e nnbrnreeeeeeeeeas 423
21.2.1 KIUDATN (0XOB0O 0180 t0 OXOBOO OLBA)cuveeiuiieiiiieiiieesitiesiteesireesiseesiteesieeestneesnee e sieeesnee e 424

16

21.2.2 KIUSCANREP (0X0B00 0190).......cccuiiiiiiiiiiiiiicii e s e 425

21.2.3 KIUSCANS (OXOBO0 0192)......ceeeeiiiiieeiuieeaeiiieeeaniteeessseeaesssseesaasesessassesesasseseasssssessnssseesssens eennns 427
21.2.4 KIUWKS (OXOBOO 0194 ...cciiiiieeiitiieeiitteeeitteeeaiiee e s siteee s ssaeeesantaeeesseeee s aabeeeaanteeeesneeaesnnnee reeesnns 429
21.2.5 KIUWKI (OXOBOO 0196) ...eeeeiuiiieeeiiieeeiieiresseeeeeantneeesssseeesssseeesassssessssssessssesesssssssesnsseesssne seeeesnns 430
21.2.6 KIUINT (OXOBOO O198)uuveieeiuitieeiiiieeeiiteeeesiteeeestteeessteaesssbeeesantseeesneeeesasbeeesantseessneees sbeeeesnns 431
21.2.7 KIURST (OXOBOO OLOA) ...oiiiiitiieeeiiieeeieieeessiteeeestteeesssteaesssseeeaasseeessnseeeessseeeaasseeessnsnneesnnns seeeesns 432
21.2.8 KIUGPEN (OXOBO0 O19C)etiiiutiieeiiiieeeiieieesitteeeattee e s steee s stbeeessntaeeessteeessnbeeesasbeeessnnseeeans eeennns 433
21.2.9 SCANLINE (OXOBOO OL19E).......ceeiiuiieeiieraeiiieeeaniteeesseeeesssseesaassesessnssesesssseeeaassseesnssseesssene eennns 434
CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT) .ot 435
7 R €1 = NN N PSR 435
A = € 1S =] = 435
22.2.1 PORTREG (OXOBOO OLAD) ...ceeiiuttieeiiereeeieeeesasteeeaateeeessseaesssseeeasssesesasssesssssesessssesssnssesessnns eenns 436
22.2.2 MODEMREG (OXOBO0 OL1A2)uiiiiiiiieeiieiae ettt ettt e steeeesbtee e s stteeesanteeessnneeeeatbeeesnnseeesnnneees sae 437
22.2.3 ASIMOOREG (OXOBOO OLAZL)eeeiuiiieeeieiieeeeiieeeesiieeeesteeaeseteeeasaeeessneaeessnsaeaeasaeeeannsenessnnenaasn 2enns 438
22.2.4 ASIMOLIREG (OXOBOO OLAB) ...cceeiutrieeiuriieeitiieeaaiieeessiteeeesstteesatteeesssaeeessnneeesantneeesneeaessnneeeans sens 439
22.2.5 RXBORREG (OXOBO0 0L1AB)ceeiituiieeiuiereeiiieeesaiteeesaseeessssaeseasssseesansasessssesesassssessnssseesssenens senns 440
22.2.6 RXBOLREG (OXOBOO OLAA)....ciiiiuttieaitiieeaiieeestteee s siteeeeantaeeessteaesatbeeeaanbeeessnteessnsneeesanneeeann sens 441
22.2.7 TXSORREG (OXOBOO OLAC)cctuieeiiiiieeiieeaesiteeeaateeeesssteeessssaeaeansaeeesassesesssseneaassseeesnsseeesnne enns 442
22.2.8 TXSOLREG (OXOBOO OLAE)ceiiitiiieitiieeiiitieeeaitee e sieeeessiteeessstee e s ssaeee e snbteeeaasbeeesnnteeeesnnneeean senns 443
22.2.9 ASISOREG (OXOBO0 01B0)......ceeeiiurieeeiireaiiieeeaaiereesaneeaesssreeeaaseesessssseesssessassseeessseseessssnes seennns 444
22.2.10 INTROREG (OXOBOO OLB2).......uetiiiiiieeiiiiaeiiieeeeaiteeeesieeeesbseeesssteeessnbeeessnnseeeansbeeesnnseeesnnne sennns 445
22.2.11 BPRMOREG (OXOBO0 O1BB)ccuvvrieeeiireiiiiieeasiereesiseeaesssseessaseeeesssssessnsseeeanssesesssessssssseeesnss see 446
22.2.12 DSIURESETREG (0XOBOO OLB8)ceeiuiiieiiiieeeiiiieesiieaesstteeessiteeessneeessbreesssnneesssnseeessnneeeens 447

22.3 DESCRIPTION OF OPERATIONS. ...ttt a e e e e aa e 448
AR B R D T - W o] 11 T AT P PP UPPTPPPPP 448

P T N - 0] 1 011513 (o] o USRS 449
b TG T = =T =Y o] 1 o] o PRSPPSO 451
CHAPTER 23 LED (LED CONTROL UNIT) ciiiiiiiiiiiiie s iiiiieeee e e e s s siiee e e e e e s s sntnaee e e e e e s ssnnsannneeeeesnnnnnes 453
2 T R €1 = N 453
23.2 REGISTER SET oottt e et e e et e et et a e e e e e e e e aaa e e e e aeeee e eas 453
23.2.1 LEDHTSREG (OXOBOO 0240)eeieiieieeiiteeesiitieeesttteesieeaeastbeeesssteeessnseeesssseeesasneeessnseeessnnnes sne 454
23.2.2 LEDLTSREG (OXOBOO 0242).....cccutitieieiieeiiiieeasiieeessteeasseseesansseeesassnsessssesssnssseesnssesessssenesss senes 455
23.2.3 LEDCNTREG (OXOBO0 0248)eeiiiieieeiiieieaiitieeeatteeesieeeessibeeeeanteeessseeeesnnseeesssteeessnsseeesnnes sne 456
23.2.4 LEDASTCREG (OXOBO0 024A)cciueeeeiiieeeeeieeeaeietaeatteeeassteeessnseeessssaeaesnsaseesnsseeessssesassssenees oe 457
23.2.5 LEDINTREG (OXOBOO 024C)uttiiiiiiiieeiiieie e siteeeeetiee e s itee e stbee e astee e s ssteee s nnbeeesanbeeessnseeeesnne 2enn 458

23.3 OPERATION FLOW ..ottt e e e e e e e e e e et e e e e e e e e e aab i aeeaaes oas 459
CHAPTER 24 SIU (SERIAL INTERFACE UNIT) ..utiiiiiiiiiiiiiiieiee et e e e e e enenes 461
2 S R €1 = NN N PR 461
A = € 1S =] N 461
24.2.1 SIURB (0x0CO00 0000: LCR[7] = 0, REAM)ueveiiiiieeiieie et e eiee et stee e e se e e enaea e 46 2
24.2.2 SIUTH (OXOCO00 0000: LCR[7] = 0, WIILE)....eeeitrieeiiiiieeiiieeeeiiieeesiiee et e s e et e e sneeeesnnveee s 462
24.2.3 SIUDLL (OXOCO0 0000: LCR[7] = 1) teeeeeurreeeueeeeiiiieeeanieeeeeseeeesssseessssseeessssasessnssesssnsssessnsserenns oe 463

24.2.4 SIUIE (OXOCO0 000L: LCR7] = 0) cveuvveeeeeeeereeeeeseseeseeeesesssessesessesessssessesesssessseesseesssessesese aeves 464

24.2.5 SIUDLM (OXOCO00 0001: LCRI7] = 1) iiuieiutieiieesitiesiiee sttt et ettt ettt ettt sie et e e et e 465
24.2.6 SIUIID (0XOCO00 0002: REAA)ccvvierieiiiiiesirieitet ettt ettt ettt ettt e e eeeeeas 467
24.2.7 SIUFC (OXOC00 0002: WEIE)....eeiuteeautieiuiieaiteesiteeatee sttt e sitee st esiteestbeessneesibeesaneesbbeesineesnneens seennnas 469
24.2.8 SIULC (OXOC00 0003)....cuveeiuriiiriearieaiteeareesbeestee st e st si e seteessb e ssneessbeessneenebeesineennree £enneeennees 472
24.2.9 SIUMC (OXOC00 0004)eeiutieiueieiutieaitee sttt e aitee st e et esite e stbeesae e e sbseesaeeesbbeeabeeesbbeeaaeeesbeeeae sbeeenbeas 473
24.2.10 SIULS (OXOCO0 0005)ceiuieiureeiurieiiieeareesibeesireesibee st e st e sineests e sineeseb e e sineeseseesineesnre e sereeennees 474
24.2.11 SIUMS (OXOCO00 D00B) ...cuvvieireeerierireenureesireesueeesiseesseeestseesseeestseesseeesbeeeaseeesbeeenseeasbeeases sheeesseas 476
24.2.12 SIUSC (OXOC00 D007)....cciureiiureeririeiireesireeaitee st st e sis e st e sas e seseesbs e e sbb e e sse e e sbneesaeeestneeane seneeennees 477
24.2.13 SIUIRSEL (OXOCO00 0008)ceitreeteranieeateeateeaieeateeatesasbeeaseessbeesseessbeessessabeesneessneesnne seensees 478
CHAPTER 25 HSP (MODEM INTERFACE UNIT) .euiiiiiiiiiiiiiiiiii e e e e 481
AT R €1 = N = L PP 481
25.2 REGISTER SET .ottt ettt e e e e et e e e e e s bbb e e e e e e s e nnb e e e e e eeeeeeas 483
25.2.1 HSP INItIANIZE REQISIET. ..ciiiiiiiiiieee ettt e et nne nneeesnnneees 484
25.2.2 HSP Data Register, HSP INdeX REQISIENuvviiiieei it e e 4 85
25.2.3 HSP ID Register, HSP I/O Address Program Confirmation Registercccccevvvveverinennnn 493
25.2.4 HSP Signature CheCKING POcccoiiiiiiiiiie ettt e e e e e e e e e s srraeee aaeas 493
25.3 POWER CONTROL ... 494
CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT).ciiiiiiiiiiiiiiea et e e e 497
P T R €1 = N = Y P PSP PP 497
26.2 REGISTER SET .ottt ettt ettt e e e e s e e e e e e e s st r e e e e e e s e e nnbr e e e e e eeeeeeas 498
26.2.1 FRSTR (OXOCO00 0040).....cceuuteiuteerurieaiteeairteaiteesiteesiteesiseestseessseesbseessseesbseesseeesbeeeaaeeesbeeenne saneeentnas 499
26.2.2 DPINTR (OXOC00 0042)couriiiteeiurieiieesire et sttt st st si et e st se e ser e st n e e san e e st e e naes sreeenneas 500
26.2.3 DPCNTR (OXOC0O0 0044).......eiiiueeiieeatie ettt ettt ettt e ettt e st e sbe e ssbe e asbeesabeesabeesanes eeenteas 501
26.2.4 TDR (OXOC00 0050)cuvierurieiiriesiriesireestr e sttt e st e str e e sse e st e sse et eeabe s e bt e nbe e e be e e abe e e be e e seenneeenrees 502
26.2.5 RDR (OXOC00 0052).....ccuueeiutieiteesiteeaiteeaiteeaiteesiteessbeesaseesseeessseeabseeasseeabbeeabseesbeeeaaeeesbeeen seeneeenneas 503
26.2.6 IMR (OXOC00 D054)cciurieirteiiriesiet sttt ettt ettt ettt bbb e b e bttt e s be e s e e e e eneeeneas 504
26.2.7 FSR (OXOC00 0056)ceuveeurieiureenireesieeeatreesieeasueeestseesseeesbeeeabeeaabeeebeeaabeeebeeabeeabeeabeean seeseeenteas 505
26.2.8 IRSRL (OXOCO0 0058)cceiurieiirierurieiiriesirtesirtestrtesir e st sts e e st e st e e sbe s st e e sbe e et e e e sbe e e beeas £enneeenreas 507
26.2.9 CRCSR (OXOC00 O05C)eeitieiurieitiesitee sttt esitee sttt esieeesteeesteeasteeesbeeabeeesbeeabeeanbeeabeeabeeanbes eeentnas 508
26.2.10 FIRCR (OXOC00 D05E)ccutviiteeririeiieesireeatee sttt e sttt ser e siseesis e et esen e stn e e san e e nbneennns sreeenneas 509
26.2.11 MIRCR (OXOCO0 O0B0)....c..ueeiueeerurieiueeerireeaiteesiteesibeesireesiseessseessseessseesbseessseesbeeeaaeeesbeeeanes sheeenenas 511
26.2.12 DMACR (OXOC00 D0B62)ccuviiirieriieireeititesieeesies et e et st e e esbe e e e e s e sne e esane seenees 512
26.2.13 DMAER (OXOC00 0064)ccuuiieiieatieaieeateeasteeatee bt eebee st e sbeessbeessbeesabeeasbeesabeeaaneessbeeanne seentnas 513
26.2.14 TXIR (OXOCO0 O066)eeevrieirienrieririeitete e ettt st e esre st e bt st e b e st e et e e et e s be e s e aan £eneeennees 514
26.2.15 RXIR (OXOCO0 D068ceruuieiurierurieiireeiureaaiteeaiteesieeesseeestaeesseeesbseeabeeesbeeeabeeesbeeeaneeasbeeens seneeennnas 515
26.2.16 [FR (OXOC0O0 Q0BA)veiitieiirieiitie ettt ettt ettt ettt sa e skt e sbe e nb bt e sbe e et e e nbe e e b seeneeennees 517
26.2.17 RXSTS (OXOCO0 O0BC) ...uvveiureeamrieinieeaiteeateeeitee st e ssbeessteesabe e saseesabeeahbeesabeeabbeesaseesbbeeaanes eeenbeas 519
26.2.18 TXFL (OXOC00 O0BE)ccitiiiirieiirieriiiesitte sttt sit et sie ettt ettt et sbe e e b e nbn e e ne e sneeenneas 521
26.2.19 MRXF (OXOCO0 0070)eeteeeireateeanteeateeaeteeeteeasbeeabee s beeabeessbeeabeeaabeeaabeesabeesabeesabeesnnes sreeeneeas 522
26.2.20 RXFL (OXOC00 O074)utieiurieiitieaittesiit st sir e sttt sit et sbe et e sbe e e bt sbe e e bt e nbeeene e 2aneeenneas 523

18

CHAPTER 27 CPU INSTRUCTION SET DETAILS ...t 525

27.1 INSTRUCTION NOTATION CONVENTIONS ...t 525
27.2 LOAD AND STORE INSTRUCTIONS.......ccoi ittt e e et eeaaeaanes 527
27.3 JUMP AND BRANCH INSTRUCTIONS.ottt 528
27.4 SYSTEM CONTROL COPROCESSOR (CP0O) INSTRUCTIONScooiiiiiiiiiiiiieee e, 528
27.5 CPU INSTRUCTION .. .ciiiiit ittt sttt e e e e st e e e e e et e et ra s s e e et e e atabnaeeeaeaee aeas 529
27.6 CPU INSTRUCTION OPCODE BIT ENCODING.......covtttiiiieieeerieeiiie e 674
CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS ..ottt 677
CHAPTER 29 PLL PASSIVE COMPONENTS ...t e e e eeaaaaans 683
APPENDIX A DIFFERENCES BETWEEN VR4102 AND VRA10Lccovviiiiiiiiieieeereeeiie e 685
Al SUMMARY OF DIFFERENCEScoi ittt en s 685
A.2 DETAILS OF DIFFERENCESotttttitiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeereeeeerereeerereeererrrereee 686
Nt R O L I 0 686

YN o [0 [T 1V =T o] o1V PO UPURPROt 686

. T = T S 687

AL2.4 DMA oo e e et e e e e e e e e e e e e e e e e e e rararrrera——————————. 688

2 T [O S 688

< T = /1 PRSP 688

N A 3 I 688

< T 1 6 PP 689

0 T L S 690

AL2.10 AlU e e e e e e e e e e e e e ererar e ———————— 691

20t I R 1 S 691

0 1 11 L PSPPSR 692

0t TG T] | S 692

A.2.14 NeWly Added UNIES ..ot e e e s et e e e e e s st e e e e e e e s aatbrees aaeeesiannes 693
APPENDIX B INDEX ... oottt ettt e s e e et ettt et s e e e e et e e e bab i n e e e e e eeees teeeeeerrr s 695

19

LIST OF FIGURES (1/4)

Fig. No. Title Page
1-1 VRr4102 Internal Block Diagram and Example of Connection to External Blocks.............ccccoveviieiiiinins 30
1-2 VRrR4100 CPU Core Internal BIOCK DIAQIaAIMeiiiiiiiiiiiiiiieae et e e e e e e e e e e s e aebeeeeeaeeeeennnes 43
1-3 VRAL02 CPU REQISIEISiiiiiiiiie e e ettt e e e ettt e e e e e ettt e e e e et st b e e e e e e e s sastabaeeaeeessasasaaeeaeessansssssnsreeeeeesan 45
1-4 CPU INSLIUCHON FOMMALS......c.eeeiiiiie ettt ettt e e e e e e ettt e e e e e e e saeaeeeaeesaannnseeeeeeeeaaeeaanneneeeas 46
1-5 Little-Endian Byte Ordering in Word Data a7
1-6 Little-Endian Byte Ordering in Double WOrd Dataccoaeiiiiiiiiiieeeeiiee e e 48
1-7 Misaligned Word Accessing (Little-ENdian)ccuuiiiiieiiiiiiieiec e e e sin eae e 48
1-8 (1 O S LT 1] (=T (= SRR 49
1-9 External Circuit Of CIOCK OSCIIAION.iiiiiiiie it e et 54
1-10 Examples of Oscillator with Bad CONNECLIONuiiiiiiiiiiiiii e e 55
2-1 VRA102 Signal ClasSIfiCatION.eiiiii ittt e e e e e ettt e e e e e s anbaeeeees nreeeaaaean 62
3-1 CPU Instruction Formats 81
3-2 Byte Specification Related to Load and Store Instructions 83
4-1 [T [T TR =T [T PRSPPI 99
4-2 Instruction EXecution iN the PIPeIINee i seereeea e 100
4-3 PIPEINE ACHIVILIESeii ettt e e e e ettt e e e e e e s bbb et e e e e e sssntbreeee ebeeeeeesenssbnaeaaeeenan 100
4-4 2] = Lo lo] o T 1= - | PP 102
4-5 Add INStruCtion PIipeliNg ACHVILIESccii it e e s et e e e e e e es senarareeaaeeaan 103
4-6 JALR INStruction PIPeling ACLIVITIESuuiiiiieiiiiiiii ettt e et e e e e e e et e e e e e e esseeeaaeeaannes 104
4-7 BEQ Instruction Pipeline Activities 105
4-8 TLT INStruction PIPEliNg ACHIVITIESeeeeieiie ettt e e e e et e e e e e e e et e e e e e e heeeeaeeeeanees 106
4-9 LW INStruction PIipeliNE ACHVILIESvuiiiiiii ittt et e e e e e e e e e e e st baae s eenaraaeeaaeeaan 107
4-10 SW INStruction PIPEling ACLIVITIESeeiiiiiiiiiiiiiii ettt e e e e e e e e e e e e e e e en e e e e e eanneeeeeas 108
4-11 Interlocks, Exceptions, and Faults.... 109
4-12 | Cel=T o) o]l D = (=Tod o] o PRSPPI 112
4-13 Data Cache MISS STAIL....ccouiiiiiiiie ettt et e e et e e et e 113
4-14 CACHE INSIIUCHION STAIL.....o ittt e e e ettt e e e e e e et e e e e e e e e e nsbeetbeeeaaeeeannneeeeas 113
4-15 (o= Vol B v= W [o1 171 o Tox | PP PP PRSP OPPR O 114
4-16 MD BUSY INEEIIOCK ... eeie ettt e e e e ettt e e e e e e bt et e e e e e e e s ntbeeeeeeeeeeeesaannnneeaaaaaan 114
5-1 Virtual-to-Physical Address TranSIAtiONcoi i e e e e e e e e e eeeeaaaean 118
5-2 32-bit Mode Virtual Address Translation 119
5-3 64-bit Mode Virtual Address Translation 120
5-4 USEI MOUE AQAIESS SPACEeiieiiiiiiiiiiie e et e ettt e e e e e ettt e e e e e e et e e e e e e e s s tb e et eaeesasatbaetaeeesssnstsesnsrtseaeeeesan 122
5-5 SUPErVISOr MOAE AQUIESS SPACEuuueiiiiiaei it e e e ettt e e e e e e ee e e e e e e s aebeeeeaaeaaanebeeeaaeeaaannseee snneeneeas 125
5-6 Kernel MOAE ACAIESS SPACEcooiuiiiiiiee e e ettt e ettt e e e e e e e e e e e e e s s b et e e e e e s satb e et eeeeessastbesnrrseeeeeenan 128
5-7 XKPNYS ArEa AGUIESS SPACE ... ueeeeiie ettt e e e ettt e e e e e ettt e e e e e s aebeeeeaaeaaantbeeeeaaeaaansbeeeaaaasseeeaaaasannees 129
5-8 VRA102 PhySICal AQAIESS SPACEeiiiiiiiiiiiiiiee ettt e et e e e e et e e e e e e et e e e e e s s snsbbareaaeeesas eaeeaan 135
5-9 CPO RegiSters @nd the TLBooiiiiiiiiiiiie ettt e e e ettt e e e e e ettt e e e e e e s s nbbeeeeaaeeasaaeeeanneneeeas 141
5-10 FOrmMat Of @ TLB BTy oot e e e e e e et e e e e e e s e sbt b e e e e e eaeeessaasbtaaaeeeenan 142
5-11 FOrmMat Of @ TLB BTy .ottt e e e e sttt e e e e e e e nbt b e e e e eeeeeeaannnneeaaaaaan 143

20

LIST OF FIGURES (2/4)

Fig. No. Title Page
5-12 a0 (o =T] 1= P UR OSSO PUPPTRROt 146
5-13 Random Register 146
5-14 Positions Indicated by the Wired REQISTEr..........ccuuiiiiiiie et e e e e s 148
5-15 R AT =To IR LT o 1 =] TP RR PRSP 148
5-16 PRId Register 149
5-17 CoNfig REGISIET FOIMMAL. ...ttt e e e e e s et e e e e e e e e s e nnbaeeeeeeeae e aannnneaeeaaaeeeann 150
5-18 [Yo (o [=T 1] (=] PSR SUOPEPRRROt 151
5-19 TagLo and TagHI REQISIEIS ...ttt ettt e e e e ettt e e e e e e e e ettt e e e e e e aeeeasnnsbeeeeeaens 152
5-20 TLB AdAreSS TIaNSIALIONooiieiiieiiiiee ettt sttt e et e ittt e e bt e e e et e e s s aber e e s anbbe e e s nnneeas 154
6-1 COoNtEXE REGISIEI FOIMMAL.......uiiiiiieiiiiiiee e e et e e e e e s e e e e e e e e s st a e e e teaeeseasaatbareeaaeeesmiaststbreraaaeeeains 160
6-2 BadVAdAr REQISIEr FOMMIAL. ...ttt e e ettt e e e e e e e ettt e e e e e e e e e aansnsantaeeeeeaannnnnns 161
6-3 (00U g 3 Yo [1) (=Tl 0 41 - L PSP PPPPPRN 161
6-4 Compare Register Format 162
6-5 StAtUS REGISTEN FOMMIAL.. ... ittt e st e e e e e e s st b e et e e e e e s s satbaeeeaaeee st aassatbreraaaeeeaans 162
6-6 Status Register DiagnoStic StatuS FIEIoooii it e e a e e 163
6-7 CaUSE REGISIEI FOIMMAL.......uuiiiiiiieiiiiiitee e e e e e e e e e e e e e s s e e e eeeeesesssatbaeeeaaeeesmrstatsreeaaaeeeaans 165
6-8 EPC REQISIEI FOMMAL.ttt e oo ettt e e e e e s e e taet e et e e e e e e e anbbeeeeeeaaeeaasaseeaaaaeeaaannnnns 167
6-9 WatchLo and WatChHi REQISIEr FOIMALciiiiiiiiiiiiiiie et e e e s e e e e e e e s s eenaereraees 168
6-10 XCONtEXE REGISIET FOIMMALttt e e e e e e et e e e e e e e e e s e snate e e e e ae e e e e nnsbeeeeeaans 169
6-11 Parity Error REQISIEr FOIMAL.........coiiiiiiiiiee e e ettt e e e e e s e e e e e e e e e sratb b e e e aaaeeseasanseaeeeesannnnnes 170
6-12 CaCheErr ReQISIEI FOIMMAL....... ettt e e e e e sttt et e e e e e e e e e et e e e e e e e srnsaeeeeeaaaaeeaann 171
6-13 The ErrorEPC Register Format 172
6-14 Common EXCePLION HANAIET ...ttt e e et e e e e e e e e e e e e e eanns 192
6-15 TLB/XTLB REfill EXCEPtON HANIETouviiiiieiiiiiiiiiies ettt e e e e e e e s eeaeaeas 194
6-16 Cache Error EXCeption HaNGIEeeiiiieeie ettt ettt e e e e e e s s eeeaaeeeeanas 196
6-17 Cold Reset, Soft Reset, and NMI Exception Handler 197
7-1 RTC RS ...ttt ettt ettt e e s oot ettt oo 4ottt e e e e e e et et e e e e e e e e nannne 200
7-2 LS 1551 S 201
7-3 DEAAMAN'S SWILCHeeiiiiiiie ettt e e b e e e e bt e e sab e e e e s bt e e sabe e e e s bbeeeean 202
7-4 SOfWAIE SHULAOWN ...ttt e oo e ettt et e e e e e e st b ee e e e e e e e e e nneebeeeeee e aansnneaeeeaaeeaann 203
7-5 HALTIMEN SRULHOWN.....coiiiiiiiiiiitit ettt et e e s st e e s nb et e e st e sbte e e e anbbeeeean 204
7-6 Vr4102 Activation Sequence (when Battery Check IS OK)uuiiiiiiiiiiiiiieieee e 206
7-7 VRrR4102 Activation Sequence (when Battery Check IS NG)ccvvviiiiieiiiiiiiiiiccc e 206
7-8 Cold Reset 209
7-9 0] {0 R (TS O R P PP SPPUPPTP 209
8-1 Logical HierarChy Of MEIMOIYuuuiiiiii ittt e e e e st e e e e e e st e e e e e e s esnntbaea et eaeeeesansnnnnes 213
8-2 (0= Tl g TSI ST U] o] o] o AP PUPPUPRTRT 214
8-3 CACNE LINE FOIMALeeiiiiitiee ettt e ettt e s ab et e e e h b bt e e e nbe e e e st e e e e anbte e e s nnnneas 215
8-4 Data CaChe LINE FOMMAL. .. .coiii ittt ettt e e e e e ettt e e e e e e e ebbbeeeeaae e e e e nsbasreeeaaeeeeaannnnens 215
8-5 Cache Data and Tag OrganiZationoocuuriiiiiee ittt e e e e e s e st r e e e e e s sssarereetaaeesesssbaareeeaestaaeessannes 216
8-6 Data CaChe State DIAgraMooieiiiii e ettt e e ettt e e e e e e e s et bt e e e e e e e e e aaaaeaeeeaaaeaeaaansbsantaeaeeeaaannnnnns 219

21

LIST OF FIGURES (3/4)

Fig. No. Title Page
8-7 Instruction Cache State Diagram 219
8-8 Data flow 0N INSLIUCLION FELCIoiiiii et e et e e e e e e e e e eneeeaeas 220
8-9 Data Integrity 0N LOAd OPEIatiONSuuuiiiiieeiiiiiiiiiie e e e e sttt e e e e e e st e e e e e e s s stbb e et aaesssssasisntarnaeaaeas 221
8-10 Data Integrity 0N StOre OPEIAtiONSeiiiiiieeieiiitie e ettt e e e e e e st ee e e e e e e e anbbeeeeeaeeessamennnneeeeeaaens 222
8-11 Data Integrity on Index_Invalidate Operations 223
8-12 Data Integrity on Index_Writeback_Invalidate Operations 223
8-13 Data Integrity on Index_Load_Tag OPEratiOnNS..........ccouiiiviriiiieeiiiiiiiier e e e e e s ssibtrie e e e e e s e ssatraereeaeaesannaeaan 224
8-14 Data Integrity on Index_Store_Tag OPEratiONScc..oeiiiuiiiiiieaea e aiiiiieeee e e e e aeeeeee e e e e e s aaeneeeeeeaaeaaeaeeas 224
8-15 Data Integrity on Create_Dirty OPeratiONS.........ccccuvviiiiiee ettt e e e e e e e e e e s et e e e e e e s s st eeeaaeeas 225
8-16 Data Integrity on Hit_Invalidate OPErationscooiiiiiiiiiiiiiiee e e e e e e e s e e ereeeeeaaeas 225
8-17 Data Integrity on Hit_Writeback_Invalidate OpPerationsccovcciuiiieiieeiiiiiiiiiiee e 226
8-18 Data Integrity 0N Fill OPEIatiONSooieiiiiiiie ettt e e e e e e e e e e et e e e e e e e e se e e e annbneeeeeaas 226
8-19 Data Integrity on Hit_Writeback Operations 227
8-20 Data Integrity on Writeback Flow 228
8-21 Data Integrity 0N REFII FIOWuiiiiii e e e e e s e e st e e e e e e s ssbaareeeeas 228
8-22 Data Integrity on Writeback & Refill FIOW.............uiiiiiii e 229
9-1 Non-maskable INTErrUPt SIGNALcooi it e et e e e e e e et e e e e e e e e ennnneeeeeaaeas 231
9-2 Hardware INterrUPL SIQN@ISuviiiiieie et e e e e e e e e e s s a et e e e e s e s aatbae e e e st e e e ansbraeeeaeas 233
9-3 Masking of the CPU COre INTEITUPLSeieiiiiiiee ettt e ettt e e e ettt e e e e e e e anebe e eeeaaeeaaanmrneeeeeaaens 234
10-1 ROM 4-byte Read, 16-bit Mode (WROMA[2:0] = 110)....cccuuierreeriieeriieanieeesireesieeesineesieessteesnneeesineeseneas 253
10-2 ROM 4-byte Read, 32-bit Mode (WROMA[2:0] = 110)......ceiiiiiiieiiiieiiieeirie et 253
10-3 PageROM 4-word Read, 16-bit Mode (WROMA[2:0] = 111, WPROM[1:0] = 10) 254
10-4 PageROM 4-word Read, 32-bit Mode (WROMA[2:0] = 111, WPROM[1:0] = 10)eevvvieirierrieineenineen 255
10-5 Flash Memory MOAE, 2-DYIE ACCESS.oi ettt e ettt e e e e e e et e e e e e e e annnreeeae e eeeaeaaan 255
10-6 1-byte Access to Even Address Using 16-bit Bus (WISAA[2:0] = 101) 256
10-7 2-byte Access when Sampling IOCHRDY at High Level Using 16-bit Bus (WISAA[2:0] = 101)............ 257
10-8 1-byte Access to Odd Address Using 16-bit Bus (WISAA[2:0] = 101) c..ccvveeeiiiiiiiieeee e 258
10-9 1-byte Access to Odd Address Using 8-bit Bus (WISAA[2:0] = 101)ueeeieeeiiiiiiiieieeeeeiieiiee e 258
10-10 2-byte Access when Sampling ZWS# at Low Level on 16-bit Bus (WISAA[2:0] = 101)cccceeveeervnneee. 259
10-11 2-byte Access when Sampling ZWS# at Low Level on 8-bit Bus (WISAA[2:0] = 101)cccvveeveeeiiiinens 260
10-12 2-byte Access on 16-bit Bus (WLCD/M[2:0] = 101) ...uuuuiiiiieeiiiiiiiiiee ettt e e e evare e e e et e e e e e e s 261
10-13 1-byte Access on 8-bit BUS (WLCD/M[2:0] = 101) ..cciuuuiiiieee e iiiiiiiee e e et e et e e e e et e e e e e e e eeeas 261
10-14 2-byte Access When Sampling ZWS# at Low Level on 16-bit Bus (WLCD/M[2:0] = 101)........ccccuveeee. 262
10-15 1-byte Access When Sampling ZWS# at Low Level on 8-bit Bus (WLCD/M[2:0] = 101) 262
10-16 2-byte Access to LCD Controller (WLCD/M[2:0] = 010)....uuuiiiieeiiiiiiiieeeeeeiiireeee e e e esiiveeee e e e e s sivreeeaaee e s 263
10-17 2-byte Access to LCD Controller (WLCD/M[2:0] = 0L11)....uueiiiiaiiiiiiiieae et ee et a e e eaae e 263
10-18 4-byte Access to DRAM (L16-Dit MOUE)eiiiiiiiiiiiiiie ettt e e e e e e ae s nnnaeees 264
10-19 8-byte Access to DRAM (32-Dit MOAE) ...coeiiiiiiiiiiiiee et e e e e e e ee s nneeeeeas 264
10-20 Byte Read of Odd Address in DRAM (16-bit MOAE)..........uuviiiiieiiiiiiiiee st a e 265
10-21 Byte Read of Even Address in DRAM (16-bit MOUE)ueiiiiiiiiiiiiiiei et 265
10-22 Byte Write to Odd Address in DRAM (16-bit MOAE)..........uvviiiiiiiiiiiieee e 266
10-23 Byte Write to Even Address in DRAM (16-Dit MOAE)uuiiiiiiiiiiiiee e 266

22

LIST OF FIGURES (4/4)

Fig. No. Title Page
10-24 CBR Refresh (16-bit Mode) 267
10-25 Self Reffesh (16-Dit MOUE). ... coiiiiiieiiiiie ettt e e e e e e ettt e e e e e e e nnne e eeaaa e e nn 267
10-26 BuUS HOId in FUIISPEEA MOTE........cc.eiiiiiiiie ettt e e e e e e e e e e s et bbb e e e e e e e s e s aanssnsbaeeaaaeeeans 268
10-27 BUS HOId iN SUSPENA IMOAE ...ttt e e e e e ettt e e e e e e e ettt et e e e e e e s antnsnsseeeaaaaeaannn 269
11-1 DMA Space Used in DMA TIanSTEIS ...t e e e e et 271
13-1 Block Diagram of CMU and Peripheral BIOCKSuuiiiiiiiiiiiiii e 289
14-1 INtErrupt CONLIOL OULINEooii e ettt e ettt e e e e e e e ettt e e e e e e s s mentbeeeeeaaeeeeannnnns 293
15-1 Activation via Power Switch Interrupt (BATTINH/BATTINTH = 1) ..eiiiiiiiiiiiiiiieee e 321
15-2 Activation via Power Switch Interrupt (BATTINH/BATTINTH = 0).cccooiiiiiiiiiiiee et a e 321
15-3 Activation via GPIO Activation Interrupt (BATTINH/BATTINT# = 1) 322
15-4 Activation via GPIO Activation Interrupt (BATTINH/BATTINT# = 0) 322
15-5 Activation via DCD Interrupt (BATTINH/BATTINTH = 1) ...uuiiiiiiiiiiiiiiieiiee et e e 323
15-6 Activation via DCD Interrupt (BATTINH/BATTINTH = 0)..ciiiiciiiiiiee ettt e e e e aeveee s 323
15-7 Activation via Alarm Interrupt (BATTINH/BATTINTH = 1) .eueiiiiiiiiiiiiiiee et 324
15-8 Activation via Alarm Interrupt (BATTINH/BATTINTH = 0) .uvviiiieieiiiiiiiee ettt e e ee e e 324
15-9 Power Mode State TrANSILIONooiii ittt e et e e e e e e s ettt e e e e e s anaaeeeeaaeaaaaeeeannnseeeeas 325
19-1 PIU Peripheral BIOCK DIGQIAMcoiiiiiiiiiiiie ettt ettt e e e e ettt e e e e e s e stee e e e e e e s anaaeeeeaaeaaeaeeeannseeeeas 382
19-2 Equivalent Circuit of Coordinate Detection 382
19-3 Internal BIOCK DIiagram Of PIU ...ttt e e et e e e e e ee e e e e e nneeeeeas 383
19-4 Scan Sequencer State TranSition DIAGIAMcc.uviiiiiei e s e e e s st ae e e e e e e s snrae eeenees 384
19-5 INtErval TIMES QNG SEALES eeeiiei ettt e ettt e e e e e ettt et e e e e e s e at b e e e e e e e e e e nbbeeeeeeeeeeaeeeannsnneeas 391
19-6 Touch/Release Detection Timing 404
19-7 W D o Yo T I T 0111 T [T EPRT TR 404
22-1 Data Format for TransmisSion and RECEPLIONcccoiiiiiiiiiiiie et e e e e s 448
22-2 Transmit Complete INTErTUPE TIMING ...veeiiieiiiiiier e e e e e e e e e e e st r e e e e e e s eatbaetbrreeeaeeaan 450
22-3 Receive Complete INterrUPt TIMINGeiiiieee et e e e et e e e e e e et e e e e e e e e aann e e eenneeeeeas 451
22-4 RECEIVE EFTON TIMING ...vvtiiiieeiiiiiitiet ettt s ettt e e e e e et e e e e e e e s atta et e e e e e s asattaeeeaeeeeassessntbaeeeeeseasnseeeeas 452
24-1 Connection Example Between The VrR4102 and IrDA MOAUIEccoouiiiiiiieiiiiiicee e 479
25-1 HSP UNit BIOCK DIAQIAM....iciiiiiiiiieee ettt e e et e e e e e e et et e e e e e s ab e et e e e s e aantbeeeaeeeaessasnsaneeas 482
25-2 Circuit Configuration Block Diagram EXAMPIEScooooiiiiiiiiiiia ettt e 482
25-3 Block Diagram of HSP Interface POWEr CONMIOLcccceiiiiiiiiiiie et e e e e eee s 494
27-1 VRA102 OPCOdE Bit ENCOTINGccciiiiiiiiiiie e ettt e ettt e e e e s e e e e e s e st e e e e e s e s atb b e e e e e e e saasbaes sansreees 674
29-1 Example of Connection of PLL PasSive COMPONENEScciieiiiiiiiieiieeeiiiiiiiereeeesesiiirereeeesssniveeeeaeeessnens 683

23

LIST OF TABLES (1/4)

Table. No. Title Page
1-1 SO W = To 1S3 =1 £ PP PRSP 33
1-2 DMAAU Registers 33
1-3 (DT OA U I =T 1] (=] £ O PR PSUPR SR 34
1-4 (1Y (O =T o L] (T PP PPERPTN 34
1-5 ICU Registers 35
1-6 L =T o 13 (T £ PSRRI 35
1-7 R IO 2 =T 5] (= £ PRUPR OSSP 36
1-8 (DS W =T o 1S3 (] PSP R SRR 37
1-9 (11O I T=To 1] (=] TP PPERPRN 37
1-10 e LU LT o 1) (= (= PR PR SROP 38
1-11 F L0 =T o 1] (T ¢ PRSP UPRPPR 39
1-12 LU S LT o 1) (= (= PP PP SSOP 40
1-13 (D] [=T o [S] C] £ P PPUPR SR 40
1-14 LED Registers 41
1-15 Y L0 I =T |1 (=] £ UR OO PRPRRN 41
1-16 [ST ol S =T o] (= =PSRRI 41
1-17 [d=To 1] (=] € TP PPUPRR ST 42
1-18 System Control Coprocessor (CP0) Register Definitionseeeiiiiiiiiiiiiiee e 50
2-1 System BUS INTEIfACE SIGNAIScoiieiiiii ettt e e e e e et e e e e e e e e e eeeeeanneeeeeas 63
2-2 CloCK INTEIfACE SIGNAIS ...t e e e e et e e e e e st e e e e e e e e aatba et eee heeeeaeesannereeeas 65
2-3 Battery Monitor Interface Signals 65
2-4 Initialization Interface Signals 66
2-5 RS-232-C INtErfaCe SIGNAISeeeiiiiiiiiiiiie ettt e e e et e e e e e e e an e nnnreeeaaaeean 67
2-6 IFDA INEEITACE SIGNAIS ...ocii ettt e e e e et e e e e e et b e e e e e e s sastbeb e e e e e aeeeeseassrtraaeeeenan 68
2-7 Debug Serial INterface SIGNAISeiiiiii et e et e e e e e e eeaa e an 68
2-8 Keyboard Interface Signals.............. 69
2-9 AUAIO INEITACE SIGNAIS ...ttt e ettt e e e e e st e e e e e e e aa e e e e e annneeeeaaaean 69
2-10 Touch Panel/General Purpose A/D Interface SignalS............euiieiiiiiiiiiiie e e et 69
2-11 General-purPoSE 1/0O SIGNQ@IScoeeiiiiiiiii et e et e e e e e s et e e e e e e e e ab e e e e e e e e e e eaeeeanneeeeaas 70
2-12 HSP MODEM INterface SIgNalSccuuviiiiie ittt et e e e e st e e e e e s e sttt e e e e e e e e sntsabraeeaeeeean 71
2-13 LED INtEIfACE SIGNAL ... ittt e e e ettt e e e e e ettt e e e e e e e e anbbeeeeaeeeeaeesaannnnneaaaaaaan 71
2-14 Dedicated VDD and GND SIgNaISuuviiiiieiiiiiiiiei et e e s e st e e e e e s s b e e e e e e s sestbareeaeeessssbsaaeaaeassnnnes 72
2-15 StatuS Of PINS UPON RESEL ...ttt e e ettt e e e e e e et e e e e e e e s et e e e e e e e eeeaaeeeanneeeeeas 73
2-16 Connection of Unused Pins and Pin /O CirCUIt TYPE ...vvviiieiiiiiiiiiee ettt e e a e s 76
3-1 Number of Delay Slot Cycles Necessary for Load and Store INStrucCtions..........cccccoeevvvveiieeeeiiciiieneenn. 82
3-2 (o= To TS (o {011 1 0T 1o o TP PP TSP 84
3-3 Load/store INStruction (EXIENAEA ISA)cooiiiiiiiie ettt e e e et e e e e e e st e e e e e aaenaeeeaan 85
3-4 ALU IMMEIAte INSIIUCTION.....eii ittt et e e e e ettt e e e e e e e e et be e e e e e e e e ann e e annnneeeaaaeaan 86
3-5 ALU Immediate INStruction (EXIENAEA ISA)oiiiiiiiiiiiieee et e et e e e e e anaaeeaan 87
3-6 Three Operand TYPE INSIFUCLIONoo ittt e e e e et e e e e e e e ntbe e e e e e e e eeeaaeaaannes 87
3-7 Three Operand Type Instruction (EXtENAEA ISA).......ciiiiiiiiiiiiie et e e e ebaeaees e 88
3-8 S a1 18 LS (8 e 1T I SRR 88

24

LIST OF TABLES (2/4)

Table. No. Title Page
3-9 Shift Instruction (Extended ISA) 89
3-10 MUltiply/DiIVide INSIFUCLIONS ...ttt e e ettt e e e e e e e aae et e e e e e e e s annneeatbeeeeeaaeeeeannnnnes 20
3-11 Multiply/Divide Instructions (EXtENAEd ISA).......ccouiiiiiiiiee et a e e e e s snarraees 90
3-12 Number of Stall Cycles in Multiply and Divide INStrUCHONS.........cooiiiiiiiiieae e 91
3-13 Number of Delay Slot Cycles in Jump and Branch Instructions 92
3-14 B8[0S 0 (o 1] LR PRP S 93
3-15 BranCh INSITUCTIONSc..viiiiiieii ettt b ettt st re e b e e nane e 94
3-16 Branch INStructions (EXIENAEA ISA)......coo ettt et e e e e e e et e e e e e e aee e e e nneeeeas 95
3-17 SPECIAI INSITUCLIONS ...t e e e e e e e e s e et e e e e e e e e s s e tbeb e et aaaateeessansantbaeaaaeeeaann 96
3-18 Special INStructions (EXIENAEA ISA)cooi oot e et e e e e e e e e e e e eeeeeaaeeeeanes 96
3-19 System Control Coprocessor (CPO) INSIUCHIONScoouuiiiiiiie et e e e e e e e e e nens 97
4-1 Description of Pipeline Activities during Each Stagecc.uvviiiiiiiiiiiiiiiieeee e 101
4-2 Correspondence of Pipeline Stage to Interlock and Exception Condition 110
4-3 Description of Pipeling EXCEPLIONcciiiiiiiiiiei ettt e e s e e e e e e e st e e e e e e anaeeeesesnnnnes 111
4-4 PIPEINE INTEIIOCK ...ttt e e oo ettt e e e e e e e bt b et e e e e e e e aesantasnseeeaeeeeaannnnes 111
5-1 ComMPAriSON Of USEQ ANGA XUSEQueeeeeeeaeeeiiiiiieiiee e e e e ettt e e e e e s e s aateeeeeaaaaaaaantaeaeeeaaaaeaaansbseeeeaaeeeaaaaeaaanns 122
5-2 32-bit and 64-bit SUPErVISOr MOAE SEGMENEScciiiiiiiiiiiiiie et e e e e s e e e e e e e e s e e ennes 126
5-3 32-bit Kernel MOOE SEOMENTSttt e e e e e e e ettt e e e e e e e s sneeeeeeaaaeeaaansbnmreeeaaaaeaanns 130
5-4 64-bit Kernel MOOE SEOMENTS ...ttt et e e e e s e et e e e e e e e s et bbaaeeeaaeeeessasbbarereeaeeesannes 132
5-5 Cacheability and the XKphys AdAreSS SPACEuueiiiiiieai et e e e e eeeaenees 133
5-6 VRrR4102 Physical Address Space........ccccceeevvivvrvieieeeeeesiiins 136
5-7 ROM Addresses (when using 16-bit data bus) 137
5-8 ROM Addresses (when using 32-bit data bus) 137
5-9 Internal I/O Space 1 139
5-10 Internal 1/0 Space 2 139
5-11 DRAM Addresses (when using 16-bit data DUS)...........eoiiiiiiiii e 140
5-12 DRAM Addresses (when using 32-bit data buS)...........eeiiiiiiiiiiiiiicc e 140
5-13 (0= Tod TSI Y[[0 11 01 1 PRSPPI 145
5-14 MaSK ValuES AN PAQE SIZESuuuiiiiieiiiiiiiiiiiit e ettt e e e e ettt e e e e e e s e et e et e e e e e e s snsabeaeeeaeataeeessansnnnnes 147
6-1 CPO EXCeption ProCessing REGISIEISciiuiiiiiiiii ettt e e e e s e e e e e e e st e e e e e e anaeeeeennes 159
6-2 Cause Register EXception Code Feld............uue it e e e e e e e e 166
6-3 64-Bit Mode Exception Vector Base Addresses 174
6-4 32-Bit Mode Exception Vector Base Addresses 174
6-5 o=t o) o) A I oA o] 14V @] o =T SO OO SOOPPUPRRROt 176
10-1 SO W = To 1S3 =] £ TSSO PEPRRRROt 235
10-2 Address Bit Correspondence between ADD Bus and External DeViCescceeveeeiiiiiiiiieieeeeeniiieee 246
10-3 Address Connection Table with EXternal DEVICEScociiiiiiiiiieiiie et 246
10-4 Access Size Restrictions for AAArESS SPACESuuiiiia ittt e e e et e e e e e e s s e e eeeeaeaeeeeeas 247
10-5 SUMMATY Of ROM MOUESuviiiiiiie ettt e e e et e e e e e e e s sttt a e et e e e e e e ssntbbaaeetaeeeee s esaeeaaaeeeanns 248
10-6 Example of Bit Inversion in Data in VrR4102 and at DATA [15:0] PiNSoeiiiiiiiiiiiiiiiieee e 250

25

LIST OF TABLES (3/4)

Table. No. Title Page
10-7 lllegal Access NOtIfication METNOUScciiiiiiiiiiice e e eeaeas 251
10-8 Access Times during Ordinary ROM Read Mode 252
10-9 PageROM Read MOAE ACCESS TIMEiiciiiiiiiiiiie e eeeiiie e e e et e e e e e et e e e e e e s st e e e e e e s e s saatbaaaaeeaanaaeeean 254
10-10 SYSEEM BUS ACCESS TIMESeeiiiiieiiiitiiiit e e ettt e e e e e e e ettt e e e e e e e e aabeeeeaaaeaasnsbeeeeaeeaaanntbeeeaaeeaan eeeeeaannnnnneeas 256
10-11 High-Speed System Bus Access Times 260
10-12 Access TImes fOr LCD INEITACEeeeeiieeee ettt e et e e e e e e e e e e nnnaeeeas 263
11-1 DIMAAU REGISTEIS ...ttt eee e ettt e e e ettt e e e e ettt e e e e e atbe et eaeeaaamae b e et eae e e e nntaeeeeaeeaannneeeeeeeeaeasaannnnneaaaaaan 272
12-1 DIMA PFIOFIEY LEVEIS ..ttt ettt e e e e e oottt e e e e e ettt et e e e e e e s ntbeeeeaaeceeaeeeaannnnneaaaaaan 281
12-2 DT OL U I L= |51 (= £ PSPPSR 281
13-1 (1Y 18 I =T 1] 1= SRR 289
14-1 (@O = To 1] (=] £ T PSPPSR 294
15-1 Bit OPerations AUING RESEL........oi ittt e et e e e e e e e e e e e s s s atb b e eeaeesaan e e s eansbtaanaeeanan 319
15-2 Bit Operations during SNULAOWNNcoiiiiiiiei ettt e e e e et e e e e e e e e e nntee sannneeaaaaean 320
15-3 POWET MOE ...ttt b ettt s b et e b e e be e e bt e e be e s b e e bt eene e nres 326
15-4 O =T o IS (T PSPPSR 327
16-1 g O 2 LT |11 (=] £ PRSP 336
17-1 (DS W =T o L] (T PSPPI 355
18-1 (€1 [0 I o I 0T [ox 1T L EEPTR 361
18-2 GIU Registers 362
18-3 Table of Correspondences between GPIO[47..32] and FUNCLION PINSccoooiiiiiiiiiiiiaiiiiiiieee e 379
18-4 Table of Correspondence between GPIO[48] and FUNCION PiN..........ccociiiiiiei i cciieeeee e 380
19-1 L LU LT o 11 (=] PSPPSR 386
19-2 PIUCNTREG Bit Manipulation and STAteSccoiiiiiiiiiiiiee et e e e e eaaaeaae e an 389
19-3 PIUASCNREG Bit Manipulation and StateS...........ciieiiiiiiiieiieeiiiiiiiiir e e e ettt e e s s s e e e e e s e saaareraaaeaea s 396
19-4 Detected Coordinates and Page BUFFEIScoii e 399
19-5 A/D Ports and Data BUFfEIS..........cocuiiiiii s 400
19-6 Comparison of PIUs of Vr4102 and Vr4101 407
20-1 F LU =T o 13 (=] £ PRSP 409
21-1 LU LT o 11 (=] £ PRSP 423
22-1 (DS L6 B =TI (= PSPPSR 435
22-2 RECEIVE EITON CABUSESvviiitiiiiii ittt sttt ettt bt ekt sh et e s bt e s ket e eb bt e be e e nbe e e e be e e nbeeeneeeres 452

26

LIST OF TABLES (4/4)

Table. No. Title Page
23-1 [D LT 1) (=] (SRRSO PUPRRROt 453
24-1 Y LU I =T |1 (=] £ TP PPPPPR 461
24-2 Correspondence between Baud Rates and DiVISOIScouiiiiiiiuiiiiiiieea e e e e e eieeeeeeas 466
24-3 Interrupt Function 468
25-1 [ST ol 2 =T 1) (= £ ST SRPR RO 483
25-2 Control Register DEfINITIONSueiiiie et e e et e e e e e s et et e e e e e e aanaae s annrbneaaeaeeeannnes 485
26-1 L R =T] (=] TR SEPTRR 498
27-1 CPU Instruction Operation NOLATIONS.eiiiaieiiitiiieee ettt e e e e e st e e ee e e e s e aaeeeeeeaeaaaannneeeeeaeeeeeaaeaaannne 526
27-2 Load and Store COMMON FUNCHONSccuuiiiiiiiei ittt sttt sne e 527
27-3 Access Type Specifications for Loads/Stores 528
28-1 VRA102 COProCeSSOr O HAZAMS ... iieiiiiie ettt ettt e e e ettt e e e e e s enate e e e e e e e e e annbeeeee eeeeeas 678
28-2 Calculation Example of CP0 Hazard and the Number of Instructions Insertedcccccoovivviiieeeeninns 681

27

[MEMO]

28

CHAPTER 1 INTRODUCTION

This chapter describes the outline of the VrR4102 (uPD30102), which is a 64-/32-bit RISC microprocessor.

1.1 FEATURES

The Vr4102, which is a high-performance 64-/32-bit microprocessor employing the RISC (reduced instruction set
computer) architecture developed by MIPS, is one of the RISC microprocessor Vr-SeriesTM products manufactured
by NEC.

The Vr4102 is ideally suited for battery-driven high-performance portable information equipment.

It mainly consists of the high-performance ultra-low-power consumption Vr4102 CPU core, and has various
peripheral functions including a DMA controller, software modem interface, serial interface, keyboard interface, IrDA
interface, touch panel interface, real-time clock, A/D converter, and D/A converter.

The external bus width of this device can be selected between 32 bits and 16 bits. This function enables the
VRrR4102 to process voluminous data at high speed.

The features of the Vr4102 are described below.

<- Employs 64-bit RISC CPU Core (Vr4100 equivalent)
<> Internal 64-bit processing
<> Optimized 5-stage pipeline
<> Conforms to MIPS |, II, lll instruction sets (with the FPU, LL, and SC instructions left out)
< Supports high-speed product-sum operation instructions to execute applications in high speed
<> On-chip 4-Kbyte instruction cache and 1-Kbyte data cache
<> 32-double-entry translation lookaside buffer (TLB) for virtual address management
< 32-bit physical address space and 40-bit virtual address space (in 64-bit mode)
<> On-chip peripheral units suited for portable equipment
« Memory controller (supports ROM, EDO-type DRAM, and flash memory)
¢ ISA-bus interface
« Keyboard interface
« Touch panel interface (on-chip 4-channel A/D converter)
« Controller complying with IrDA 1.1 (FIR)
« Software modem interface
* DMA controller
 Serial interface
« Debug serial interfaces
* Interrupt controller
 Audio interface (on-chip digital 1/0, A/D and D/A converters)
» General-purpose A/D converter: 3 channels
» General-purpose ports
< Effective power management features, which include the following four operating modes:
« Fullspeed mode: normal operating mode in which all clocks operate
« Standby mode: all internal clocks stop except for interrupt-related clocks
» Suspend mode: bus clock and all internal clocks stop except for interrupt-related clocks
» Hibernate mode: all clocks generated by the CPU core stop

29

CHAPTER 1 INTRODUCTION

< External input clock: 32.768 kHz, 18.432 MHz (for internal CPU core and peripheral unit operation), 48 MHz
(dedicated for FIR IrDA interface)

<> Supports ISA bus subset

< Clock supply management function for each on-chip peripheral unit to implement low-power consumption
<> Operation supply voltage: Voo = 3.0t0 3.6 V

1.2 ORDERING INFORMATION

Part Number Package Maximum Operation Frequency
UPD30102GM-54-8EV 216-pin plastic LQFP (fine pitch) (24 x 24 mm) 54 MHz
UPD30102GM-66-8EV 216-pin plastic LQFP (fine pitch) (24 x 24 mm) 66 MHz
uUPD30102S1-54-3C 224-pin plastic FBGA (16 x 16 mm) 54 MHz
UPD30102S1-66-3C 224-pin plastic FBGA (16 x 16 mm) 66 MHz

1.3 64-BIT ARCHITECTURE

The Vr4102 microprocessor has a 64-bit architecture. However, it can also run 32-bit applications.

1.4 VrR4102 PROCESSOR

The Vr4102 consists of the Vr4100 CPU core and seventeen peripheral units. It can connect external controllers
directly.

Figure 1-1 is an internal block diagram of the Vr4102 processor.

Figure 1-1. V r4102 Internal Block Diagram and Example of Connection to External Blocks

32.768kHz 18.432MHz

”:” _”:”_ 4>| CODEC|4—>| AFE|

(] [5] (] X
LCD Module

UPD16661 §
LED
©
o[> DSU
LCD Panel (| g
Y
VR4100 CPU core ICU
CD#ifEEe>
/Buffer
PMU
PCcard PIU
ROM/
Flash memory 0 t CMU AID
— 1
. DCU SIU Touch Panel
EDO DRAM || BCU

RS-232-C

— s it
R

Vra102 Rl o |

48MHz

30

CHAPTER 1 INTRODUCTION

1.4.1 Internal Block Structure

1)

)

®)

(4)

(®)

(6)

@)

(8)

9)

The following provides an outline of the peripheral units.
For the CPU core, refer to 1.5 VrR4100 CPU CORE.

Bus Control Unit (BCU)

In the Vr4102, the bus control unit (BCU) transfers data between the VrR4100 CPU core and SysAD bus. It also
controls external circuits, such as the LCD controller connected to the system bus, DRAM, ROM (flash memory
or masked ROM), and PCMCIA controller, and transfers data between the Vr4102 and these external devices,
using the address and data buses.

Real-time Clock Unit (RTC)

The real-time clock (RTC) is provided with an accurate counter that operates on a 32.768-kHz clock pulse
supplied from the clock generator. It is also provided with several counters and Compare registers for
controlling various interrupts.

Deadman’s Switch Unit (DSU)
The Deadman’s switch unit (DSU) is used to check whether the processor is running normally. If the register of
this unit is not cleared by software within a specified period, the system is shut down.

Interrupt Control Unit (ICU)
The interrupt control unit (ICU) controls interrupt requests that are caused by factors either internal or external to
the Vr4102, and informs the Vr4100 CPU core when an interrupt request occurs.

Power Management Unit (PMU)

The power management unit (PMU) outputs signals necessary to control the power of the entire system
including the Vr4102. The signals are used to control the PLL of the VrR4100 CPU core and the internal clocks
(pipeline clock, TClock, and MasterOut) in low-power modes.

Direct Memory Access Address Unit (DMAAU)
The direct memory access address unit (DMAAU) controls the address of three different DMA transfers.

Direct Memory Access Control Unit (DCU)
The direct memory access control unit (DCU) controls the arbitration of three different DMA transfers.

Clock Mask Unit (CMU)
The clock mask unit (CMU) controls the way the clocks TClock and MasterOut are supplied from the Vr4100
CPU core to internal peripheral units.

General Purpose 1/0 Unit (GIU)
The general purpose I/O unit (GIU) controls 49 GPIO pins.

(10) Audio Interface Unit (AlU)

The audio interface unit (AlU) executes mic-input sampling and audio signal output by controlling the internal
A/D converter and D/A converter.

31

CHAPTER 1 INTRODUCTION

(11)Keyboard Interface Unit (KIU)
The keyboard interface unit (KIU) has 12 scan lines and 8 detection lines. It can detect when any of 64/80/96
keys are pressed. It supports key rollover for two to three continuous strokes.

(12) Touch Panel Interface Unit (PIU)
The touch panel interface unit (PIU) detects when the touch panel is touched, by controlling the internal A/D
converter.

(13)Debug Serial Interface Unit (DSIU)
The debug serial interface unit (DSIU) is a serial interface for debugging. It supports a maximum transfer rate of
115 kbps.

(14) Serial Interface Unit (SIU)
The serial interface unit (SIU) conforms to the RS-232-C specification and is compatible with 16550. It supports
a maximum transfer rate of 1.15 Mbps. Also available is an IrDA serial interface supporting a maximum transfer
rate of 115 kbps, but this interface and the RS-232-C interface are mutually exclusive.

(15) Fast IrDA Interface Unit (FIR)
The FIR unit is a unit for performing 0.5- to 4-Mbps IrDA communication. This unit operates based on a
dedicated 48-MHz clock input.

(16)Host Signal Processing Unit (HSP)
The HSP unit is used to realize a software modem. It interfaces the CPU core with an external codec device,
and controls them.

(17) Light Emitting Diode Unit (LED)
The LED unit is used to control the lighting of external LED.

32

CHAPTER 1 INTRODUCTION

1.4.2 1/0O Registers
The I/O registers are used for peripheral unit control.

Table 1-1. BCU Registers

Register symbols

Function

Address

BCUCNTREG 1

BCU Control Register 1

0x0B00 0000

BCUCNTREG 2

BCU Control Register 2

0x0B00 0002

BCUSPEEDREG BCU Access Cycle Change Register 0x0B00 000A
BCUERRSTREG BCU BUS ERROR Status Register 0x0B00 000C
BCURFCNTREG BCU Refresh Control Register 0x0B00 000E
REVIDREG Peripheral Unit Revision ID Register 0x0B00 0010
BCURFCOUNTREG BCU Refresh Cycle Count Register 0x0B00 0012
CLKSPEEDREG Clock Setting Register 0x0B00 0014

Table 1-2. DMAAU Registers

Register symbols Function Address
AIUIBALREG AIU IN DMA Base Address Register Low 0x0B00 0020
AIUIBAHREG AIU IN DMA Base Address Register High 0x0B00 0022
AIUIALREG AIU IN DMA Address Register Low 0x0B00 0024
AIUIAHREG AIU IN DMA Address Register High 0x0B00 0026
AIUOBALREG AlIU OUT DMA Base Address Register Low 0x0B00 0028
AIUOBAHREG AIU OUT DMA Base Address Register High 0x0B00 002A
AIUOALREG AlIU OUT DMA Address Register Low 0x0B00 002C
AIUOAHREG AIU OUT DMA Address Register High 0x0B00 002E
FIRBALREG FIR DMA Base Address Register Low 0x0B00 0030
FIRBAHREG FIR DMA Base Address Register High 0x0B00 0032
FIRALREG FIR DMA Address Register Low 0x0B00 0034
FIRAHREG FIR DMA Address Register High 0x0B00 0036

33

CHAPTER 1 INTRODUCTION

34

Table 1-3. DCU Registers

Register symbols Function Address
DMARSTREG DMA Reset Register 0x0B00 0040
DMAIDLEREG DMA Sequencer Status Register 0x0B00 0042
DMASENREG DMA Sequencer Enable Register 0x0B00 0044
DMAMSKREG DMA Mask Register 0x0B00 0046
DMAREQREG DMA Request Register 0x0B00 0048
TDREG Transfer Direction Setting Register 0x0BO00 004A

Table 1-4. CMU Register

Register symbol

Function

Address

CMUCLKMSK

CMU Clock Mask Register

0x0B00 0060

CHAPTER 1 INTRODUCTION

Table 1-5. ICU Registers

Register symbols

Function

Address

SYSINT1REG Level 1 System Interrupt Register 1 0x0B00 0080
PIUINTREG Level 2 PIU Interrupt Register 0x0B00 0082
AIUINTREG Level 2 AlU Interrupt Register 0x0B00 0084
KIUINTREG Level 2 KIU Interrupt Register 0x0B00 0086
GIUINTLREG Level 2 GIU Interrupt Register Low 0x0BO00 0088
DSIUINTREG Level 2 DSIU Interrupt Register 0x0B0O0 008A

MSYSINTIREG

Level 1 Mask System Interrupt Register 1

0x0B00 008C

MPIUINTREG Level 2 Mask PIU Interrupt Register 0x0B00 008E
MAIUINTREG Level 2 Mask AIU Interrupt Register 0x0B00 0090
MKIUINTREG Level 2 Mask KIU Interrupt Register 0x0B00 0092
MGIUINTLREG Level 2 Mask GIU Interrupt Register Low 0x0B00 0094
MDSIUINTREG Level 2 Mask DSIU Interrupt Register 0x0B00 0096
NMIREG Battery Interrupt Select Register 0x0B00 0098
SOFTINTREG Software Interrupt Register 0x0B00 009A
SYSINT2REG Level 1 System Interrupt Register 2 0x0B00 0200
GIUINTHREG Level 2 GIU Interrupt Register High 0x0B00 0202
FIRINTREG Level 2 FIR Interrupt Register 0x0B00 0204

MSYSINT2REG

Level 1 Mask System Interrupt Register 2

0x0B00 0206

MGIUINTHREG

Level 2 Mask GIU Interrupt Register High

0x0B00 0208

MFIRINTREG

Level 2 Mask FIR Interrupt Register

0x0B0O0 020A

Table 1-6. PMU Registers

Register symbols

Function

Address

PMUINTREG PMU Interrupt/Status Register 0x0B00 00A0
PMUCNTREG PMU Control Register 0x0B00 00A2
PMUINT2REG PMU Interrupt Register 2 0x0B0O0 00A4
PMUCNT2REG PMU Control Register 2 0x0B00 00A6

35

CHAPTER 1 INTRODUCTION

36

Table 1-7. RTC Registers

Register symbols

Function

Address

ETIMELREG Elapsed Time L Register 0x0B00 00CO
ETIMEMREG Elapsed Time M Register 0x0B00 00C2
ETIMEHREG Elapsed Time H Register 0x0B00 00C4
ECMPLREG Elapsed Compare L Register 0x0B00 00C8
ECMPMREG Elapsed Compare M Register 0x0B00O 00CA
ECMPHREG Elapsed Compare H Register 0X0B0O0 00CC
RTCL1LREG RTC Long 1 L Register 0x0B00 00DO
RTCL1IHREG RTC Long 1 H Register 0x0B00 00D2
RTCL1CNTLREG RTC Long 1 Count L Register 0x0B00 00D4
RTCL1CNTHREG RTC Long 1 Count H Register 0x0B00 00D6
RTCL2LREG RTC Long 2 L Register 0x0B00 00D8
RTCL2HREG RTC Long 2 H Register 0x0B0OO 00DA
RTCL2CNTLREG RTC Long 2 Count L Register 0x0B00 00DC
RTCL2CNTHREG RTC Long 2 Count H Register 0x0B00O O0DE
TCLKLREG TClock L Register 0x0B00 01CO
TCLKHREG TClock H Register 0x0B00 01C2
TCLKCNTLREG TClock Count L Register 0x0B00 01C4
TCLKCNTHREG TClock Count H Register 0x0B00 01C6
RTCINTREG RTC Interrupt Register 0x0B00 01DE

CHAPTER 1 INTRODUCTION

Table 1-8. DSU Registers

Register symbols

Function

Address

DSUCNTREG DSU Control Register 0x0B00 0OEO
DSUSETREG DSU Cycle (Dead Time) Set Register 0x0B00 00E2
DSUCLRREG DSU Clear Register 0x0B00 00E4
DSUTIMREG DSU Elapsed Time Register 0x0B00 00E6

Table 1-9. GIU Registers

Register symbols

Function

Address

GIUIOSELL GPIO Input/Output Select Register L 0x0B00 0100
GIUIOSELH GPIO Input/Output Select Register H 0x0B00 0102
GIUPIODL GPIO Port Input/Output Data Register L 0x0B00 0104
GIUPIODH GPIO Port Input/Output Data Register H 0x0B00 0106
GIUINTSTATL GPIO Interrupt Status Register L 0x0B00 0108
GIUINTSTATH GPIO Interrupt Status Register H 0x0B00 010A
GIUINTENL GPIO Interrupt Enable Register L 0x0B00 010C
GIUINTENH GPIO Interrupt Enable Register H 0x0B00 010E
GIUINTTYPL GPIO Interrupt Type (Edge or Level) Select Register L 0x0B00 0110
GIUINTTYPH GPIO Interrupt Type (Edge or Level) Select Register H 0x0B00 0112

GIUINTALSELL

GPIO Interrupt Active Level Select Register L

0x0B0O 0114

GIUINTALSELH

GPIO Interrupt Active Level Select Register H

0x0B00 0116

GIUINTHTSELL

GPIO Interrupt Hold/Through Select Register L

0x0B00 0118

GIUINTHTSELH

GPIO Interrupt Hold/Through Select Register H

0x0BO0O 011A

GIUPODATL

GPIO Port Output Data Register L

0x0B0O0 011C

GIUPODATH

GPIO Port Output Data Register H

0x0B00 011E

37

CHAPTER 1 INTRODUCTION

38

Table 1-10. PIU Registers

Register symbols

Function

Address

PIUCNTREG PIU Control Register 0x0B00 0122
PIUINTREG PIU Interrupt Cause Register 0x0B00 0124
PIUSIVLREG PIU Data Sampling Interval Register 0x0B00 0126
PIUSTBLREG PIU A/D Converter Start Delay Register 0x0B00 0128
PIUCMDREG PIU A/D Command Register 0x0B00 012A
PIUASCNREG PIU A/D Port Scan Register 0x0B00 0130
PIUAMSKREG PIU A/D Scan Mask Register 0x0B00 0132
PIUCIVLREG PIU Check Interval Register 0x0B00 013E
PIUPBOOREG PIU Page 0 Buffer 0 Register 0x0B00 02A0
PIUPBO1REG PIU Page 0 Buffer 1 Register 0x0B00 02A2
PIUPBO2REG PIU Page 0 Buffer 2 Register 0x0B00 02A4
PIUPBO3REG PIU Page 0 Buffer 3 Register 0x0B00 02A6
PIUPB10OREG PIU Page 1 Buffer 0 Register 0x0B00 02A8
PIUPB11REG PIU Page 1 Buffer 1 Register 0x0B00 02AA
PIUPB12REG PIU Page 1 Buffer 2 Register 0x0B00 02AC
PIUPB13REG PIU Page 1 Buffer 3 Register 0x0B00 02AE
PIUABOREG PIU AD Scan Buffer 0 Register 0x0B00 02B0
PIUAB1REG PIU AD Scan Buffer 1 Register 0x0B00 02B2
PIUAB2REG PIU AD Scan Buffer 2 Register 0x0B00 02B4
PIUAB3REG PIU AD Scan Buffer 3 Register 0x0B00 02B6
PIUPBO4REG PIU Page 0 Buffer 4 Register 0x0B00 02BC
PIUPB14REG PIU Page 1 Buffer 4 Register 0x0B00 02BE

CHAPTER 1 INTRODUCTION

Table 1-11. AlU Registers

Register symbols

Function

Address

MDMADATREG Mike DMA Data Register 0x0B00 0160
SDMADATREG Speaker DMA Data Register 0x0B00 0162
SODATREG Speaker Output Data Register 0x0B00 0166
SCNTREG Speaker Output Control Register 0x0B00 0168
SCNVRREG Speaker Conversion Rate Register 0x0B00 016A
MIDATREG Mike Input Data Register 0x0B00 0170
MCNTREG Mike Input Control Register 0x0B00 0172
MCNVRREG Mike Conversion Rate Register 0x0B00 0174
DVALIDREG Data Valid Register 0x0B00 0178
SEQREG Sequential Operation Enable Register 0x0B00 017A
INTREG AlU Interrupt Register 0x0B0O 017C

39

CHAPTER 1 INTRODUCTION

40

Table 1-12. KIU Registers

Register symbols Function Address
KIUDATO KIU DataO Register 0x0B00 0180
KIUDAT1 KIU Datal Register 0x0B00 0182
KIUDAT2 KIU Data2 Register 0x0B00 0184
KIUDAT3 KIU Data3 Register 0x0B00 0186
KIUDAT4 KIU Data4 Register 0x0B00 0188
KIUDATS KIU Data5 Register 0x0B00 018A
KIUSCANREP KIU Scan/Repeat Register 0x0B00 0190
KIUSCANS KIU Scan Status Register 0x0B00 0192
KIUWKS KIU Wait Keyscan Stable Register 0x0B00 0194
KIUWKI KIU Wait Keyscan Interval Register 0x0B00 0196
KIUINT KIU Interrupt Register 0x0B00 0198
KIURST KIU Reset Register 0x0B00 019A
KIUGPEN KIU General Purpose Output Enable Register 0x0B00 019C
SCANLINE KIU Scan Line Register 0x0B00 019E

Table 1-13. DSIU Registers

Register symbols

Function

Address

PORTREG Port Change Register 0x0B00 01A0
MODEMREG Modem Control Register 0x0B00 01A2
ASIMOOREG Asynchronous Mode 0 Register 0x0B00 01A4
ASIMO1REG Asynchronous Mode 1 Register 0x0BO00 01A6
RXBORREG Receive Buffer Register (Extended) 0x0B00 01A8
RXBOLREG Receive Buffer Register 0x0B00 01AA
TXSORREG Transmit Data Register (Extended) 0x0B00 01AC
TXSOLREG Transmit Data Register 0x0BO00 01AE
ASISOREG Status Register 0x0B00 01BO
INTROREG Debug SIU Interrupt Register 0x0B00 01B2
BPRMOREG Baud-rate Generator Prescaler Mode Register 0x0B00 01B6

DSIURESETREG

Debug SIU Reset Register

0x0B00 01B8

CHAPTER 1 INTRODUCTION

Table 1-14. LED Registers

Register symbols

Function

Address

LEDHTSREG LED H Time Set Register 0x0B00 0240
LEDLTSREG LED L Time Set Register 0x0B00 0242
LEDCNTREG LED Control Register 0x0B00 0248
LEDASTCREG LED Auto Stop Time Count Register 0x0B00 024A
LEDINTREG LED Interrupt Register 0x0B00 024C

Table 1-15. SIU Registers

Register symbols Function LCR[7] Address
SIURB Receiver Buffer Register (Read) 0 0x0C00 0000
SIUTH Transmitter Holding Register (Write)

SIUDLL Divisor Latch (Least Significant Byte) Register 1

SIUIE Interrupt Enable Register 0 0x0C00 0001
SIUDLM Divisor Latch (Most Significant Byte) Register 1

SIUIID Interrupt Identification Register (Read) - 0x0C00 0002
SIUFC FIFO Control Register (Write)

SIULC Line Control Register - 0x0CO00 0003
SIUMC MODEM Control Register - 0x0CO00 0004
SIULS Line Status Register - 0x0C00 0005
SIUMS MODEM Status Register - 0x0C00 0006
SIUSC Scratch Register - 0x0C00 0007
SIUIRSEL SIU/FIR IrDA Selector - 0x0C00 0008

Remark LCR([7] is bit 7 of the SIULC register.

Table 1-16. HSP Registers

Register symbols

Function

Address

HSPINIT

HSP Initialize Register

0x0C00 0020

HSPDATA[7:0]

HSP Data Register [7:0]

0x0CO00 0022

HSPDATA[15:8]

HSP Data Register [15:8]

0x0CO00 0023

HSPINDEX HSP Index Register 0x0C00 0024
HSPID[7:0] HSP ID Register 0x0CO00 0028
HSPPCSJ[7:0] HSP I/0 Address Program Confirmation Register 0x0CO00 0029

HSPPCTEL[7:0]

HSP Signature Checking Port

0x0CO00 0029

41

CHAPTER 1 INTRODUCTION

42

Table 1-17. FIR Registers

Register symbols

Function

Address

FRSTR FIR Reset Register 0x0CO00 0040
DPINTR DMA Page Interrupt Register 0x0CO00 0042
DPCNTR DMA Page Control Register 0x0C00 0044
TDR Transmit Data Register 0x0C00 0050
RDR Receive Data Register 0x0C00 0052
IMR Interrupt Mask Register 0x0CO00 0054
FSR FIFO Setup Register 0x0C00 0056
IRSR1 IR Setup Register 1 0x0CO00 0058
CRCSR CRC Setup Register 0x0C00 005C
FIRCR FIR Control Register 0x0CO00 005E
MIRCR MIR Control Register 0x0C00 0060
DMACR DMA Control Register 0x0C00 0062
DMAER DMA Enable Register 0x0C00 0064
TXIR Transmission Indicate Register 0x0C00 0066
RXIR Reception Indicate Register 0x0C00 0068
IFR Interrupt Flag Register 0x0C00 006A
RXSTS Reception Status Register 0x0C00 006C
TXFL Transmit Frame Length Register 0x0C00 006E
MRXF Maximum Receive Frame Length Register 0x0C00 0070
RXFL Receive Frame Length Register 0x0CO00 0074

CHAPTER 1 INTRODUCTION

1.5 VrR4100 CPU CORE

Figure 1-2. V r4100 CPU Core Internal Block Diagram

VA bus VR4100 CPU core .
- A A ﬂk A A i
ID bus -
h A A A A A i
\ A | I | VL Y \ I Y _ v
Control(0) Bus Data Instruction CPO CPU
Control(i) »| Interface Cache Cache
Address/Data(o) - (1K bytes) (4K bytes) TLB
Address/Data(i) >
A A A A A
Clock
Generator
Internal Clock ?

1.5.1 Vr4100 CPU Core

(1) CPU bus interface
The CPU bus interface controls data transmission/reception between the Vr4100 CPU core and the BCU, which

is one of peripheral units. The Vr4100 CPU interface consists of two 32-bit multiplexed address/data buses (one
is for input, and another is for output), clock signals, and control signals such as interrupts.

(2) Clock generator
The following clock inputs are oscillated and supplied to internal units.

® 32.768-kHz clock for RTC unit:
oscillating a 32.768-kHz crystal resonator input via an internal oscillator to supply to the RTC unit.

e 8.432-MHz clock for serial interface and the Vr4102's reference operating clock:
oscillating an 18.432-MHz crystal resonator input via an internal oscillator, and then multiplying it by phase-
locked loop (PLL) to generate a pipeline clock (PClock). The internal bus clock (TClock) is generated from

PClock and supplied to peripheral units.

(3) Instruction cache
The instruction cache employs direct mapping, virtual index, and physical tag. Its capacity is 4K bytes.

(4) CPU
CPU has hardware resources to process an integer instruction. They are the 64-bit register file, 64-bit integer

data bus, and multiply-and-accumulate operation unit.

43

CHAPTER 1 INTRODUCTION

(5) Coprocessor 0 (CPO0)
CPO incorporates a memory management unit (MMU) and exception handling function. MMU checks whether
there is an access between different memory segments (user, supervisor, and kernel) by executing address
conversion. The translation lookaside buffer (TLB) converts virtual addresses to physical addresses.

(6) Data cache
The data cache employs direct mapping, virtual index, physical tag, and write back. Its capacity is 1K bytes.

44

CHAPTER 1 INTRODUCTION

1.5.2 CPU Registers
The Vr4100 CPU core has thirty two 64-bit general-purpose registers (GPRS).
In addition, the processor provides the following special, registers:

< 64-bit Program Counter (PC)
< 64-hit HI register, containing the integer multiply and divide upper doubleword result
< 64-bit LO register, containing the integer multiply and divide lower doubleword result

Two of the general-purpose registers have assigned the following functions:

< r0 is hardwired to a value of zero, and can be used as the target register for any instruction whose result is to
be discarded. rO can also be used as a source when a zero value is needed.

< r31 is the link register used by link instruction, such as JAL/JALR instructions. This register can be used for
other instructions. However, be careful that use of the register by a link instruction will not coincide with use
of the register for other operations.

The register group is provided within the CPO, to process exceptions and to manage addresses.
CPU registers can operate as either 32-bit or 64-bit registers, depending on the Vr4102 processor mode of

operation.
Figure 1-3 shows the CPU registers.

Figure 1-3. Vr4102 CPU Registers

General-purpose register

63 3231 0 Multiply/divide register
r0=0 63 3231 0
rl | HI I
r2
63 3231 0
| o |
r29 Program Counter
r30 63 3231 0
r31 = LinkAddress PC I

The Vr4102 has no Program Status Word (PSW) register as such; this is covered by the Status and Cause
registers incorporated within the System Control Coprocessor (CPO0).

The CPO registers are used for exception handling or address management. The overview of these registers is
described in 1.5.5 Coprocessors (CP0-CP3).

45

CHAPTER 1 INTRODUCTION

1.5.3 CPU Instruction Set Overview
Each CPU instruction is 32 bits long. As shown in Figure 1-4, there are three instruction formats:

< immediate (I-type)
< jump (J-type)
< register (R-type)

Figure 1-4. CPU Instruction Formats

31 26 25 2120 16 15 0

I-type (immediate) | op rs rt immediate I
31 26 25 0

J-type (jump) | op target I
31 26 25 2120 16 15 1110 65 0

R-type (register) | op rs rt rd sa funct I

The instruction set can be further divided into the following five groupings:

1)

@)

®)

(4)

©)

Load and store instructions move data between memory and general-purpose registers. They are all
immediate (I-type) instructions, since the only addressing mode supported is base register plus 16-hit,
signed immediate offset.

Computational instructions perform arithmetic, logical, shift, multiply, and divide operations on values in
registers. They include R-type (in which both the operands and the result are stored in registers) and I-type
(in which one operand is a 16-bit signed immediate value) formats.

Jump and branch instructions change the control flow of a program. Jumps are always made to an absolute
address formed by combining a 26-bit target address with the high-order bits of the Program Counter (J-type
format) or register address (R-type format). The format of the branch instructions is | type. Branches have
16-hit offsets relative to the Program Counter. JAL instructions save their return address in register 31.
Coprocessor 0 (System Control Coprocessor, CPO0) instructions perform operations on CPO registers to
control the memory-management and exception-handling facilities of the processor.

Special instructions perform system calls and breakpoint operations, or cause a branch to the general
exception-handling vector based upon the result of a comparison. These instructions occur in both R-type
(both the operands and the result are stored in registers) and I-type (one operand is a 16-bit signed
immediate value) formats.

Chapter 3 provides a more detailed summary (Refer to Chapter 27 for detailed descriptions of the operation of
each instruction) .

46

CHAPTER 1 INTRODUCTION

1.5.4 Data Formats and Addressing
The Vr4102 uses following four data formats:

Doubleword (64 bits)
Word (32 bits)
Halfword (16 bits)
Byte (8 hits)

For the Vr4100 CPU core, byte ordering within all of the larger data formats - halfword, word, doubleword - can
be configured in either big-endian or little-endian order. However, the V r4102 supports the little-endian order
only.

Endianness refers to the location of byte 0 within the multi-byte data structure. Figure 1-5 shows the ordering of
bytes within words and the ordering of words within doubleword structures for the little-endian conventions.

When configured as a little-endian system, byte 0 is always the least-significant (rightmost) byte, which is
compatible with iIAPX™ and DEC VAX™ conventions. Figure 1-5 shows this configuration.

Figure 1-5. Little-Endian Byte Ordering in Word Data

Higher Word Bitﬂo.

address address %1 o4 23 6 15 - o\
12 | 15 | 1| 13 I " |
s | u || 0 | 9 I s |
4 | 7 | 6 I 5 [4 |

Lower o | 3 | 2 I 1 l 0 |

address

Remarks 1. The lowest byte is the lowest address.

2. The address of word data is specified by the lowest byte’s address.

In this manual, bit 0 is always the least-significant (rightmost) bit; thus, bit designations are always little-endian.
Figure 1-6 shows little-endian byte ordering in doublewords.

47

CHAPTER 1 INTRODUCTION

Figure 1-6. Little-Endian Byte Ordering in Double Word Data

: Word Half word Byte
s 1 s
16 |23 | 22| 21 || 20 || 19| 18 || 17 | 16 |
e | |us|re|nfw]s]s]
Lower o |7 e sfaflsfa]s]o]

address

Remarks 1. The lowest byte is the lowest address.
2. The address of word data is specified by the lowest byte’s address.

The CPU uses following byte boundaries for halfword, word, and doubleword accesses:
< Halfword: An even byte boundary (0, 2, 4...)
<- Word: A byte boundary divisible by four (0, 4, 8...)

< Doubleword: A byte boundary divisible by eight (0, 8, 16...)

The following special instructions to load and store data that are not aligned on 4-byte (word) or 8-byte
(doubleword) boundaries:

LWL LWR SWL SWR
LDL LDR SDL SDR

These instructions are used in pairs to provide an access to misaligned data. Accessing misaligned data incurs
one additional instruction cycle over that required for accessing aligned data.

Figure 1-7 shows the access of a misaligned word that has byte address 3 for the little-endian conventions.

Figure 1-7. Misaligned Word Accessing (Little-Endian)

Higher Bit No.

address p A N
31 24 23 16 15 8 7 0
| | I T
| I I |

Lower

address

48

CHAPTER 1 INTRODUCTION

1.5.5 Coprocessors (CP0-CP3)

MIPS ISA defines 4 types of coprocessors (CPO to CP3).

CP1 is reserved to execute a floating-point instruction. CP2 and CP3 are reserved for future use. CPO is an on-
chip system control coprocessor, which supports the virtual memory system and exception handling. The virtual
memory system is implemented using an on-chip TLB and the CPO registers in the CPU.

CPO translates virtual addresses to physical addresses, switches the operating mode, (kernel, supervisor, or user
mode), and management exceptions. It also controls the cache subsystem to analyze a cause and to return from the
error state.

Figure 1-8 shows the definitions of the CPO register, and Table 1-18 shows simple descriptions of each register.
For the detailed descriptions of the registers related to the virtual system memory, refer to Chapter 5. For the
detailed descriptions of the registers related to exception handling, refer to Chapter 6.

Figure 1-8. CPO Registers

Register No. Register name Register No. Register name
0 Index* 16 Config*
1 Random* 17 LLAddr*
2 EntryLoO* 18 WatchLo**
3 EntryLol* 19 WatchHi**
4 Context** 20 XContext**
5 PageMask* 21 -
6 Wired* 22 -
7 - 23 -
8 BadVAddr** 24 -
9 Count** 25 -
10 EntryHi* 26 PErr**
11 Compare** 27 CacheErr**
12 Status** 28 TagLo*
13 Cause** 29 TagHi*
14 EPC** 30 ErrorEPC**
15 PRId* 31 -

* for Memory management
** for Exception handling
- Reserved

49

CHAPTER 1 INTRODUCTION

Table 1-18. System Control Coprocessor (CP0) Register Definitions

Number Register Description
0 Index Programmable pointer to TLB array
1 Random Pseudo-random pointer to TLB array (read only)
2 EntryLoO Low half of TLB entry for even VPN
3 EntryLol Low half of TLB entry for odd VPN
4 Context Pointer to kernel virtual PTE in 32-bit mode
5 PageMask TLB page mask
6 Wired Number of wired TLB entries
7 O Reserved for future use
8 BadVAddr Virtual address where the most recent error occurred
9 Count Timer count
10 EntryHi High half of TLB entry (including ASID)
11 Compare Timer compare
12 Status Status register
13 Cause Cause of last exception
14 EPC Exception Program Counter
15 PRId Processor revision identifier
16 Config Configuration register (specifying memory mode system)
17 LLAddr Reserved
18 WatchLo Memory reference trap address low bits
19 WatchHi Memory reference trap address high bits
20 XContext Pointer to kernel virtual PTE in 64-bit mode
21to 25 O Reserved for future use
26 PErr Cache parity bits
27 CacheErr Index and status of cache error
28 TaglLo Cache Tag register (low)
29 TagHi Cache Tag register (high)
30 ErrorEPC Error Exception Program Counter
31 O Reserved for future use

50

CHAPTER 1 INTRODUCTION

1.5.6 Floating-Point Unit (FPU)

The Vr4102 does not support the floating-point unit (FPU). Coprocessor Unusable exception will occur if any
FPU instructions are executed. If necessary, FPU instructions should be emulated by software in an exception
handler.

1.5.7 Cache

The Vr4102 chip incorporates instruction and data caches, which are independent of each other. This
configuration enables high-performance pipeline operations. Both caches have a 64-bit data bus, enabling a one-
clock access. These buses can be accessed in parallel. The instruction cache of the Vr4102 has a storage
capacity of 4 KB, while the data cache has a capacity of 1 KB.

A detailed description of caches is given in CHAPETE 8 CACHE ORGANIZATION AND OPERATION .

51

CHAPTER 1 INTRODUCTION

1.6 CPU CORE MEMORY MANAGEMENT SYSTEM (MMU)

The Vr4102 has a 32-hit physical addressing range of 4 Gbytes. However, since it is rare for systems to
implement a physical memory space as large as that memory space, the CPU provides a logical expansion of
memory space by translating addresses composed in the large virtual address space into available physical memory
addresses. The Vr4102 supports the following two addressing modes:

32-bit mode, in which the virtual address space is divided into 2 Gbytes for user process and 2 Gbhytes for the
kernel.
64-bit mode, in which the virtual address is expanded to1 Thyte (2* bytes) of user virtual address space.

A detailed description of these address spaces is given in Chapter 4.

1.6.1 Translation Lookaside Buffer (TLB)
The TLB converts virtual addresses to physical addresses. It runs by a full-associative method. It has 32 entries,
each mapping a pair of pages having a variable size (1 KB to 256 KB).

(1) Joint TLB (JTLB)

For fast virtual-to-physical address decoding, the Vr4102 uses a large, fully associative TLB (joint TLB) that
translates 64 virtual pages to their corresponding physical addresses. The TLB is organized as 32 pairs of even-odd
entries, and maps a virtual address and address space identifier (ASID) into the 4-Gbyte physical address space.

The page size can be configured, on a per-entry basis, to map a page size of 1 KB to 256 KB. A CPO register
stores the size of the page to be mapped, and that size is entered into the TLB when a new entry is written. Thus,
operating systems can provide special purpose maps; for example, a typical frame buffer can be memory-mapped
using only one TLB entry.

Translating a virtual address to a physical address begins by comparing the virtual address from the processor
with the physical addresses in the TLB; there is a match when the virtual page number (VPN) of the address is the
same as the VPN field of the entry, and either the Global (G) bit of the TLB entry is set, or the ASID field of the virtual
address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception is taken by the processor and
software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

1.6.2 Operating Modes
The Vr4102 has three operating modes:

<~ User mode
< Supervisor mode

< Kernel mode

The manner in which memory addresses are translated or mapped depends on these operating modes. Refer to
CHAPTER 5 MEMORY MANAGEMENT SYSTEM for details.

52

CHAPTER 1 INTRODUCTION

1.7 INSTRUCTION PIPELINE

The Vr4102 has a 5-stage instruction pipeline. Under normal circumstances, one instruction is issued each
cycle.
A detailed description of pipeline is provided in Chapter 4.

1.8 CLOCK INTERFACE

The Vr4102 has the following nine clocks.

<4 CLKX1, CLKX2 (input)
These are oscillation inputs of 18.432 MHz, and used to generate operation clocks for the CPU core and
serial interface.
< RTCX1, RTCX2 (input)
These are oscillation inputs of 32.768 kHz, and used for PMU and RTC.
< FIRCLK (input)
This is a 48-MHz clock input, and used for FIR.
< PClock (internal)
This clock is used to control the pipeline used in the Vr4100 CPU core, and for units relating to the pipeline.
This clock is generated from the clock input of CLKX1 and CLKX2 pins. lIts frequency is determined by
CLKSEL[2..0] pins.
< MasterOut (internal)
This is a bus clock of the VrR4100 CPU core, and used for interrupt control. Its frequency is 1/4 of PClock
frequency.
< TClock (internal)
This is an operation clock for VrR4100 CPU core bus, internal bus of the Vr4102, and on-chip peripheral unit.
In the current Vr4102, its frequency is 1/2 of PClock frequency.
< BUSCLK (output)
This clock is supplied to the controller on the system bus. Its frequency in determined by CLKSEL[2..0] pins.
< HSPMCLK (output)
This clock is supplied to the external CODEC. Its frequency is determined by the HSPMCLKD register.
<$ HSPSCLK (input)
This is an operation clock for the external CODEC and the modem interface.

Figure 1-9 shows an external circuit of the clock oscillator.

53

CHAPTER 1 INTRODUCTION

54

Figure 1-9. External Circuit of Clock Oscillator

(a) Crystal oscillation (b) External clock
VR4102 VR4102

’ GND
External Notel
IT Notel clock
|IW

Open Note2

Note2

Notes 1. CLKX1, RTCX1
2. CLKX2, RTCX2

Cautions 1. When using a clock oscillator, run wires in the area of this figure shown by broken lines,
according to the following rules, to avoid effects such as stray capacitance:

¢ Minimize the wire.

* Never cause the wires to cross other signal lines or run near a line carrying a large
varying current.

« Cause the grounding point of the capacitor of the oscillator circuit to have the same
potential as GND. Never connect the capacitor to a ground pattern carrying a large
current.

« Never extract a signal from the oscillator.

2. Take it into consideration that no load such as wiring capacity is applied to the CLKX2 or
RTCX2 pin when inputting an external clock.

Figure 1-10 shows examples of oscillator having bad connection.

CHAPTER 1

INTRODUCTION

Figure 1-10. Examples of Oscillator with Bad Connection

(a) Connection circuit wiring is too long.

Notel Note2 GND

:

0

gy il

T

(c) A high varying current flows near a signal line.

Notel Note2 GND

Large
current |:| | |

l,j—wi

(e) A signal is extracted.

Note2 Notel GND

- 0

—

(b) There is another signal line crossing.

Notel Note2 GND
e
— . T

T

(d) A current flows over the ground line of the
generator circuit

(The potentials of points A, B, and C change).

VDD

Notel Note2 GND

s

I I
N

Notes 1. CLKX2, RTCX2
2. CLKX1, RTCX1

55

[MEMO]

56

CHAPTER 2 PIN FUNCTIONS

2.1 PIN CONFIGURATION

e 216-pin plastic LQFP (fine-pitch) (24 x 24 mm) (Top View)
uPD30102GM-54-8EV

O DTR#/CLKSELO
O RTS#/CLKSEL1
O TxD/CLKSEL2

Vooo——{1 162}——oGND
DATAOOe—={2 161 |+—OILCSENSE
DATALo-=—»{3 160 |—=0OFFHOOK
DATA2 0=—{4 159}—=oMUTE
DATA30=—»15 158}—=0AFERST#
DATA40=—»16 157 f=——-osDI
DATAS Oe—=]7 156 f«—oFs
DATA6O«—»{8 155—=0SDO
DATA7 o=—»19 154 }+——0HSPSCLK
DATA80=~—»{10 153}—=oTELCON
DATA9O-=—»111 152}—=oHcCo

DATA10 0=—a{12 151 |—=OHSPMCLK
DATAllo=—»]13 150}—=oOPD#
DATA120~—»]14 149}=——0KPORTO
DATA130+—»]15 148}=——0KPORT1
DATAl40=—=]16 147 |+——O0KPORT2
DATA150=—»]17 146 |+——0KPORT3
GNDo—18 145 f+——oO0KPORT4
Vooo——{19 144}=——0KPORTS
GNDo———20 143}+——O0KPORT6
ooo——21 142}=——0KPORT7
DATA16/GPIO16 o—w] 22 141}F——oVoo
DATA17/GPIO17 o=—»123 140}——-oGND
DATA18/GPIO18 o~—+{24 139}——ovoo
DATA19/GPIO19 o=—w125 138}——oGND
DATA20/GPIO20 O~—w1 26 137 |—=0OKSCAN11/GPIO43
DATA21/GPIO21 0~—w27 136 |—=0KSCAN10/GPI042
DATA22/GPI022 0—»128 135—=0KSCAN9/GPIO41
DATA23/GPI023 0~—w129 134|—=0KSCANS/GPIO40
DATA24/GPI024 0~—=1 30 133}—=0KSCAN7/GPIO39
DATA25/GPI025 0—wd 31 132}—=0KSCAN6/GPIO38
DATA26/GPIO26 O~—w1 32 131}—=0KSCANS/GPIO37
DATA27/GPIO27 o—wd 33 130}—=0KSCAN4/GPIO36
DATA28/GPIO28 0~—n134 129}——=0KSCANS3/GPIO35
DATA29/GPI029 0~—]35 128}—=0KSCAN2/GPI034
DATA30/GPIO30 0-«—=1 36 127|—=OKSCAN1/GPIO33
DATA31/GPIO31 0~a—n{37 126 |—=OKSCANO/GPI032
Do——38 125}——o0IC (Open)
Vooo——39 124}———-o0GND
GNDo——40 123}——oO0GND

Vooo——41 122}———oO0GND
ADD11o~—{42 121}——oVoo
ADD100~—{43 120——oVoo

ADD9 o=——,44 119}——-oGND

ADD30o=—]45 118}———oVooP
ADD20~—46 117}——oGNDP

ADD1o~——]47 116}———oCVoo
ADDOO~——148 115}«——0CLKX1
POWERO—=]49 114}—=0CLKX2
POWERON 0«——]50 113}—=oRTCX2
MPOWER 0=——51 112+——ORTCX1
RTCRST#0O——=152 111}——0CGND
RSTSW#o—=153 110}=—=0GPIO0

GNDo——54 oo @109 |—oVoo

DONONOHANMFONODOHNMINONVDOANMINONONOHNMNIOONODOOO o

LOWOOWOINOOOOVOWOWOWOWOWONNNNNNNNNN-00000000000NVODNDNIDNDDO —

8O ORR e 8eSZ 8oL B GG S S R EE 8083 23225893 I0NE28858 2
CORRRERE3555070035555228883085722Q0000000000075aaaaaaa 0]
IoFFFF233308Ra0°0000LLQ000F 0QAan0a0aa0aaGEo0o

T o =] 8 —233LE=3>39 0Q0VOLLVBOLOG
e B 22==0000c 2T SRR SE
2 Y FrEE SHHZE5
22 26xa88
[Fiyayal
X a2 a
sS=

Remark # indicates actrive low.

57

CHAPTER 2 PIN FUNCTIONS

e 224-pin plastic FGBA (16 x 16 mm)

pPD30102S1-54-3C

Top View

Bottom View

O

© N~ © W1 YT M N A O o O~ O W T MmN A
R I I T B A]

-

G

N
(CNONONCRONOHONCHORONORONONONONCNONC)
OC0O0OO0OO0OO0OO0OOOOOOOOOOO
O00O0O0O0OO0O0OO0OOOOOO0OO
O0O0O0O0O0OO0O0OOOOOOOOOO

0000 0000
O00O0 0000
(CNONOXNO) 0000
(ONCNONE) 0000
(ONONONE) 0000
(ONONONG) 0000
(ONONONG) 0000
(CNONOXNO) 0000
(CNONOXNO) 0000
(ONONONE) 0000

O0OO0OOOOOOOOOOOOOOOO
O0O0OO0OO0OO0O0O0OO0OOOOOO0OO
O0O0OO0OO0OO0O0OO0O0OOOOOO0OO
OC0O0OO0OO0OO0OO0OOOOOOOOOOO

KL MNPRT UV

A B CDEF GHJJ

K J HGFETDTCTUBA

vV U TRPNML

Index mark

58

CHAPTER 2 PIN FUNCTIONS

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
Al VDD C15 RTS#/CLKSEL1 H15 GND
A2 SHB# C16 GND H16 KPORTG6
A3 BUSCLK C17 ILCSENSE H17 KPORT4
A4 HLDACK# C18 AFERST# H18 VDD
A5 IOCHRDY D1 DATAS J1 DATA20/GPI020
A6 MEMW# D2 DATA3 J2 DATA17/GPIO17
A7 ADD23 D3 DATA6 J3 DATA22/GPI022
A8 VDD D4 GND J4 DATA19/GPIO19
A9 ADD18 D5 MEMCS16# J15 KSCAN9/GPIO41
A10 ADD15 D6 ADD25 J16 VDD
All ADDS8 D7 GND J1i7 GND
Al12 ADD7 D8 ADD19 J18 KSCAN11/GPIO43
Al13 VDD D9 ADD16 K1 DATA23/GPI023
Al4 DCD#/GPI1015 D10 ADD14 K2 DATA26/GP1026
A15 TxD/CLKSEL2 D11 VDD K3 DATA25/GPIO25
Al16 IRDOUT# D12 GND K4 DATA21/GPI021
Al7 IRING D13 ADD4 K15 KSCAN7/GPIO39
A18 VDD D14 CTS# K16 KSCAN10/GPI10O42
B1 DATA1 D15 GND K17 KSCANS5/GPIO37
B2 IOR# D16 GND K18 KSCAN8/GPIO40
B3 I0W# D17 SDI L1 DATA27/GPI027
B4 LEDOUT# D18 SDO L2 DATA31/GPIO31
B5 FIRCLK El DATA9 L3 DATA29/GPIO29
B6 HLDRQ# E2 DATA4 L4 DATA24/GP1024
B7 ZWSH# E3 DATA7 L15 KSCAN3/GPIO35
B8 ADD24 E4 DATA10 L16 KSCAN6/GPIO38
B9 ADD21 E15 OPD# L17 KSCANO/GPIO32
B10 ADD12 E16 HSPSCLK L18 KSCAN4/GPI0O36
B11 ADDG6 E17 FS M1 DATA30/GPIO30
B12 GND E18 HCO M2 VbD

B13 DSR# F1 DATA13 M3 GND

B14 IRDIN F2 DATAS8 M4 DATA28/GP1028
B15 FIRDIN#/SEL F3 DATA1l M15 KSCAN2/GPIO34
B16 BATTINH/BATTINT# F4 DATA14 M16 IC (Open)

B17 OFFHOOK F15 KPORT3 M17 GND

B18 MUTE F16 HSPMCLK M18 KSCAN1/GPIO33
C1l DATA2 F17 TELCON N1 VDD

Cc2 DATAO F18 KPORT1 N2 ADD3

C3 GND Gl VDD N3 ADD10

C4 GND G2 DATA12 N4 GND

C5 GND G3 DATA15 N15 GND

C6 I0CS16# G4 GND N16 VbD

Cc7 MEMR# G15 KPORT7 N17 VDDP

C8 ADD22 G16 KPORT2 N18 GND

(03°] ADD20 G17 KPORTO P1 ADD9

C10 ADD17 G18 KPORT5 P2 ADDO

Cl1 ADD13 H1 DATA16/GPIO16 P3 ADD2

C12 ADD5 H2 GND P4 ADD11

C13 RxD H3 DATA18/GPIO18 P15 VDD

C14 DTR#/CLKSELO H4 VDD P16 GNDP

59

CHAPTER 2 PIN FUNCTIONS

60

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
P17 CLKX2 T6 AVDD ul3 GPIO9

P18 GND T7 LCAS# ul4 GPIO6

R1 ADD1 T8 ROMCS2# uls GPIO5

R2 POWER T9 RD# uUl6 GPIO1

R3 GND T10 WR# ul7 GPI102

R4 GND T11 DBUS32/GP1048 uls8 CGND

R5 AUDIOIN T12 DDOUT#/GPI0O44 V1 VDD

R6 DVbD T13 GPIO11 V2 PIUGND
R7 MRAS2#/ULCAS# T14 GPIO8 V3 TPX0

R8 MRAS1# T15 GND V4 TPY1

R9 ROMCS1# T16 GND V5 ADIN2

R10 RSTOUT T17 GPIOO V6 AUDIOOUT
R11 GND T18 RTCX1 V7 MRAS3#/UUCAS#
R12 GPI1049 Ul MPOWER V8 MRASO#
R13 DDIN/GP1045 u2 RTCRST# V9 ROMCSO0#
R14 GPIO12 U3 AGND V10 VDD

R15 GND U4 TPX1 Vi1l LCDCS#
R16 CVDD uUs TPYO V12 DCTS#/GP1047
R17 RTCX2 U6 ADIN1 V13 GPIO14
R18 CLKX1 u7 DGND V14 GPIO10

T1 POWERON us UCAS# V15 GPIO7

T2 RSTSW# U9 ROMCS3# V16 GPI104

T3 GND ul10 LDCRDY V17 GPIO3

T4 PIUVDD Ull DRTS#/GP1046 V18 VDD

T5 ADINO ul2 GPIO13

CHAPTER 2 PIN FUNCTIONS

PIN IDENTIFICATION

ADD [0:25]
ADIN [0:2]
AFERST#
AGND
AUDIOIN
AUDIOOUT
AVDD
BATTINH
BATTINT#
BUSCLK
CGND
CLKSEL [0:2]
CLKX1
CLKX2
CTS#
CVbD
DATA [0:31]
DBUS32
DCD#
DCTS#
DDIN
DDOUT
DGND
DRTS#
DSR#
DTR#
DVbD
FIRCLK
FIRDIN#
FS

GND
GNDP
GPIO [0:49]
HCO
HLDACK#
HLDRQ#
HSPMCLK
HSPSCLK
IC
ILCSENSE
IOCHRDY
IOCS16#
IOR#
IOW#
IRDIN

: Address Bus

: General Purpose Input for A/D
: AFE Reset

: GND for A/D

: Audio Input

: Audio Output

: Vop for A/D

: Battery Inhibit

: Battery Interrupt Request
: System Bus Clock

: GND for Oscillator

: Clock Select

: Clock X1

: Clock X2

: Clear to Send

: Vo for Oscillator

: Data Bus

: Data Bus 32

: Data Carrier Detect

: Debug Serial Clear to Send
: Debug Serial Data Input

: Debug Serial Data Output
: GND for D/A

: Debug Serial Request to Send
: Data Set Ready

: Data Terminal Ready

: Vo for D/A

: FIR Clock

: FIR Data Input

: Frame Synchronization

: Ground

: Ground for PLL

: General Purpose 1/0

: Hardware Control O

: Hold Acknowledge

: Hold Request

: HSP Codec Master Clock
: HSP Codec Serial Clock

: Internally Connected

: Input Loop Current Sensing
: I/O Channel Ready

1 1/0O Chip Select 16

1 1/0 Read

: 1/O Write

: IrDA Data Input

Remark # indicates active low.

IRDOUT#
IRING
KPORT [0:7]
KSCAN [0:11]
LCAS#
LCDCS#
LCDRDY
LEDOUT#
MEMCS16#
MEMR#
MEMW#
MPOWER
MRAS [0:3]#
MUTE
OFFHOOK
OPD#
PIUGND
PIUVDD
POWER
POWERON
RD#
ROMCS [0:3]#
RSTOUT
RSTSW#
RTCRST#
RTCX1
RTCX2
RTS#

RxD

SDI

SDO

SEL

SHB#
TELCON
TPX [0:1]
TPY [0:1]
TxD

UCAS#
ULCAS#

UUCAS#

VDD
VDDP
WR#
ZWS#

: IrDA Data Output

. Input Ring

: Key Code Data Input

: Key Scan Line

: Lower Column Address Strobe
: LCD Chip Select

: LCD Ready

: LED Output

: Memory Chip Select 16

: Memory Read

: Memory Write

: Main Power

: DRAM Row Address Strobe

: Mute

: Off Hook

: Output Power Down

: GND for Touch Panel Interface
: VoD for Touch Panel Interface
: Power Switch

: Power On State

: Read

: ROM Chip Select

: System Bus Reset Output

: Reset Switch

: Real-time Clock Reset

: Real-time Clock X1

: Real-time Clock X2

: Request to Send

: Receive Data

: HSP Serial Data Input

: HSP Serial Data Output

: IrDA Module Select

: System Hi-Byte Enable

: Telephone Control

: Touch Panel X 1/0

: Touch Panel Y 1/O

: Transmit Data

: Upper Column Address Strobe
: Lower Byte of Upper Column

Address Strobe

: Upper Byte of Upper Column

Address Strobe

: Power Supply Voltage
: Vop for PLL

: Write

: Zero Wait State

61

CHAPTER 2 PIN FUNCTIONS

2.2 PIN FUNCTION DESCRIPTION

The functional classification of the Vr4102 pins is listed below.

Remark # indicates active low.

Figure 2-1. V r4102 Signal Classification

RxD —= % ADD (0:25)
TXD/CLKSEL2 ~+— ?’ DATA (0:15)
RS-232C RTS#/CLKSEL1 ~=— ~— DATA (16:31)/
interface DTR#/CLKSELO ~— GPIO (16:31)
CTS# — -~—— LCDRDY
DCD#/GPIO15 — — LCDCS# LCD
DSR# — — RD# interface
T WR#
DA FIRDIN#/SEL ~— — ROMCS (0:3)#
interface IRDIN —— — UUCAS#/MRAS3#
IRDOUT# —=—] —— ULCAS#/MRAS2# Memory
[2, MRAS (0:1)# >interface
DDOUT/GPIO44 ~— — UCAS#
Debug serial DDIN/GPIO45 ——] —— LCAS# :
interface DRTSH/GPIO46 <] [~ BUSCLK System bus interface
DCTS#/GPIO47 —~—] — SHB#
— IOR#
POWER — — IOW#
e RSTSW# — — MEMR#
Initialization ISA bus
interface RTCRST# — —— MEMW# irtertace
MPOWER ~=— ~—— ZWSH#
POWERON ~=— — RSTOUT
-—— MEMCS16#
Battery monitor{ BATTINH/ —— -—— |0CS16#
interface BATTINT# Vr4102 <~—— IOCHRDY
KPORT (0:7) —2] = HLDRQ#
Keyboard { KSCAN (0:11)/ =2 T HibAcks
interface GPIO (32:43) -— DBUS32/GPI048
Audio { AUDIOOUT = %» TPX (0:1) Touch panel
interface AUDIOIN == 4? TPY (0:1) general-purpose A/D interface
CLKX1 —= <—— ADIN (0:2)
Clock CLKX2 —=—j 50 General-purpose /0
interface RTCX1 —* ~— GPIO (0:49) (|_nclud|ng alterngte—funcuon
RTCX2 ~— pins and DCD# inputs)
FIRCLK —= -—— IRING
-«—— |LCSENSE
-LED { LEDOUT# ——] — OFFHOOK
interface
— MUTE
VooP —— —— AFERST#
GNDP — -—— SDI
CVoo —— -—— FS > HSP modem interface
CGND — — SDO
Dedicated J DVoo — -—— HSPSCLK
Vob, GND DGND — — TELCON
AVbop —— —— HCO
AGND — —— HSPMCLK
PIUVop — — OPD#
PIUGND —

62

CHAPTER 2 PIN FUNCTIONS

2.2.1 System Bus Interface Signals
These signals are used when the Vr4102 is connected to a DRAM, ROM, or LCD, or other devices in the system
through the system bus.

Table 2-1. System Bus Interface Signals (1/2)

Signal 110 Description of function
ADD[25..0] O | This is a 26-bit address bus. The VR4102 uses this to specify addresses for the DRAM, ROM, LCD, or
system bus (ISA).
DATA[15..0] 1/O | This is a 16-bit data bus. The VR4102 uses this to transmit and receive data with a DRAM, ROM, LCD,
or system bus.
DATA[31..16)/ 1/0 | This function differs depending on how the DBUS32 pin is set.
GPIO[31..16] <When DBUS32 = 1> : DATA[31..16]
It is the high-order 16 bits of the 32-bit data bus.
This bus is used for transmitting and receiving data between the VR4102 and the DRAM and ROM.
<When DBUS32 = 0> : GPIO[31..16]
It is a general-purpose 1/0 (GPIO) port.
LCDCS# O | This is the LCD chip select signal. This signal is active when the VrR4102 is performing LCD access
using the ADD/DATA bus.
RD# This is active when the VR4102 is reading data from the LCD, RAM, or ROM.
WR# This is active when the VR4102 is writing data to the LCD, RAM, or ROM.
LCDRDY I | This is the LCD ready signal. Set this signal as active when the LCD controller is ready to receive
access from the VrR4102.
ROMCSJ3..0]# O | This is the ROM chip select signal. It is used to select a ROM to be accessed from among up to four
connected ROM units.
UUCAS#/ O | This function differs depending on how the DBUS32 pin is set.
MRAS[3# <When DBUS32 = 1> : UUCAS#
This signal is active when a valid column address is output via the ADD bus during access of
DATA[31:24] in the 32-bit data bus.
<When DBUS32 = 0> : MRAS[3]#
This is the DRAM’s RAS signal. Up to four DRAM units can be connected, and this signal is active
when a valid row address is output via the ADD bus for the DRAM connected to the high-order
address.
ULCAS#/ O | This function differs depending on how the DBUS32 pin is set.
MRAS[2]# <When DBUS32 = 1> ULCAS#
This signal is active when a valid column address is output via the ADD bus during access of
DATA[23:16] in the 32-bit data bus.
<When DBUS32 = 0> MRAS[2]#
This is the DRAM’s RAS signal. This signal is active when a valid row address is output via the ADD
bus for the DRAM connected to the next-highest address after the highest high-order address.
MRAS[1..0J# This is the DRAM’s RAS signal.
UCAS# This is the DRAM’s CAS signal. This signal is active when a valid column address is output via the
ADD bus during access of DATA[15:8] in the DRAM.
LCAS# O | This is the DRAM’s CAS signal. This signal is active when a valid column address is output via the

ADD bus during access of DATA[7:0] in the DRAM.

63

CHAPTER 2 PIN FUNCTIONS

Table 2-1. System Bus Interface Signals (2/2)

Signal 110 Description of function
BUSCLK O | This is the system bus clock. It is used to output the clock that is supplied to the controller on the
system bus. Its frequency is determined by the state of the CLKSEL2/TxD, CLKSEL1/RTS#, and
CLKSELO/DTR pins. (See 2.2.5 RS-232-C Interface Signals .)
SHB# O | This is the system bus high-byte enable signal. During system bus access, this signal is active when the
high-order byte is valid on the data bus.
IOR# O | This is the system bus I/O read signal. It is active when the VR4102 accesses the system bus to read
data from an 1/O port.
IOW# O | This is the system bus I/O write signal. It is active when the VR4102 accesses the system bus to write
data to an 1/O port.
MEMR# O | This is the system bus memory read signal. It is active when the VR4102 accesses the system bus to
read data from memory.
MEMW# O | This is the system bus memory write signal. It is active when the VR4102 accesses the system bus to
write data to memory.
ZWSH# I | This is the system bus zero wait state signal. Set this signal as active to enable the controller on the
system bus to be accessed by the VrR4102 without a wait interval.
RSTOUT O | This is the system bus reset signal. It is active when the VR4102 resets the system bus controller.
MEMCS16# I | This is a dynamic bus sizing request signal.
Set this signal as active when system bus memory accesses data in 16-bit width. (However, the DRAM
bus memory space that is controlled by the DBUS 32 pin is excepted.)
I0CS16# I | This is a dynamic bus sizing request signal.
Set this signal as active when system bus 1/0 accesses data in 16-bit width.
IOCHRDY I | This is the system bus ready signal. Set this signal as active when the system bus controller is ready to
be accessed by the VR4102.
HLDRQ# I | This is a hold request signal for the system bus and DRAM bus that is sent from an external bus master.
HLDACK# O | This is a hold acknowledge signal for the system bus and DRAM bus that is sent to an external bus
master.
DBUS32/ 1/0 | This function differs depending on the operating status.
GPIO[48] « In normal operation (output)
It can be used as a general-purpose output port.
« After RTC reset (input)
It is a data bus width switching signal.
Sampling occurs when the RTCRST signal changes from low to high.
1: Use 32-bit width for data bus
0: Use 16-bit width for data bus

64

CHAPTER 2 PIN FUNCTIONS

2.2.2 Clock Interface Signals
These signals are used to supply clocks. Table 2-2 lists functions of these signals.

Table 2-2. Clock Interface Signals

Signal I/0 Description of function
RTCX1 I | This is the 32.768-kHz oscillator’s input pin. It is connected to one side of a crystal resonator.
RTCX2 O | This is the 32.768-kHz oscillator's output pin. It is connected to one side of a crystal resonator.
CLKX1 I | This is the 18.432-MHz oscillator’s input pin. It is connected to one side of a crystal resonator.
CLKX2 O | This is the 18.432-MHz oscillator’s output pin. It is connected to one side of a crystal resonator.
FIRCLK || This the 48-MHz clock input pin. Fix this at high level when FIR is not used.

2.2.3 Battery Monitor Interface Signals

These signals indicate when an external agent is able to provide enough power for system operations. Table 2-3
describes the functions of these signals.

Table 2-3. Battery Monitor Interface Signals

Signal I/0 Description of function
BATTINH/ | | This function differs depending on how the MPOWER pin is set.
BATTINT#

<When MPOWER = 0>

BATTINH function
This is an interrupt signal that is output when remaining power is low while battery is ON. The
external agent checks the remaining battery power and asserts the signal at this pin if the supplied
voltage is sufficient for current operations.
1: Battery OK
0 : Battery low

<When MPOWER = 1>

BATTINT# function
This is an interrupt signal that is output when remaining power is low during normal operations. The
external agent checks the remaining battery power and asserts the signal at this pin if voltage
sufficient for operations cannot be supplied.

65

CHAPTER 2 PIN FUNCTIONS

2.2.4 Initialization Interface Signals

These signals are used when an external agent initializes the processor operation parameters.

describes the functions of these signals.

Table 2-4 Initialization Interface Signals

Signal 110 Description of function

MPOWER O | This signal is used to turn on the main power source. The VR4102 asserts the signal at this pin to turn
on the power source for the external DC/DC converter.

POWERON O | This signal indicates when the VR4102 is ready to operate. It becomes active when a power-on factor is
detected and becomes inactive when the BATTINH/BATTINT# signal check operation is completed.

POWER | | This signal indicates that the POWER ON switch has been pressed. When the POWER ON switch has
been pressed, an external agent must assert the signal at this pin.

RSTSW# I | This signal indicates that the RESET switch has been pressed. When the RESET switch has been
pressed, an external agent must assert the signal at this pin.

RTCRST# | | This signal resets the RTC. When power is first supplied to a device, the external agent must assert the
signal at this pin for about 600 ms.

66

Table 2-4

CHAPTER 2 PIN FUNCTIONS

2.2.5 RS-232-C Interface Signals
These signals control data transmission and reception between the VR4102 and an RS-232-C controller. Table 2-
5 describes the functions of these signals.

Table 2-5. RS-232-C Interface Signals

Signal 110 Description of function

RxD I [This is a receive data signal. It is used when the RS-232-C controller sends serial data to the VR4102.

CTS# I | This is the transmit enable (“clear-to-send”) signal. This signal is asserted when the RS-232-C controller
is ready to receive transmission of serial data.

DCD#/ I [This is a carrier detection signal. This signal is asserted when valid serial data is being received. It is

GPIO[15] also used when detecting a power-on factor for the VR4102.
When this pin is not used for DCD# signal, this pin can be used as an interrupt detection function for the
GIU unit.

DSR# | | This is the data set ready signal. Assert this signal to set up transmission and reception of serial data
between the RS-232C controller and the VR4102.

TxD/ 1/0 | This function differs depending on the operating status.

CLKSEL[2), * In normal operation (output)

RTS#/ TxD signal (output):

CLKSEL[1], This is a transmit data signal. It is used when the VrR4102 sends serial data to the RS-232C controller.

DTR#/ RTS# signal (output):

CLKSEL[0] This is a transmit request signal. This signal is asserted when the VR4102 is ready to receive serial

data from the RS-232C controller.

DTR# signal (output):
This is a terminal equipment ready signal. This signal is asserted when the VR4102 is ready to
transmit or receive serial data.

* After RTC reset (input)
These signals are used to set the CPU core operation and BUSCLK frequency (CLKSEL[2..0]: input).
Sampling occurs when the RTCRST signal changes from low to high.

CLKSEL[2..0] CPU Core frequency BUSCLK frequency

111 RFU RFU

110 RFU RFU

101 53.6 MHz 6.700 MHz
100 49.2 MHz 6.075 MHz
011 45.4 MHz 5.675 MHz
010 42.1 MHz 5.275 MHz
001 36.9 MHz 9.200 MHz
000 32.8 MHz 8.200 MHz

Caution Some of these settings of frequency may not be able to select in the future.

67

CHAPTER 2 PIN FUNCTIONS

2.2.6 IrDA Interface Signals
These signals are used to control data transmission and reception between the VR4102 and an IrDA controller.
Table 2-6 describes the functions of these signals.

Table 2-6. IrDA Interface Signals

Signal I/O | Description of function
IRDIN [This is the IrDA serial data input signal. It is used when the VR4102 sends serial data to the IrDA
controller, for both FIR and SIR. If the IrDA controller used is an HP product, however, this signal should
be used for only SIR.
FIRDIN#/SEL 1/0 | This function differs according to the IrDA controller used (for how to switch a controller, refer to 24.2.13).
e HP’s controller
FIRDIN#: It is a FIR receive data input signal.
e TEMIC's controller
SEL: It is an output port for external FIR/SIR switching.
e SHARP's controller
Use is prohibited.
IRDOUT# O This is the IrDA serial data output signal for both SIR and FIR. It is used when the IrDA controller sends
serial data to the VrR4102.

2.2.7 Debug Serial Interface Signals
These signals are used to control data transmission and reception between the VR4102 and a external debug

serial controller.

Table 2-7 describes the functions of these signals.

Table 2-7. Debug Serial Interface Signals

Signal 110 Description of function

DDOUT/ O [This is the debug serial data output signal. It is used when an external debug serial data controller sends
GPI0O[44] serial data to the VrR4102.

When this pin is not used for the DDOUT signal, it can be used as a general-purpose output port.
DDIN/ I/O | This is the debug serial data input signal. It is used when the VR4102 sends serial data to an external
GPIO[45] debug serial controller.

When this pin is not used for the DDIN signal, it can be used as a general-purpose output port.
DRTS#/ O | This is a transmission request signal. The VR4102 asserts this signal before sending serial data.
GPIO[46] When this pin is not used for the DRTS# signal, it can be used as a general-purpose output port.
DCTS#/ I/0 | This is a transmit acknowledge signal. The VR4102 asserts this signal when it is ready to receive
GPIO[47] transmitted serial data.

When this pin is not used for the DCTS# signal, it can be used as a general-purpose output port.

68

CHAPTER 2 PIN FUNCTIONS

2.2.8 Keyboard Interface Signals
These signals are used to control a keyboard circuit to the VR4102. Table 2-8 describes the functions of these

signals.
Table 2-8. Keyboard Interface Signals
Signal I/0 Description of function
KPORT[7..0] | | This is a keyboard scan data input signal. It is used to scan for pressed keys on the keyboard.

KSCAN[11..0)/
GPIO[43..32]

These signal are used as keyboard scan data output signals and a general-purpose output port. The scan
line is set as active when scanning for pressed keys on the keyboard.
Pins that are not used for the key scan operation can be used as a general-purpose output port.

2.2.9 Audio Interface Signals

This signal is used to input/output audio signals. Table 2-9 describes the functions of this signal.

Table 2-9. Audio Interface Signals

Signal 110 Description of function
AUDIOOUT O [This is an audio output signal. Analog signals that have been converted via the on-chip 10-bit D/A
converter are output.
AUDIOIN I | This pin is the audio input pin.

2.2.10 Touch Panel/General Purpose A/D Interface Signals
These are the signals to the on-chip A/D converter of the Vr4102. Four of these signals are used for a touch

panel, one is used for audio input, and the remaining three are used as general-purpose pins. Table 2-10 describes
the functions of these signals.

Table 2-10. Touch Panel/General Purpose A/D Interface Signals

Signal 110 Description of function
TPX[1..0] I/0 | This is an 1/O signal that is used for the touch panel. It uses the voltage applied to the X coordinate and
the voltage input to the Y coordinate to detect which coordinates on the touch panel are being pressed.
TPY[1..0] I/O | This is an I/O signal that is used for the touch panel. It uses the voltage applied to the Y coordinate and
the voltage input to the X coordinate to detect which coordinates on the touch panel are being pressed.
ADIN[2..0] I [This is a general-purpose A/D input signal.

69

CHAPTER 2 PIN FUNCTIONS

2.2.11 General-purpose I/O Signals

These are general-purpose 1/O pins of the VR4102. Ordinary, 33 of the 49 GPIO pins are used as alternate-

function pins. Table 2-11 describes the functions of these signals.

Table 2-11. General-purpose I/O Signals

Signal 110 Description of function
GPIOJ[3..0] /0 | These are maskable power-on factors. After start-up, they are used as ordinary GPIO pins.
GPIO[8..4] I/O | These are ordinary GPIO pins.
GPIO[12..9] /0 | These are maskable power-on factors. After start-up, they are used as ordinary GPIO pins.
GPIO[14..13] I/0 | These are ordinary GPIO pins.

DATA[31..16)/ | I/O | See 2.2.1 System Bus Interface Signals
GPIO[31..16]

KSCAN[11..0)/ O | See 2.2.8 Keyboard Interface Signals
GPIO[43..32]

DDOUT/ O | See 2.2.7 Debug Serial Interface Signals
GP10[44]

DDIN/GPIO[45] | I/O | See 2.2.7 Debug Serial Interface Signals
DRTS#/ O |See 2.2.7 Debug Serial Interface Signals
GPI0[46]

DCTS#/ /0 | See 2.2.7 Debug Serial Interface Signals
GPIO[47]

DBUS32/ /0 | See 2.2.1 System Bus Interface Signals
GP10[48]

GPIO[49] 1/0 | This function differs depending on the operating status.

« In normal operation
It can be used as a general-purpose output port.

« After RTC reset
Input state. Input low level. Sampling occurs when the RTCRST signal changes from low to high.

70

CHAPTER 2 PIN FUNCTIONS

2.2.12 HSP MODEM Interface Signals

Table 2-12. HSP MODEM Interface Signals

Signal I/O Function
IRING I | RING signal detect signal. This pin becomes active when the RING signal is detected.
ILCSENSE | | Handset detect signal.
OFFHOOK O | On-hook relay control signal.
MUTE O | Modem speaker mute control signal.
AFERST# O | CODEC reset signal.
SDI | | Serial input signal from CODEC.
FS | | Frame synchronization signal from CODEC.
SDO O | Serial output signal to CODEC.
HSPSCLK | | Operation clock input of modem interface block for CODEC.
TELCON O | Handset relay control signal.
HCO O | CODEC control signal.
HSPMCLK O | Clock output to CODEC.
OPD# O | Use this pin for controlling power of CODEC and DAA. This signal is set as active when to set power
supply to them ON.

2.2.13 LED Interface Signal

Table 2-13. LED Interface Signal

Signal

110

Description of function

LEDOUT#

This is an output signal for lighting LEDs.

71

CHAPTER 2 PIN FUNCTIONS

2.2.14 Dedicated V oo and GND Signals

Table 2-14. Dedicated V pb and GND Signals

Signal Description of function

VooP This is the dedicated Voo for the PLL.

GNDP This is the dedicated GND for the PLL.

CVop This is the dedicated Vop for the internal oscillator.

CGND This is the dedicated GND for the internal oscillator.

DVoo This is the dedicated Voo for the D/A converter. The voltage applied to this pin becomes the maximum
value for AUDIOOUT’s analog output.

DGND This is the dedicated GND for the D/A converter. The voltage applied to this pin becomes the minimum
value for AUDIOOUT's analog output.

AVop This is the dedicated Voo for the A/D converter. The voltage applied to this pin becomes the maximum
voltage value for the A/D interface signals.

AGND This is the dedicated GND for the A/D converter. The voltage applied to this pin becomes the minimum
voltage value detectable by the A/D interface signals.

PIUVop This is the dedicated Voo for the touch panel interface.

PIUGND This is the dedicated GND for the touch panel interface.

72

CHAPTER 2 PIN FUNCTIONS

2.3 PIN STATUS UPON SPECIFIC STATES

2.3.1 Pin Status upon Reset

Table 2-15. Status of Pins upon Reset (1/3)

Signal When When reset by During During Hibernate During
reset by Deadman’s Suspend mode or when shut bus
RTCRST Switch or RSTSW mode down by HAL timer hold
ADD[25..0] 0 0 Note 1 0 Hi-z
DATA[15..0] 0 0 Note 1 0 Hi-Z
DATA[31..16)/ o/ o/ Note 1 o/ Hi-z/
GPIO[31..16] Hi-Z Hi-Z Hi-Z Note 1
LCDCS# Hi-Z 1 1 Hi-Z 1
RD# Hi-Z 1 1 Hi-Z Hi-Z
WR# Hi-Z 1 1 Hi-Z Hi-Z
LCDRDY - - - - -
ROMCSJ[3..0}# Hi-Z 1 1 Hi-Z 1
UUCAS#/MRAS[3] 1 Note 3 0 0 Hi-Z
#
ULCAS#/MRAS[2]# 1 Note 3 0 0 Hi-Z
MRAS[1..0# 1 Note 3 0 0 Hi-z
UCAS# 1 Note 3 0 0 Hi-Z
LCAS# 1 Note 3 0 0 Hi-Z
BUSCLK 0 0 0 0 Note 2
SHB# Hi-Z 1 1 Hi-Z Hi-Z
IOR# Hi-Z 1 1 Hi-z Hi-Z
IOW# Hi-Z 1 1 Hi-Z Hi-Z
MEMR# Hi-Z 1 1 Hi-Z Hi-Z
MEMW# Hi-Z 1 1 Hi-Z Hi-Z
ZWSH# - - - - -
RSTOUT Hi-Z 1 0 Hi-Z Note 4
I0CS16# - - - - -
MEMCS16# - - - - -
IOCHRDY - - - - -

Notes 1. The state at the previous Fullspeed mode is retained.
2. Bus hold from Suspend mode: Outputs the low-level signal
Bus hold from Fullspeed mode or standby mode: Outputs clocks.
3. Reset by RSTSW# signal: This pin outputs the low-level signal (self refresh)
Reset by Deadman’s Switch: This pin outputs the high-level signal
4. Normal operations are performed.

Remark 0: outputs low level, 1: outputs high level, Hi-Z: high-impedance

CHAPTER 2 PIN FUNCTIONS

Table 2-15. Status of Pins upon Reset (2/3)

Signal When When reset by During During Hibernate During
reset by Deadman’s Suspend mode or when shut bus
RTCRST Switch or RSTSW mode down by HAL timer hold

HLDRQ# — — — — —
HLDACK# Hi-Z 1 Note 1 Hi-Z Note 1
RTCX1 — — — — —
RTCX2 — — — — —
CLKX1 — — — — —
CLKX2 — — — — —
FIRCLK — — — — —
BATTINH/ - - - - -
BATTINT#
MPOWER 0 1 1 0 1
POWERON 0 0 0 0 0
POWER
RSTSW# — — — — —
RTCRST# — — — — —
RxD - - - - -
TxD/CLKSEL[?] Hi-Z 1 1 1 Note 1
RTS#/CLKSELJ[1] Hi-Z 1 1 1 Note 1
CTS# — — — — —
DCD#/GPIQ[15] — — — —
DTR#/CLKSEL[0] Hi-Z 1 1 1 Note 1
DSR# — — — — —
IRDIN — — — — —
IRDOUT# 0 0 0 0 Note 1
FIRDIN#/SEL Hi-Z Hi-Z Note 2 Hi-Z Note 2
DDIN/ H?—Z/ H?—Z/ Hi-Z/ H?—Z/ Hi-z/
GPIO[45]"* Hi-Z Hi-Z Note 2 Hi-Z Note 2
DDOUT/ 1 1 1 1 1
GPIO[44]"*
DRTSH#/ 1 1 1 1 1
GPIO[46]""
DCTS#/ Hi-z/ Hi-z/ Hi-z/ Hi-Z/ Hi-z/
GPIO[47]"* Hi-Z Hi-Z Note 2 Hi-Z Note 2

Notes 1. Normal operations are performed.
2. The state at the previous Fullspeed mode is retained.
3. This pin can be switched by software between function-pin and output-port uses.

Remark

74

0: outputs low level, 1: outputs high level, Hi-Z: high-impedance

CHAPTER 2 PIN FUNCTIONS

Table 2-15. Status of Pins upon Reset (3/3)

Signal When When reset by During During Hibernate During
reset by Deadman’s Suspend mode or when shut bus
RTCRST Switch or RSTSW mode down by HAL timer hold
KPORTJ[7..0] - - — — -
KSCAN[11..0}/ Hi-Z Hi-Z Note 2 Hi-Z Note 3
GPI0[43..32]""
AUDIOOUT 0 0 Note 2 0 Note 3
TPX[1..0] Hi-Z 1 Note 2 1 Note 3
TPY[1..0] Hi-Z Hi-Z Note 2 Hi-Z Note 3
ADIN[2..0] — — — — —
AUDIOIN - - — — -
GPI0J[14..0] Hi-Z Hi-Z Note 2 Hi-Z Note 3
IRING - - — — -
ILCSENSE - - — — -
OFFHOOK"** Hi-Z Hi-Z Note 2 Hi-Z Note 2
MUTE"** Hi-Z Hi-Z Note 2 Hi-Z Note 2
AFERST#"* 0 0 Note 2 0 Note 2
SDI — — — — —
FES — — — — —
SDO 0 0 Note 2 0 Note 2
HSPSCLK — — — —
TELCON™™* Hi-Z Hi-Z Note 2 Hi-Z Note 2
HCo"™* 0 0 Note 2 0 Note 2
HSPMCLK"** 0 0 Note 2 0 Note 2
OPD# 0 0 Note 2 0 Note 2
LEDOUT# 1 Note 3 Note 3 Note 3 Note 3
DBUS32/ Hi-Z Hi-Z Note 2 Hi-Z Note 2
Gpioj4s]”’
(.:,|:>|o[49]'\““55 Hi-Z Hi-Z Note 2 Hi-z Note 2
Notes 1. This pin can be switched by software between function-pin and output-port uses.

2. The state at the previous Fullspeed mode is retained.

3. Normal operations are performed.
4. Be sure to set the BSC bit (DI) of the HSPINT register (0x0C00 0020) to 1 during initialization.
5. After RTC reset is canceled, this signal functions as an output port.

Remark

0: outputs low level, 1: outputs high level, Hi-Z: high-impedance

75

CHAPTER 2 PIN FUNCTIONS

2.3.2 Connection of Unused Pins and Pin 1/O Circuits

Table 2-16. Connection of Unused Pins and Pin I/O Circuit Type (1/3)

Signal Internal External Drive 1/O circuit type
processing processing capability
ADDI[25..0] - - 120 pF A
DATA[15..0] - - 40 pF A
DATA[31..16)/ - -y 40 pF A
GPIO[31..16] Pull up
Pull down

LCDCS# - - 40 pF A
RD# - Note 1 120 pF A
WR# - Note 1 120 pF A
LCDRDY - Pull up - A
ROMCSJ[3..0}# - - 40 pF A
UUCASH#/MRAS[3]# - Note 1 40 pF A
ULCAS#/MRAS[2]# - Note 1 40 pF A
MRAS[1..0}# - Note 1 40 pF A
UCAS# - Note 1 40 pF A
LCAS# - Note 1 40 pF A
BUSCLK - - 40 pF A
SHB# - Note 1 40 pF A
IOR# - Note 1 40 pF A
IOW# - Note 1 40 pF A
MEMR# - Note 1 40 pF A
MEMW# - Note 1 40 pF A
ZWS# Note 2 Pull up - A
RSTOUT - Pull up 40 pF A
IOCS16# Note 2 Pull up - A
MEMCS16# Note 2 Pull up - A
IOCHRDY Note 2 Pull up - A

Notes 1. Pull up when the bus hold function is used.
2. Intermediate-level input is enabled when the MPOWER pin is set for low-level output.

76

CHAPTER 2 PIN FUNCTIONS

Table 2-16. Connection of Unused Pins and Pin I/O Circuit Type (2/3)

Signal Internal External Drive 1/O circuit type
processing processing capability

HLDRQ# Note 1 Note 2 - A

HLDACK# — — 40 pF A

RTCX1 - Resonator - -

RTCX2 - Resonator - -

CLKX1 - Resonator - -

CLKX2 - Resonator - -

FIRCLK — Note 3 — A

BATTINH/ Schmitt - - B

BATTINT#

MPOWER — — 40 pF A

POWERON — — 40 pF A

POWER Schmitt — — B

RSTSW# Schmitt — — B

RTCRST# Schmitt — — B

RxD — — — A

TxD/CLKSEL[2] - Pull up 40 pF A
Pull down

RTS#/CLKSEL[1] - Pull up 40 pF A
Pull down

CTS# — — — A

DCD#/GPIOQ[15] — Pull up — A

DTR#/CLKSEL[0] - Pull up 40 pF A
Pull down

DSR# — — — A

IRDIN - Pull up - A

IRDOUT# — — 40 pF A

FIRDIN#/SEL - Pull up 40 pF A
Pull down

DDIN/ - - 40 pF A

GPIO[45]""**

DDOUT/ - - 40 pF A

GPIO[44]""**

DRTS#/ - - 40 pF A

GPIO[46]""*

DCTS# - - 40 pF A

GPIO[47]"**

Notes 1. Intermediate-level input is enabled when the MPOWER pin is set for low-level output.
2. When the bus hold function is used : Pull up.
When the bus hold function is not used : Connect to Voo.
3. When FIR unit is used : Attach an oscillator.
When FIR unit is not used : Connect to Voo.
4. This pin can be switched by software between function-pin and output-port uses.

CHAPTER 2 PIN FUNCTIONS

78

Table 2-16. Connection of Unused Pins and Pin I/O Circuit Type (3/3)

Signal Internal External Drive 1/O circuit type
processing processing capability
KPORT[7..0] Schmitt, Pull down — — F
KSCAN[11..0)/ - - 40 pF A
GPI0[43..32]""
AUDIOOUT - Note 2 - G
TPX[1..0] - - 120 pF or more C
TPY[1] - - 120 pF or more D
TPY[O] - - 120 pF or more C
ADIN[2..0] - - - E
AUDIOIN - - - E
GPIO[14..13] - Pull up 40 pF A
Pull down
GPIO[12..9] Schmitt Pull up 40 pF B
Pull down
GPIO[8..5] - Pull up 40 pF A
Pull down
GPIO[4..0] Schmitt Pull up 40 pF B
Pull down
IRING Schmitt Pull down — B
ILCSENSE — Pull down — A
OFFHOOK"™™? - - 40 pF A
MUTE"*® - - 40 pF A
AFERST#"® - - 40 pF A
SDI - Pull up - A
Pull down
FS - Pull up - A
Pull down
SDO - - 40 pF A
HSPSCLK - - - A
TELCON"™? - - 40 pF A
HCco™? - - 40 pF A
HSPMCLK"*® - - 40 pF A
OPD# - - 40 pF A
LEDOUT# - - 40 pF A
DBUS32/ - Pull up 40 pF A
Gp|o[4g]N°M Pull down
Gp|o[49]N°M - Pull down - A
Notes 1. This pin can be switched by software between function-pin and output-port uses.
2. Connect an operation amplifier which has high-impedance input characteristics, since the output level
of AUDIOOUT pin varies according to the external impedance.
3. Be sure to set BSC bit (DI) of the HSPINT register (0x0C00 0020) to 1 during initialization.
4. After RTC reset is canceled, this signal functions as an output port.

CHAPTER 2 PIN FUNCTIONS

2.3.3 Pin I/O Circuits

Type A Type D
% vop
data P-ch data _":D)—l P-ch
IN/OUT IN/OUT
output output Do_l N-ch
disable disable
P-ch=—=
o V]
<] G—‘ <_<+i i S
. -Cch
input - -
enable I
Type B Vref
% vop
data P-ch input _
IN/OUT enable -
—O
output Nch
disable Type E
IN —/— P-ch
~—C s s b
Wnen ==
input - ? P
enable vref
re
Type F
Type C % VoD
% vop data — ':D)—l P-ch
data P-ch IN/OUT
IN/OUT —>0
open drain LN
output
output E)°—| N-ch disable
disable
O]
e 'S ﬂ
input
+ L NC}E enable
T
pulldown Do I N-ch
Vref enable
Type G
analog
output o OUT
voltage

79

[MEMO]

80

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

This chapter is an overview of the central processing unit (CPU) instruction set; refer to the Chapter 27 for
detailed descriptions of individual CPU instructions.

3.1 CPU INSTRUCTION FORMATS

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction
formats - immediate (I-type), jump (J-type), and register (R-type) - as shown in Figure 3-1. The use of a small
number of instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated
and less frequently used instruction and addressing modes from these three formats as needed.

Figure 3-1. CPU Instruction Formats

31 26 25 2120 16 15 0
I-type (immediate) | op rs rt immediate I

31 2625 0

J-type (jump) | op target I

31 26 25 2120 16 15 1110 65 0
R-type (register) | op rs rt rd sa func I

op: 6-bit operation code

rs: 5-bit source register specifier

rt: 5-bit target (source/destination) register or branch

condition

immediate: 16-bit immediate value, branch displacement or
address displacement

target: 26-bit unconditional branch target address
rd: 5-bit destination register specifier

sa: 5-bit shift amount

func: 6-bit function field

(1) Support of the MIPS ISA

The Vr4102 does not support a multiprocessor operating environment. Thus the synchronization support
instructions defined in the MIPS Il and MIPS IIl ISA - the load linked and store conditional instructions - cause
reserved instruction exception. The load/link (LL) bit is eliminated.

Note that the SYNC instruction is handled as a NOP instruction since all load/store instructions in this processor
are executed in program order.

81

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

3.2 INSTRUCTION CLASSES

3.2.1 Load and Store Instructions

Load and store are immediate (I-type) instructions that move data between memory and the general-purpose

registers. The only addressing mode that load and store instructions directly support is base register plus 16-bit
signed immediate offset.

1)

)

®)

82

Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called a
delayed load instruction. The instruction slot immediately following this delayed load instruction is referred to as
the load delay slot.

In the VR4000 Series, a load instruction can be followed directly by an instruction that accesses a register that is
loaded by the load instruction. In this case, however, an interlock occurs for a necessary number of cycles. Any
instruction can follow a load instruction, but the load delay slot should be scheduled appropriately for both
performance and compatibility with the VR3000™ Series microprocessors. For detail, see CHAPTER 4 Vr4102
PIPELINE.

Store Delay Slot

When a store instruction is writing data to a cache, the data cache is kept busy at the DC and WB stages. If an
instruction (such as load) that follows directly the store instruction accesses the data cache in the DC stage, a
hardware-driven interlock occurs. To overcome this problem, the store delay slot should be scheduled.

Table 3-1. Number of Delay Slot Cycles Necessary for Load and Store Instructions

Instruction Necessary number of PCycles
Load 1
Store 1

Defining Access Types

Access type indicates the size of a VR4102 processor data item to be loaded or stored, set by the load or store
instruction opcode. Access types and accessed byte are shown in Table 3-2.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For a little-endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within the
addressed doubleword (shown in Table 3-2). Only the combinations shown in Table 3-2 are permissible; other
combinations cause address error exceptions.

Tables 3-3 and 3-4 list the ISA-defined load/store instructions and expand-ISA instructions, respectively.

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Figure 3-2. Byte Specification Related to Load and Store Instructions

Access type Low-order Accessed byte
(value) address bit (Little endian)
2 1 0163 0
Doubleword (7) 0|0 [O0O |7 |6 |5 |4 (3|2 |1]O0
7-byte (6) 0|0 |O 6 [5 (4 |3]2 |1]0
OO0 (1]7 |6 |5 |4 (3|2]1
6-byte (5) 0|0 |O 5 (4 (3|2]1]0
0O (2 (0 |7 |6 |5 |4 (3 |2
5-byte (4) 0|0 |O 4 1312 |1 |0
O (2 (1 1]7 |6 |5 |4 |3
Word (3) 0|0 |O 3121110
1|0 |0 |7 |6 |5 |4
Triple byte (2) 0|0 (O 2 1110
0 (0 (1 3 (2 (1
1 (0 |0 6 |5 |4
1|10 |2 (|7 [6 |5
Halfword (1) 0|0 (O 110
0 (1 (O 3 (2
1 (0 |0 5 |4
1 |1 |0 |7 |6
Byte (0) 0|0 |O 0
0 (0 (1 1
0|1 10 2
0 (1 (1 3
1 (0 |0 4
110 |1 5
1 (1|0 6
1|11 (1|7

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Table 3-2. Load/store Instruction

Instruction

Format and Description | op | base | rt offset

Load Byte

LB rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The bytes of the memory location specified by the address are sign extended and loaded into register rt.

Load Byte Unsigned

LBU rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The bytes of the memory location specified by the address are zero extended and loaded into register rt.

Load Halfword

LH rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The halfword of the memory location specified by the address is sign extended and loaded to register rt.

Load Halfword

LHU rt, offset (base)

Unsigned The offset is sign extended and then added to the contents of the register base to form the virtual address.
The halfword of the memory location specified by the address is zero extended and loaded to register rt.
Load Word LW rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
The word of the memory location specified by the address is sign extended and loaded to register rt. In the
64-bit mode, it is further sign extended to 64 bits.

Load Word Left

LWL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the left the word whose address is specified so that the address-specified byte is at the left-
most position of the word. The result of the shift operation is merged with the contents of register rt
and loaded to register rt. In the 64-bit mode, it is further sign extended to 64 bits.

Load Word Right

LWR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the right the word whose address is specified so that the address-specified byte is at the right-
most position of the word. The result of the shift operation is merged with the contents of register rt and
loaded to register rt. In the 64-bit mode, it is further sign extended to 64 bits.

Store Byte

SB rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The least significant byte of register rt is stored to the memory location specified by the address.

Store Halfword

SH 1, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The least significant halfword of register rt is stored to the memory location specified by the address.

Store Word

SW rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The lower word of register rt is stored to the memory location specified by the address.

Store Word Left

SWL t, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the right the contents of register rt so that the left-most byte of the word is in the position of the
address-specified byte. The result is stored to the lower word in memory.

Store Word Right

SWR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the left the contents of register rt so that the right-most byte of the word is in the position of the
address-specified byte. The result is stored to the upper word in memory.

84

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Table 3-3. Load/store Instruction (Extended ISA)

Instruction

Format and Description | op | base | rt offset

Load Doubleword

LD rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The doubleword of the memory location specified by the address are loaded into register rt.

Load Doubleword Left

LDL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the left the double word whose address is specified so that the address-specified byte is at the
left-most position of the double word. The result of the shift operation is merged with the contents of
register rt and loaded to register rt.

Load Doubleword
Right

LDR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the right the double word whose address is specified so that the address-specified byte is at
the right-most position of the double word. The result of the shift operation is merged with the contents
of register rt and loaded to register rt.

Load Word Unsigned

LWU rt, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The word of the memory location specified by the address are zero extended and loaded into register rt

Store Doubleword

SD r, offset (base)
The offset is sign extended and then added to the contents of the register base to form the virtual address.
The contents of register rt are stored to the memory location specified by the address.

Store Doubleword Left

SDL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the right the contents of register rt so that the left-most byte of the double word is in the
position of the address-specified byte. The result is stored to the lower doubleword in memory.

Store Doubleword
Right

SDR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.
Shifts to the left the contents of register rt so that the right-most byte of the double word is in the
position of the address-specified byte. The result is stored to the upper doubleword in memory.

85

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

3.2.2 Computational Instructions

Computational instructions perform arithmetic, logical, and shift operations on values in registers. Computational
instructions can be either in register (R-type) format, in which both operands are registers, or in immediate (I-type)
format, in which one operand is a 16-bit immediate.

Computational instructions are classified as:

(1) ALU immediate instructions (Tables 3-4 and 3-5)

(2) Three-operand type instructions (Tables 3-6 and 3-7)
(3) Shift instructions (Tables 3-8 and 3-9)

(4) Multiply/divide instructions (Table 3-10 and 3-11)

To maintain data compatibility between the 64- and 32-bit modes, it is necessary to sign-extend 32-bit operands
correctly. If the sign extension is not correct, the 32-bit operation result is meaningless.

Table 3-4. ALU Immediate Instruction

Instruction

Format and Description | op rs rt immediate

Add Immediate

ADDI rt, rs, immediate

The 16-bit immediate is sign extended and then added to the contents of register rs to form a 32-bit
result. The result is stored into register rt. In the 64-bit mode, the operand must be sign extended. An
exception occurs on the generation of 2's complement overflow.

Add Immediate
Unsigned

ADDIU rt, rs, immediate

The 16-bit immediate is sign extended and then added to the contents of register rs to form a 32-bit
result. The result is stored into register rt. In the 64-bit mode, the operand must be sign extended. No
exception occurs on the generation of integer overflow.

Set On Less Than
Immediate

SLTI rt, rs, immediate

The 16-bit immediate is sign extended and then compared to the contents of register rt treating both
operands as signed integers. If rs is less than the immediate, the result is set to 1; otherwise, the result
is set to 0. The result is stored to register rt.

Set On Less Than
Immediate Unsigned

SLTIU rt, rs, immediate

The 16-bit immediate is sign extended and then compared to the contents of register rt treating both
operands as unsigned integers. If rs is less than the immediate, the result is set to 1; otherwise, the
result is set to 0. The result is stored to register rt.

And Immediate

ANDI rt, rs, immediate
The 16-bit immediate is zero extended and then ANDed with the contents of the register. The result is
stored into register rt.

Or Immediate

ORI rt, rs, immediate
The 16-bit immediate is zero extended and then ORed with the contents of the register. The result is
stored into register rt.

Exclusive Or XORI rt, rs, immediate

Immediate The 16-bit immediate is zero extended and then Ex-ORed with the contents of the register. The result
is stored into register rt.

Load Upper LUI rt, immediate

Immediate The 16-bit immediate is shifted left by 16 bits to set the lower 16 bits of word to 0. The result is stored

into register rt. In the 64-bit mode, the operand must be sign extended.

86

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Table 3-5. ALU Immediate Instruction (Extended ISA)

Instruction

Format and Description | op | rs | rt immediate

Doubleword Add
Immediate

DADDI rt, rs, immediate

The 16-bit immediate is sigh extended to 64 bits and then added to the contents of register rs to form a
64-bit result. The result is stored into register rt.

An exception occurs on the generation of integer overflow.

Doubleword Add
Immediate Unsigned

DADDIU rt, rs, immediate

The 16-bit immediate is sign extended to 64 bits and then added to the contents of register rs to form a
64-bit result. The result is stored into register rt.

No exception occurs on the generation of overflow.

Table 3-6. Three Operand Type Instruction

Instruction

Format and Description | op | rs | r | rd | sa | funct

Add

ADD rd, rs, rt

The contents of registers rs and rt are added together to form a 32-bit result. The result is stored into
register rd. In the 64-bit mode, the operand must be sign extended. An exception occurs on the
generation of integer overflow.

Add Unsigned

ADDU rd, rs, 1t

The contents of registers rs and rt are added together to form a 32-bit result. The result is stored into
register rd. In the 64-bit mode, the operand must be sign extended. No exception occurs on the
generation of integer overflow.

Subtract

SUB rd, rs, 1t

The contents of register rt are subtracted from the contents of register rs. The 32-bit result is stored
into register rd. In the 64-bit mode, the operand must be sign extended. An exception occurs on the
generation of integer overflow.

Subtract Unsigned

SUBU rd, rs, 1t

The contents of register rt are subtracted from the contents of register rs. The 32-bit result is stored
into register rd. In the 64-bit mode, the operand must be sign extended. No exception occurs on the
generation of integer overflow.

Set On Less Than

SLT rd, rs, rt

The contents of registers rs and rt are compared, treating both operands as signed integers. If the
contents of register rs is less than that of register rt, the result is set to 1; otherwise, the result is set to
0. The result is stored to register rd.

Set On Less Than
Unsigned

SLTU rd, rs, rt

The contents of registers rs and rt are compared treating both operands as unsigned integers. If the
contents of register rs is less than that of register rt, the result is set to 1; otherwise, the result is set to
0. The result is stored to register rd.

And

AND rd, rt, rs
The contents of register rs are logical ANDed with that of general register rt bit-wise. The result is
stored to register rd.

OR rd, t, rs
The contents of register rs are logical ORed with that of general register rt bit-wise. The result is stored
to register rd.

Exclusive Or

XOR rd, it, rs
The contents of register rs are logical Ex-ORed with that of general register rt bit-wise. The result is
stored to register rd.

Nor

NOR rd, rt, rs
The contents of register rs are logical NORed with that of general register rt bit-wise. The result is
stored to register rd.

87

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Table 3-7. Three Operand Type Instruction (Extended ISA)

Instruction

Format and Description | op | rs | rt | rd | sa |funct

Doubleword Add

DADD rd, rt, rs
The contents of register rs are added to that of register rt. The 64-bit result is stored into register rd.
An exception occurs on the generation of integer overflow.

Doubleword Add
Unsigned

DADDU rd, rt, rs
The contents of register rs are added to that of register rt. The 64-bit result is stored into register rd. No
exception occurs on the generation of integer overflow.

Doubleword Subtract

DSUB rd, rt, rs
The contents of register rt are subtracted from that of register rs. The 64-bit result is stored into register
rd. An exception occurs on the generation of integer overflow.

Doubleword Subtract
Unsigned

DSUBU rd, rt, rs
The contents of register rt are subtracted from that of register rs. The 64-bit result is stored into register
rd. No exception occurs on the generation of integer overflow.

Table 3-8. Shift Instruction

Instruction

Format and Description | op | rs r rd | sa |funct

Shift Left Logical

SLL rd, rs, sa
The contents of register rt are shifted left by sa bits and zeros are inserted into the emptied lower bits.
The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Right Logical

SRL rd, rs, sa
The contents of register rt are shifted right by sa bits and zeros are inserted into the emptied higher
bits. The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Right Arithmetic

SRA rd, rt, sa
The contents of register rt are shifted right by sa bits and the emptied higher bits are sign extended.
The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Left Logical
Variable

SLLV rd, rt, rs

The contents of register rt are shifted left and zeros are inserted into the emptied lower bits. The lower
five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-bit
mode, the operand must be sign extended.

Shift Right Logical
Variable

SRLV rd, it, rs

The contents of register rt are shifted right and zeros are inserted into the emptied higher bits. The
lower five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-
bit mode, the operand must be sign extended.

Shift Right Arithmetic
Variable

SRAV rd, rt, rs

The contents of register rt are shifted right and the emptied higher bits are sign extended. The lower
five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-bit
mode, the operand must be sign extended.

88

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Table 3-9. Shift Instruction (Extended ISA)

Instruction

Format and Description | op | rs | r rd | sa |funct

Doubleword Shift Left
Logical

DSLL rd, rs, sa
The contents of register rt are shifted left by sa bits and zeros are inserted into the emptied lower bits.
The 64-bit result is stored into register rd.

Doubleword Shift
Right Logical

DSRL rd, rs, sa
The contents of register rt are shifted right by sa bits and zeros are inserted into the emptied higher
bits. The 64-bit result is stored into register rd.

Doubleword Shift
Right Arithmetic

DSRA rd, rt, sa
The contents of register rt are shifted right by sa bits and the emptied higher bits are sign extended.
The 64-bit result is stored into register rd.

Doubleword Shift Left
Logical Variable

DSLLV rd, rt, rs
The contents of register rt are shifted left and zeros are inserted into the emptied lower bits. The lower
six bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift
Right Logical Variable

DSRLV rd, i, rs
The contents of register rt are shifted right and zeros are inserted into the emptied higher bits. The
lower six bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift
Right Arithmetic
Variable

DSRAV rd, rt, rs
The contents of register rt are shifted right and the emptied higher bits are sign extended. The lower six
bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift Left
Logical + 32

DSLL32 rd, rt, sa
The contents of register rt are shifted left by 32 + sa bits and zeros are inserted into the emptied lower
bits. The 64-bit result is stored into register rd.

Doubleword Shift
Right Logical + 32

DSRL32 rd, rt, sa
The contents of register rt are shifted right by 32 + sa bits and zeros are inserted into the emptied
higher bits. The 64-bit result is stored into register rd.

Doubleword Shift
Right Arithmetic + 32

DSRA32 rd, rt, sa
The contents of register rt are shifted right by 32 + sa bits and the emptied higher bits are sign
extended. The 64-bit result is stored into register rd.

89

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Table 3-10. Multiply/Divide Instructions

Instruction

Format and Description | op | rs | rt | rd | sa funct

Multiply

MULT rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 32-bit signed integers. The
64-bit result is stored into special registers HI and LO. In the 64-bit mode, the operand must be sign
extended.

Multiply Unsigned

MULTU rs, 1t

The contents of registers rt and rs are multiplied, treating both operands as 32-bit unsigned integers.
The 64-bit result is stored into special registers HI and LO. In the 64-bit mode, the operand must be
sign extended.

Divide

DIV rs, 1t

The contents of register rs are divided by that of register rt, treating both operands as 32-bit signed
integers. The 32-bit quotient is stored into special register LO, and the 32-bit remainder is stored into
special register HI. In the 64-bit mode, the operand must be sign extended.

Divide Unsigned

DIVU rs, 1t

The contents of register rs are divided by that of register rt, treating both operands as 32-bit unsigned
integers. The 32-bit quotient is stored into special register LO, and the 32-bit remainder is stored into
special register HI. In the 64-bit mode, the operand must be sign extended.

Move From HI

MFHI rd
The contents of special register HI are loaded into register rd.

Move From LO

MFLO rd
The contents of special register LO are loaded into register rd.

Move To HI MTHI rs
The contents of register rs are loaded into special register HI.
Move To LO MTLO rs
The contents of register rs are loaded into special register LO.
Table 3-11. Multiply/Divide Instructions (Extended ISA) (1/2)
Instruction Format and Description | op | rs | rt | rd | sa funct
Doubleword Multiply DMULT rs, rt

The contents of registers rt and rs are multiplied, treating both operands as signed integers. The 128-
bit result is stored into special registers Hl and LO.

Doubleword Multiply
Unsigned

DMULTU rs, rt
The contents of registers rt and rs are multiplied, treating both operands as unsigned integers. The
128-bit result is stored into special registers HI and LO.

Doubleword Divide

DDIV rs, 1t

The contents of register rs are divided by that of register rt, treating both operands as signed integers.
The 64-bit quotient is stored into special register LO, and the 64-bit remainder is stored into special
register HI.

Doubleword Divide
Unsigned

DDIVU rs, 1t

The contents of register rs are divided by that of register rt, treating both operands as unsigned
integers. The 64-bit quotient is stored into special register LO, and the 64-bit remainder is stored into
special register HI.

90

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Table 3-11. Multiply/Divide Instructions (Extended ISA) (2/2)

Instruction Format and Description | op | rs | rt | rd | sa | funct |
Multiply and Add 16- MADD16 rs, rt
bit Integer The contents of registers rt and rs are multiplied, treating both operands as 16-bit signed integers (by
sign extending to 64 bits). The result is added to the combined value of special registers HI and LO.
The 64-bit result is stored into special registers HI and LO.
Doubleword Multiply DMADD16 rs, rt

and Add 16-bit Integer The contents of registers rt and rs are multiplied, treating both operands as 16-bit signed integers (by
sign extending to 64 bits). The result is added to value of special register LO. The 64-bit result is stored

into special register LO.

MFHI and MFLO instructions after a multiply or divide instruction generate interlocks to delay execution of the
next instruction, inhibiting the result from being read until the multiply or divide instruction completes.

Table 3-12 gives the number of processor cycles (PCycles) required to resolve interlock or stall between various
multiply or divide instructions and a subsequent MFHI or MFLO instruction.

Table 3-12. Number of Stall Cycles in Multiply and Divide Instructions

Instruction Number of instruction cycles
MULT 1
MULTU 1
DIV 35
DIVU 35
DMULT 4
DMULTU 4
DDIV 67
DDIVU 67
MADD16 1
DMADD16 1

91

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

3.2.3 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of one instruction: that is, the instruction immediately following the jump or branch instruction (this is known as
the instruction in the delay slot) always executes while the target instruction is being fetched from memory.

For instructions involving a link (such as JAL and BLTZAL), the return address is saved in register r31.

Table 3-13. Number of Delay Slot Cycles in Jump and Branch Instructions

Instruction Necessary number of cycles
Branch instruction 1
Jump instruction 1

(1) Overview of jump instructions

Subroutine calls in high-level languages are usually implemented with J or JAL instructions, both of which are J-
type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the high-order 4
bits of the current program counter to form a 32-bit or 64-bit absolute address.

Returns, dispatches, and cross-page jumps are usually implemented with the JR or JALR instructions. Both are
R-type instructions that take the 32-bit or 64-bit byte address contained in one of the general-purpose registers.
For more information, refer to Chapter 27.

(2) Overview of branch instructions

A branch instruction has a PC-related signed 16-bit offset.
Tables 3-14 through 3-16 show the lists of Jump, Branch, and Extended ISA instructions, respectively.

92

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Table 3-14. Jump Instruction

Instruction Format and Description | op | target

Jump J target
The contents of 26-bit target address is shifted left by two bits and combined with the high-order four
bits of the PC. The program jumps to this calculated address with a delay of one instruction.

Jump And Link JAL target

The contents of 26-bit target address is shifted left by two bits and combined with the high-order four
bits of the PC. The program jumps to this calculated address with a delay of one instruction. The
address of the instruction following the delay slot is stored into r31 (link register).

Instruction Format and Description | op | rs | rt | rd | sa funct
Jump Register JR rs
The program jumps to the address specified in register rs with a delay of one instruction.
Jump And Link JALR rs, rd
Register The program jumps to the address specified in register rs with a delay of one instruction.

The address of the instruction following the delay slot is stored into rd.

There are the following common restrictions for Tables 3-15 and 3-16.

(1) Branch address

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to
the 16-bit offset (shifted left by 2 bits and sign-extended to 64 bits). All branches occur with a delay of one
instruction.

(2) Operation when unbranched

If the branch condition does not meet in executing a Likely instruction, the instruction in its delay slot is nullified.
For all other branch instructions, the instruction in its delay slot is unconditionally executed.

Remark The target instruction of the branch is fetched at the EX stage of the branch instruction. Comparison
of the operands of the branch instruction and calculation of the target address is performed at phase 2
of the RF stage and phase 1 of the EX stage of the instruction. Branch instructions require one cycle
of the branch delay slot defined by the architecture. Jump instructions also require one cycle of delay
slot. If the branch condition is not satisfied in a branch likely instruction, the instruction in its delay slot
is nullified.

93

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

There are special symbols used in the instruction formats of Tables 3-15 through 3-19.

REGIMM : Opcode
Sub : Sub-operation code
CcO : Sub-operation identifier
BC : BC sub-operation code
br : Branch condition identifier
op : Operation code
Table 3-15. Branch Instructions
Instruction Format and Description | op rs rt offset

Branch On Equal

BEQ rs, rt, offset
If the contents of register rs are equal to that of register rt, the program branches to the target address.

Branch On Not Equal

BNE rs, rt, offset
If the contents of register rs are not equal to that of register rt, the program branches to the target
address.

Branch On Less Than
Or Equal To Zero

BLEZ rs, offset
If the contents of register rs are less than or equal to zero, the program branches to the target address.

Branch On Greater
Than Zero

BGTZ rs, offset
If the contents of register rs are greater than zero, the program branches to the target address.

Instruction

Format and Description REGIMM rs sub offset

Branch On Less Than
Zero

BLTZ rs, offset
If the contents of register rs are less than zero, the program branches to the target address.

Branch On Greater
Than Or Equal To
Zero

BGEZ rs, offset
If the contents of register rs are greater than or equal to zero, the program branches to the target
address.

Branch On Less Than
Zero And Link

BLTZAL rs, offset
The address of the instruction that follows delay slot is stored to register r31 (link register). If the
contents of register rs are less than zero, the program branches to the target address.

Branch On Greater
Than Or Equal To
Zero And Link

BGEZAL rs, offset
The address of the instruction that follows delay slot is stored to register r31 (link register). If the
contents of register rs are greater than or equal to zero, the program branches to the target address.

Instruction

Format and Description COPO BC | br | offset

Branch On
Coprocessor 0 True

BCOT offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the
instruction in the delay slot to calculate out the branch target address. If the conditional signal of the
coprocessor 0 is true, the program branches to the target address with one-instruction delay.

Branch On
Coprocessor 0 False

BCOF offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the
instruction in the delay slot to calculate out the branch target address. If the conditional signal of the
coprocessor 0 is false, the program branches to the target address with one-instruction delay.

94

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Table 3-16. Branch Instructions (Extended ISA)

Instruction

Format and Description | op | rs | rt offset

Branch On Equal
Likely

BEQL rs, rt, offset
If the contents of register rs are equal to that of register rt, the program branches to the target address.
If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Not Equal
Likely

BNEL rs, rt, offset
If the contents of register rs are not equal to that of register rt, the program branches to the target
address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Less Than
Or Equal To Zero
Likely

BLEZL rs, offset
If the contents of register rs are less than or equal to zero, the program branches to the target address.
If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Greater

BGTZ rs, offset

Than Zero If the contents of register rs are greater than zero, the program branches to the target address. If the
branch condition is not met, the instruction in the delay slot is discarded.
Instruction Format and Description |REGIMM | rs sub offset

Branch On Less Than
Zero Likely

BLTZL rs, offset
If the contents of register rs are less than zero, the program branches to the target address. If the
branch condition is not met, the instruction in the delay slot is discarded.

Branch On Greater
Than Or Equal To
Zero Likely

BGEZL rs, offset
If the contents of register rs are greater than or equal to zero, the program branches to the target
address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch On Less Than
Zero And Link Likely

BLTZALL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the
contents of register rs are less than zero, the program branches to the target address. If the branch
condition is not met, the instruction in the delay slot is discarded.

Branch On Greater
Than Or Equal To
Zero And Link Likely

BGEZALL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the
contents of register rs are greater than or equal to zero, the program branches to the target address. If
the branch condition is not met, the instruction in the delay slot is discarded.

Instruction

Format and Description COPO BC | br | offset

Branch On
Coprocessor 0 True
Likely

BCOTL offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the
instruction in the delay slot to calculate out the branch target address. If the conditional signal of the
coprocessor 0 is true, the program branches to the target address with one-instruction delay. If the
branch condition is not met, the instruction in the delay slot is discarded.

Branch On
Coprocessor 0 False
Likely

BCOFL offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the
instruction in the delay slot to calculate out the branch target address. If the conditional signal of the
coprocessor 0 is false, the program branches to the target address with one-instruction delay. If the
branch condition is not met, the instruction in the delay slot is discarded.

95

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

3.2.4 Special Instructions

Special instructions generate software exceptions.

Their formats are R-type (Syscall, Break). The Trap

instruction is available only for the VrR4000 Series. All the other instructions are available for all Vr Series.

Table 3-17. Special Instructions

Instruction

Format and Description [sPECIAL] 1S It rd sa_ | funct

Synchronize

SYNC
Completes the load/store instruction executing in the current pipeline before the next load/store
instruction starts execution.

System Call SYSCALL
Generates a system call exception, and then transits control to the exception handling program.
Breakpoint BREAK
Generates a break point exception, and then transits control to the exception handling program.
Table 3-18. Special Instructions (Extended ISA) (1/2)
Instruction Format and Description | SPECIAL| s | r rd sa funct

Trap If Greater Than
Or Equal

TGE rs, 1t

The contents of register rs are compared with that of register rt, treating both operands as signed
integers. If the contents of register rs are greater than or equal to that of register rt, an exception
occurs.

Trap If Greater Than
Or Equal Unsigned

TGEU rs, 1t

The contents of register rs are compared with that of register rt, treating both operands as unsigned
integers. If the contents of register rs are greater than or equal to that of register rt, an exception
occurs.

Trap If Less Than

TLT rs, 1t
The contents of register rs are compared with that of register rt, treating both operands as signed
integers. If the contents of register rs are less than that of register rt, an exception occurs.

Trap If Less Than

TLTU rs, 1t

Unsigned The contents of register rs are compared with that of register rt, treating both operands as unsigned
integers. If the contents of register rs are less than that of register rt, an exception occurs.
Trap If Equal TEQ rs, 1t

If the contents of registers rs and rt are equal, an exception occurs.

Trap If Not Equal

TNE rs, 1t
If the contents of registers rs and rt are not equal, an exception occurs.

96

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Table 3-18. Special Instruction (Extended ISA) (2/2)

Instruction

Format and Description |REG|MM| rs | sub immediate

Trap If Greater Than
Or Equal Immediate

TGEI rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both
operands as signed integers. If the contents of register rs are greater than or equal to 16-bit sign-
extended immediate data, an exception occurs.

Trap If Greater Than
Or Equal Immediate
Unsigned

TGEIU rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both
operands as unsigned integers. If the contents of register rs are greater than or equal to 16-bit sign-
extended immediate data, an exception occurs.

Trap If Less Than
Immediate

TLTI rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both
operands as signed integers. If the contents of register rs are less than 16-bit sign-extended immediate
data, an exception occurs.

Trap If Less Than
Immediate Unsigned

TLTIU rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both
operands as unsigned integers. If the contents of register rs are less than 16-bit sign-extended
immediate data, an exception occurs.

Trap If Equal
Immediate

TEQI rs, immediate
If the contents of register rs and immediate data are equal, an exception occurs.

Trap If Not Equal
Immediate

TNEI rs, immediate
If the contents of register rs and immediate data are not equal, an exception occurs.

3.2.5 System Control Coprocessor (CP0) Instructions

System control coprocessor (CPO) instructions perform operations specifically on the CPO registers to manipulate

the memory management and exception handling facilities of the processor.

Table 3-19. System Control Coprocessor (CPO0) Instructions (1/2)

Instruction

Format and Description |COPO| sub | rt | rd 0

Move To System
Control Coprocessor

MTCO rt, rd
The word data of general-purpose register rt in the CPU are loaded into general-purpose register rd in
the CPO.

Move From System
Control Coprocessor

MFCO rt, rd
The word data of general-purpose register rd in the CPO are loaded into general-purpose register rt in
the CPU.

Doubleword Move To
System Control
Coprocessor 0

DMTCO rt, rd
The doubleword data of general-purpose register rt in the CPU are loaded into general-purpose register
rd in the CPO.

Doubleword Move
From System Control
Coprocessor 0

DMFCO rt, rd
The doubleword data of general-purpose register rd in the CPO are loaded into general-purpose
register rt in the CPU.

97

CHAPTER 3 CPU INSTRUCTION SET SUMMARY

Table 3-19. System Control Coprocessor (CPO) Instructions (2/2)

Instruction

Format and Description |COP0 | co | funct

Read Indexed TLB
Entry

TLBR
The TLB entry indexed by the index register is loaded into the entryHi, entryLoO, entryLol, or page
mask register.

Write Indexed TLB
Entry

TLBWI
The contents of the entryHi, entryLoO, entryLol, or page mask register are loaded into the TLB entry
indexed by the index register.

Write Random TLB
Entry

TLBWR
The contents of the entryHi, entryLoO, entryLol, or page mask register are loaded into the TLB entry
indexed by the random register.

Probe TLB For
Matching Entry

TLBP
The address of the TLB entry that matches with the contents of entryHi register is loaded into the index
register.

Return From

ERET

Exception The program returns from exception, interrupt, or error trap.
Instruction Format and Description COPO CO funct
STANDBY STANDBY
The processor’s operating mode is transited from fullspeed mode to standby mode.
SUSPEND SUSPEND
The processor’s operating mode is transited from fullspeed mode to suspend mode.
HIBERNATE HIBERNATE
The processor’s operating mode is transited from fullspeed mode to hibernate mode.
Instruction Format and Description CACHE | base | op | offset

Cache Operation

Cache op, offset (base)

The 16-bit offset is sign extended to 32 bits and added to the contents of the register case, to form
virtual address. This virtual address is translated to physical address with TLB. For this physical
address, cache operation that is indicated by 5-bit sub-opcode is performed.

98

CHAPTER 4 VR4102 PIPELINE

This chapter describes the basic operation of the VR4102 processor pipeline, which includes descriptions of the
delay slots (instructions that follow a branch or load instruction in the pipeline), interrupts to the pipeline flow caused
by interlocks and exceptions, and CPO hazards.

4.1 PIPELINE STAGES

The VR4102 has a five-stage instruction pipeline; each stage takes one PCycle (one cycle of Pclock), and each
PCycle has two phases: ®1 and ®2, as shown in Figure 4-1. Thus, the execution of each instruction takes at least
5 PCycles. An instruction can take longer - for example, if the required data is not in the cache, the data must be
retrieved from main memory. Once the pipeline has been filled, five instructions are executed simultaneously.

Figure 4-1. Pipeline Stages

PCycle |

|

rao [\
|
|

Phase (Dl|(l)2|(Dl|(I)2|(Dl|(l)2|(Dl|(l)2|(Dl|(D2|

Cycle IF RF EX DC wWB I

The five pipeline stages are:

< IF - Instruction cache fetch
< RF - Register fetch

< EX - Execution

< DC - Data cache fetch

< WB - Write back

Figure 4-2 shows the five stages of the instruction pipeline. In this figure, a row indicates the execution process
of each instruction, and a column indicates the processes executed simultaneously.

99

CHAPTER 4 VR4102 PIPELINE

Figure 4-2. Instruction Execution in the Pipeline

| PCycle | (Five stages)
1
| IF1 | IF2 |RF1|RF2 | EX1|[EX2|DC1|DC2|WB1|WB2

|IF1 IF2 | RF1|RF2 [EX1|EX2|DC1|DC2|WB1 WBZI

IF1 | IF2 |RF1|RF2 | EX1|EX2[DC1|DC2|WB1 WBZI

IF1 | IF2 |RF1|RF2 | EX1|EX2[DC1|DC2|WB1 WBZI

IF1 | IF2 [RF1|RF2|[EX1|EX2|DC1|DC2|WB1 WBZI

Current CPU cycle

4.1.1 Pipeline Activities

Figure 4-3 shows the activities that can occur during each pipeline stage; Table 4-1 describes these pipeline
activities.

Figure 4-3. Pipeline Activities

| PCycle |
Phase |<Dl|<1)2|<l)l|<l)2|<I)l|<1)2|<1)1|<1)2|<1)1|<1)2|
Cycle |IF1 IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | wB1 WBZI
| Fetch IDC | ICA
and
Decode ITLB | ITC
ALU IDEC| RF
EX
Load/Store DVA DCA [pbLA
DTLB |pbTC WB
Branch | sa | [om DCw

BAC

100

CHAPTER 4 VR4102 PIPELINE

Table 4-1. Description of Pipeline Activities during Each Stage

Cycle Phase Mnemonic Description
(OX] IDC Instruction cache address decode
ITLB Instruction address translation
" o2 ICA Instruction cache array access
ITC Instruction tag check
(OX] IDEC Instruction decode
RF ®2 RF Register operand fetch
BAC Branch address calculation
ol EX Execution stage
DVA Data virtual address calculation
EX SA Store align
o2 DCA Data cache address decode/array access
DTLB Data address translation
o1 DLA Data cache load align
DC DTC Data tag check
DTD Data transfer to data cache
o1 DCW Data cache write
wB
WB Write back to register file

101

CHAPTER 4 VR4102 PIPELINE

4.2 BRANCH DELAY
During a Vr4102’s pipeline operation, a one-cycle branch delay occurs when:
e Target address is calculated by a Jump instruction
e Branch condition of branch instruction is met and then logical operation starts for branch-destination
comparison
The instruction address generated at the EX stage in the Jump/Branch instruction are available in the IF stage,
two instructions later.

Figure 4-4 illustrates the branch delay and the location of the branch delay slot.

Figure 4-4. Branch Delay

| PCycIe|
Branch | IF RFE 4 EX DC WB I
\
(Branch delayslot) | IF \ RF EX DC WB I
|
Target | YiF RF EX DC WB I

Branch delay

4.3 LOAD DELAY

A load instruction that does not allow its result to be used by the instruction immediately following is called a
delayed load instruction. The instruction immediately following this delayed load instruction is referred to as the load
delay slot.

In the VR4102, the instruction immediately following a load instruction can use the contents of the loaded register,
however in such cases hardware interlocks insert additional delay cycles. Consequently, scheduling load delay slots
can be desirable, both for performance and VR-Series processor compatibility.

4.4 PIPELINE OPERATION
The operation of the pipeline is illustrated by the following examples that describe how typical instructions are

executed. The instructions described are: ADD, JALR, BEQ, TLT, LW, and SW. Each instruction is taken through
the pipeline and the operations that occur in each relevant stage are described.

102

CHAPTER 4 VR4102 PIPELINE

(1) Add instruction (Add rd, rs, rt)

IF stage

RF stage

EX stage

DC stage

WB stage

In @1 of the IF stage, the eleven least-significant bits of the virtual address are used to access the
instruction cache. In ®2 of the IF stage, the cache index is compared with the page frame number
and the cache data is read out. The virtual PC is incremented by 4 so that the next instruction can
be fetched.

During ®2, the 2-port register file is addressed with the rs and rt fields and the register data is valid
at the register file output. At the same time, bypass multiplexers select inputs from either the EX-
or DC-stage output in addition to the register file output, depending on the need for an operand
bypass.

The ALU controls are set to do an A + B operation. The operands flow into the ALU inputs, and the
ALU operation is started. The result of the ALU operation is latched into the ALU output latch
during @1.

This stage is a NOP for this instruction. The data from the output of the EX stage (the ALU) is
moved into the output latch of the DC.

During @1, the WB latch feeds the data to the inputs of the register file, which is accessed by the
rd field. The file write strobe is enabled. By the end of @1, the data is written into the file.

Figure 4-5. Add Instruction Pipeline Activities

| PCycle |

Phase |<1>1|<1>2|<1>1|<1>2|<1>1|<1>2|<1>1|q>2|q>1|q>2|
Cycle | IF1 | IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | WB1 WBZI
ioc | ica
me |itc]ibec| R | Ex |

103

CHAPTER 4 VR4102 PIPELINE

(2) Jump and Link Register instruction (JALR rd, rs)

IF stage

RF stage

EX stage

DC stage

WB stage

104

Same as the IF stage for the ADD instruction.

A register specified in the rs field is read from the file during ®2 at the RF stage, and the value
read from the rs register is input to the virtual PC latch synchronously. This value is used to fetch
an instruction at the jump destination. The value of the virtual PC incremented during the IF stage
is incremented again to produce the link address PC + 8 where PC is the address of the JALR
instruction. The resulting value is the PC to which the program will eventually return. This value is
placed in the Link output latch of the Instruction Address unit.

The PC + 8 value is moved from the Link output latch to the output latch of the EX stage.

The PC + 8 value is moved from the output latch of the EX stage to the output latch of the DC
stage.

Refer to the ADD instruction. Note that if no value is explicitly provided for rd then register 31 is
used as the default. If rd is explicitly specified, it cannot be the same register addressed by rs; if it
is, the result of executing such an instruction is undefined.

Figure 4-6. JALR Instruction Pipeline Activities

| PCycle |
Phase | o1 | D2 | o1 | D2 | o1 | D2 | o1 | o2 | (OXN | o2 |
Cycle | IF1 IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | WB1 WBZI
IDC | ICA
ITLB |ITC IDEC| RF EX
BAC

CHAPTER 4 VR4102 PIPELINE

(3) Branch on Equal instruction (BEQ rs, rt, offset)

IF stage

RF stage

EX stage

DC stage

WB stage

Same as the IF stage for the ADD instruction.

During ®2, the register file is addressed with the rs and rt fields. A check is performed to
determine if each corresponding bit position of these two operands has equal values. If they are
equal, the PC is set to PC + target, where target is the sign-extended offset field. If they are not
equal, the PCis setto PC + 4.

The next PC resulting from the branch comparison is valid at the beginning of ®2 for instruction
fetch.

This stage is a NOP for this instruction.

This stage is a NOP for this instruction.
Figure 4-7. BEQ Instruction Pipeline Activities

PCycle |

|

rao [\
|
|

Phase <1>1|<1>2|<1>1|<1>2|<1>1|<1>2|<1>1|q>2|q>1|q>2|
Cycle IF1 | IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | wB1 WBZI
ioc | icA
LB |itc|ibEc | RF | EX

BAC

105

CHAPTER 4 VR4102 PIPELINE

(4) Trap if Less Than instruction (TLT rs, rt)

106

IF stage

RF stage

EX stage

DC stage

WB stage

Same as the IF stage for the ADD instruction.

Same as the RF stage for the ADD instruction.

ALU controls are set to do an A — B operation. The operands flow into the ALU inputs, and the
ALU operation is started. The result of the ALU operation is latched into the ALU output latch
during ®1. The sign bits of operands and of the ALU output latch are checked to determine if a
less than condition is true. If this condition is true, a Trap exception occurs. The value in the PC
register is used as an exception vector value, and from now on any instruction will be invalid.

No operation

The EPC register is loaded with the value of the PC if the less than condition was met in the EX
stage. The Cause register ExCode field and BD bit are updated appropriately, as is the EXL bit

of the Status register. If the less than condition was not met in the EX stage, no activity occurs in
the WB stage.

Figure 4-8. TLT Instruction Pipeline Activities

| PCycle |
Phase |(Dl|(I)2|(Dl|(l)2|(l)l|(l)2|(l)l|(l)2|(l)l|(l)2|
Cycle |IF1 IF2 RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | WB1 WBZI
IDC | ICA
ITLB ||Tc IDEC| RF | EX |

CHAPTER 4 VR4102 PIPELINE

(5) Load Word instruction (LW rt, offset (base))

IF stage

RF stage

EX stage

DC stage

WB stage

Same as the IF stage for the ADD instruction.

Same as the RF stage for the ADD instruction. Note that the base field is in the same position as

the rs field.

Refer to the EX stage for the ADD instruction.

For LW, the inputs to the ALU come from

GPR[base] through the bypass multiplexer and from the sign-extended offset field. The result of
the ALU operation that is latched into the ALU output latch in ®1 represents the effective virtual
address of the operand (DVA).

The cache tag field is compared with the Page Frame Number (PFN) field of the TLB entry. After

passing through the load aligner, aligned data is placed in the DC output latch during ®2.

During @1, the cache read data is written into the register file addressed by the rt field.

Figure 4-9. LW Instruction Pipeline Activities

| PCycle |
poock [\ [\)) __J
Phase |<I)1|<I)2|<I>1|<I>2|<I)1|CI>2|CD1|CI>2|CD1|<D2|
Cycle | IF1 IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | wWB1 WBZI
ioc | ica
ITLB |ITC IDEC | RF EX DCA |DLA
DVA DTLB |pbTC

107

CHAPTER 4 VR4102 PIPELINE

(6) Store Word instruction (SW rt, offset (base))

IF stage

RF stage

EX stage

DC stage

WB stage

108

Same as the IF stage for the ADD instruction.
Same as the RF stage for the LW instruction.

Refer to the LW instruction for a calculation of the effective address. From the RF output latch,
the GPRJrt] is sent through the bypass multiplexer and into the main shifter, where the shifter
performs the byte-alignment operation for the operand. The results of the ALU are latched in the
output latches during ®1. The shift operations are latched in the output latches during ®2.

Refer to the LW instruction for a description of the cache access.

If there was a cache hit, the content of the store data output latch is written into the data cache at
the appropriate word location.

Note that all store instructions use the data cache for two consecutive PCycles. If the following
instruction requires use of the data cache, the pipeline is slipped for one PCycle to complete the
writing of an aligned store data.

Figure 4-10. SW Instruction Pipeline Activities

| PCycle |

Phase |(Dl|(I)2|(Dl|<I)2|(Dl|(DZ|(Dl|<I)2|(Dl|(D2|
Cycle | IF1 | IF2 | RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | wB1 WBZI
ioc | ica
e |itc] ibEc| RF | EX

pva | pTe |ore
| sa | |pm DCW

CHAPTER 4 VR4102 PIPELINE

4.5 INTERLOCK AND EXCEPTION HANDLING

Smooth pipeline flow is interrupted when cache misses or exceptions occur, or when data dependencies are
detected. Interruptions handled using hardware, such as cache misses, are referred to as interlocks, while those
that are handled using software are called exceptions. As shown in Figure 4-11, all interlock and exception
conditions are collectively referred to as faults.

Figure 4-11. Interlocks, Exceptions, and Faults

Faults
Softway \HardWare
Exceptions Interlocks

| /\

Abort I Stall Slip

At each cycle, exception and interlock conditions are checked for all active instructions.

Because each exception or interlock condition corresponds to a particular pipeline stage, a condition can be
traced back to the particular instruction in the exception/interlock stage, as shown in Table 4-2. For instance, an LDI
Interlock is raised in the Register Fetch (RF) stage.

Tables 4-2 to 4-4 describe the pipeline interlocks and exceptions listed in Table 4-2.

109

CHAPTER 4 VR4102 PIPELINE

Table 4-2. Correspondence of Pipeline Stage to Interlock and Exception Condition

Stage IF RF EX DC wB
Status
Interlock Stall - IT™M - DTM -
ICM DCM
DCB
Slip - LDI - - -
MDI
SLI
CPO
Exception IAETrT NMI Trap Reset -
ITLB OVF DTLB
IPErT DAErr TMod
INTr DPErr
IBE WAT
SYSC DBE
BP
Cun
RSVD

Remark In the above table, exception conditions are listed up in higher priority order.

110

CHAPTER 4 VR4102 PIPELINE

Table 4-3. Description of Pipeline Exception

Exception Description
IAErr Instruction Address Error exception
NMI Non-maskable Interrupt exception
ITLB ITLB exception
IPErr Instruction Parity Error exception
INTr Interrupt exception
IBE Instruction Bus Error exception
SYSC System Call exception
BP Breakpoint exception
CUn Coprocessor Unusable exception
RSVD Reserved Instruction exception
Trap Trap exception
OVF Overflow exception
DAErr Data Address Error exception
Reset Reset exception
DTLB DTLB exception
DTMod DTLB Modified exception
DPErr Data Parity Error exception
WAT Watch exception
DBE Data Bus Error exception

Table 4-4. Pipeline Interlock

Interlock Description
IT™™ Interrupt TLB Miss
ICM Interrupt Cache Miss
LDI Load Data Interlock
MDI MD Busy Interlock
SLI Store-Load Interlock
CPO Coprocessor 0 Interlock
DTM Data TLB Miss
DCM Data Cache Miss
DCB Data Cache Busy

111

CHAPTER 4 VR4102 PIPELINE

4.5.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are
cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced this
instruction are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exceptional conditions is detected for an instruction, the VR4102 will kill it and all following instructions.
When this instruction reaches the WB stage, the exception flag and various information items are written to CPO
registers. The current PC is changed to the appropriate exception vector address and the exception bits of earlier
pipeline stages are cleared.

This implementation allows all preceding instructions to complete execution and prevents all subsequent
instructions from completing. Thus the value in the EPC is sufficient to restart execution. It also ensures that
exceptions are taken in the order of execution; an instruction taking an exception may itself be killed by an
instruction further down the pipeline that takes an exception in a later cycle.

Figure 4-12. Exception Detection

Ecxeption| 11 | 21 | 1R | 2R | 1E | 2E | 1D | 2D | 1W ZWI

1 0| 24 1R 2R [1E |26 |10 | 20 | 1w 2w |

2 \c 1l 2l IR { 2R}t 1E | 2E | 1D | 2D | 1W ZWI
Exception vector 1F | 2F | IR | 2R | 1E | 2E | 1D | 2D | 1W 2WI
e P Killed stage
v . Interpret

112

CHAPTER 4 VR4102 PIPELINE

4.5.2 Stall Conditions
Stalls are used to stop the pipeline for conditions detected after the RF stage. When a stall occurs, the processor

will resolve the condition and then the pipeline will continue. Figure 4-13 shows a data cache miss stall, and Figure

4-14 shows a CACHE instruction stall.

Figure 4-13. Data Cache Miss Stall

| F [rRe]Ex|Dc|we WBIuo|WB WB WBI

P 7

| F [rF|Ex]|DC DCI...|DC oc | bc WBI

|IF RFE | EX ExI...|Ex Ex | Ex | bC WBI

|IF RF RFI...|RF rRe | RF | EX | DC WBI

@ Detect data cache miss
@ Start moving data cache line to write buffer

@ Get last word into cache and restart pipeline

If the cache line to be replaced is dirty — the W bit is set — the data is moved to the internal write buffer in the
next cycle. The write-back data is returned to memory. The last word in the data is returned to the cache at 3, and

pipelining restarts.

Figure 4-14. CACHE Instruction Stall

| F [rRe]Ex|Dc|we WBIuo|WB WB WBI

7 7

| F [rF|Ex]|DC DCI...|DC DC | bC WBI

|IF RFE | EX ExI...|Ex Ex | Ex | bC WBI

| F | RrF RFI...|RF RF | RF | EX | DC WBI

@ CACHE instruction start

@ CACHE instruction complete
When the CACHE instruction enters the DC pipe-stage, the pipeline stalls while the CACHE instruction is

executed. The pipeline begins running again when the CACHE instruction is completed, allowing the instruction

fetch to proceed.

113

CHAPTER 4 VR4102 PIPELINE

4.5.3 Slip Conditions

During ®2 of the RF stage and ®1 of the EX stage, internal logic will determine whether it is possible to start the
current instruction in this cycle. If all of the source operands are available (either from the register file or via the
internal bypass logic) and all the hardware resources necessary to complete the instruction will be available
whenever required, then the instruction “run”; otherwise, the instruction will “slip”. Slipped instructions are retired on
subsequent cycles until they issue. The backend of the pipeline (stages DC and WB) will advance normally during
slips in an attempt to resolve the conflict. NOPs will be inserted into the bubble in the pipeline. Instructions killed by
branch likely instructions, ERET or exceptions will not cause slips.

Figure 4-15. Load Data Interlock

loadA | IF | RF [Ex | DC WBI
Load B | F | rRF| Ex | DC WBI

\ Bypass
ADD A, B | IF EX WBI

éé

@ Detect load interlock

@ Get the target data

rRe | Ex | DC WBI

Load Data Interlock is detected in the RF stage shown in as Figure 4-15 and also the pipeline slips in the stage.
Load Data Interlock occurs when data fetched by a load instruction and data moved from HI, LO or CPO register is
required by the next immediate instruction. The pipeline begins running again when the clock after the target of the
load is read from the data cache, HI, LO and CPO register. The data returned at the end of the DC stage is input into
the end of the RF stage, using the bypass multiplexers.

Figure 4-16. MD Busy Interlock

| F [rRF| Ex|DC WBI

\ Bypass

MFLO/MFHI | IF EX WB I

éé

@ Detect MD busy interlock

@ Get target data

rF | Ex | DC WBI

114

CHAPTER 4 VR4102 PIPELINE

MD Busy Interlock is detected in the RF stage as shown in Figure 4-16 and also the pipeline slips in the stage.
MD Busy Interlock occurs when Hi/Lo register is required by MFHi/Lo instruction before finishing Mult/Div execution.
The pipeline begins running again the clock after finishing Mult/Div execution. The data returned from the Hi/Lo
register at the end of the DC stage is input into the end of the RF stage, using the bypass multiplexers.

Store-Load Interlock is detected in the EX stage and the pipeline slips in the RF stage. Store-Load Interlock
occurs when store instruction followed by load instruction is detected. The pipeline begins running again one clock
after.

Coprocessor 0 Interlock is detected in the EX stage and the pipeline slips in the RF stage. A coprocessor
interlock occurs when an MTCO instruction for the Configuration or Status register is detected.

The pipeline begins running again one clock after.

4.5.4 Bypassing

In some cases, data and conditions produced in the EX, DC and WB stages of the pipeline are made available to
the EX stage (only) through the bypass data path.

Operand bypass allows an instruction in the EX stage to continue without having to wait for data or conditions to
be written to the register file at the end of the WB stage. Instead, the Bypass Control Unit is responsible for ensuring
data and conditions from later pipeline stages are available at the appropriate time for instructions earlier in the
pipeline.

The Bypass Control Unit is also responsible for controlling the source and destination register addresses supplied
to the register file.

4.6 CODE COMPATIBILITY

The VR4100 CPU core can execute all programs that can be executed in other VR-Series processors. But the
reverse is not necessarily true. Programs complied using a standard MIPS compiler can be executed in both types
of processors. When using manual assembly, however, write programs carefully so that compatibility with other VR-
series processors can be maintained. Matters which should be paid attention to when porting programs between the
VR4100 CPU core and other VR-Series processors are listed below.

® The VR4100 CPU core does not support floating-point instructions since it has no Floating-Point Unit (FPU).

® Multiply-add instructions (DMADD16, MADD16) are added in the VR4100 CPU core.

® Instructions for power modes (HIBERNATE, STANDBY, SUSPEND) are added in the VR4100 CPU core to
support power modes.

® The VR4100 CPU core does not have the LL bit to perform synchronization of multiprocessing. Therefore, the
CPU core does not support instructions which manipulate the LL bit (LL, LLD, SC, SCD).

® The CPO hazards of the VR4100 CPU core are equally or less stringent than those of other processors (see
Chapter 28 for details).

For more information, refer to Chapter 27, the VrR4000, VR4400 User’s Manual, or the VrR4200™ User’s Manual.

115

[MEMO]

116

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

The Vr4102 provides a memory management unit (MMU) which uses a translation lookaside buffer (TLB) to
translate virtual addresses into physical addresses. This chapter describes the virtual and physical address spaces,
the virtual-to-physical address translation, the operation of the TLB in making these translations, and the CPO
registers that provide the software interface to the TLB.

5.1 TRANSLATION LOOKASIDE BUFFER (TLB)

Virtual addresses are translated into physical addresses using an on-chip TLB 22. The on-chip TLB is a fully-
associative memory that holds 32 entries, which provide mapping to 32 odd/even page pairs for one entry. The
pages can have five different sizes, 1 K, 4 K, 16 K, 64 K, and 256 K, and can be specified in each entry. If it is
supplied with a virtual address, each of the 32 TLB entries is checked simultaneously to see whether they match the
virtual addresses that are provided with the ASID field and saved in the EntryHi register.

If there is a virtual address match, or “hit,” in the TLB, the physical page number is extracted from the TLB and
concatenated with the offset to form the physical address.

If no match occurs (TLB “miss”), an exception is taken and software refills the TLB from the page table resident in
memory. The software writes to an entry selected using the Index register or a random entry indicated in the
Random register.

If more than one entry in the TLB matches the virtual address being translated, the operation is undefined and the
TLB may be disabled. In this case, the TLB-Shutdown (TS) bit of the Status register is set to 1, and the TLB
becomes unusable (an attempt to access the TLB results in a TLB Mismatch exception regardless of whether there
is an entry that hits). The TS bit can be cleared only by a reset.

Note that virtual addresses may be converted to physical addresses without using a TLB, depending on the
address space that is being subjected to address translation. For example, address translation for the ksegO or
ksegl address space does not use mapping. The physical addresses of these address spaces are determined by
subtracting the base address of the address space from the virtual addresses.

5.2 VIRTUAL ADDRESS SPACE

The address space of the CPU is extended in memory management system, by converting (translating) huge
virtual memory addresses into physical addresses.

The physical address space of the Vr4102 is 4 Ghbytes and 32-bit width addresses are used.

For the virtual address space, up to 2 Gbytes (2*) are provided as a user’s area and 32-bit width addresses are
used in the 32-bit mode. In the 64-bit mode, up to 1 Thyte (2*) is provided as a user’s area and 64-bit width
addresses are used. For the format of the TLB entry in each mode, refer to 5.4.1.

As shown in Figures 4-2 and 4-3, the virtual address is extended with an address space identifier (ASID), which
reduces the frequency of TLB flushing when switching contexts. This 8-bit ASID is in the CP0O EntryHi register, and
the Global (G) bit is in the EntryLo0O and EntryLol registers, described later in this chapter.

117

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

Figure 5-1. Virtual-to-Physical Address Translation

1 The virtual page number (VPN) in the
virtual address (VA) is compared with
the VPN in the TLB.

2 If there is a match, the page frame
number (PFN) representing the high-
order bits of the physical address is
output from the TLB.

3 The offset is then added to the PFN
passing through the TLB.

5.2.1 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor
with the virtual addresses in the TLB; there is a match when the virtual page number (VPN) of the address is the
same as the VPN field of the entry, and either:

Virtual address

| ASID VPN I | Offset
| G ASID VPN I
TLB
>
entry
| PFN I
TLB |
v v
| PFN I | Offset

<~ the Global (G) bit of the TLB entry is setto 1, or
<~ the ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Mismatch exception is taken by the processor

Physical address

and software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is output from the TLB and concatenated with
the offset, which represents an address within the page frame space. The offset does not pass through the TLB.
Instead, the low-order bits of the virtual address are output without being translated. See descriptions about the
virtual address space for details. For details about the physical address, see 5.4.9 Virtual-to-Physical Address

Translation .

The next two sections describe the 32-bit and 64-bit mode address translations.

118

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.2.2 32-bit Mode Address Translation

Figure 5-2 shows the virtual-to-physical-address translation of a 32-bit mode address. The pages can have five
different sizes between 1 Kbyte (10 bits) and 256 Kbytes (18 bits), each being 4 times as large as the preceding one
in ascending order, thatis 1 K, 4 K, 16 K, 64 K, and 256 K.

<- Shown at the top of Figure 5-2 is the virtual address space in which the page size is 1 Kbyte and the offset is
10 bits. The 22 bits excluding the ASID field represents the virtual page number (VPN), enabling selecting a
page table of 4 M entries.

< Shown at the bottom of Figure 5-2 is the virtual address space in which the page size is 256 Kbytes and the
offset is 18 hits. The 14 bits excluding the ASID field represents the VPN, enabling selecting a page table of

16 K entries.
Figure 5-2. 32-bit Mode Virtual Address Translation
Virtual address for 4M (2) 1-Kbyte pages
39 32 3129 28 10 9 0
ASID VPN Offset I
8 22 10
22 bits = 4M pages A]
\ﬁirtual-to-physical address The offset is passed to
translation with the TLB physical address without
being changed.

[rie]

Bits 31 to 29 of the virtual

address select the user, 31 ¢ 0

supervisor, or kernel A 4

address space. PFN Offset I

Virtual-to-physical address

translation with the TLB The offset is passed to

physical address without
being changed.

39 32 31 29 28 18 17 0
ASID VPN Offset I
Y
8 14 18

14 bits = 16K pages
Virtual address for 16K (2**) 256-Kbyte pages

119

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.2.3 64-bit Mode Address Translation

Figure 5-3 shows the virtual-to-physical-address translation of a 64-bit mode address. The pages can have five
different sizes between 1 Kbyte (10 bits) and 256 Kbytes (18 bits), each being 4 times as large as the preceding one
in ascending order, that is 1K, 4K, 16K, 64K, and 256K. This figure illustrates the two possible page sizes: a 1-
Kbyte page (10 bits) and a 256-Kbyte page (18 bits).

<> Shown at the top of Figure 5-3 is the virtual address space in which the page size is 1 Kbyte and the offset is
10 bits. The 30 bits excluding the ASID field represents the virtual page number (VPN), enabling selecting a
page table of 1 G entry.

<> Shown at the bottom of Figure 5-3 is the virtual address space in which the page size is 256 Kbytes and the
offset is 18 hits. The 22 bhits excluding the ASID field represents the VPN, enabling selecting a page table of
4 M entries.

Figure 5-3. 64-bit Mode Virtual Address Translation

Virtual address for 1G (2*) 1-Kbyte pages

71 64 63 62 61 40 39 10 9 0
ASID Oor-1 VPN Offset I
8 > 22 30 10
30 bits = 1G pages A }
~ ‘
Grtual-to-physical address The offset is passed to
translation with the TLB physical address without
being changed.
E'EI 32-bit physical address
Bits 62 and 63 of the virtual
address select the user, 31 ¢ 0
supervisor, or kernel v
address space. PEN Offset I

Virtual-to-physical address

translation with the TLB The offset is passed to

physical address without
being changed.

S g
71 64 63 62 61 40 39 18 17
| ASID Oor-1 VPN Offset I

o

8 2 22 22 18
22 bits = 4M pages

Virtual address for 4M (2%) 256-Kbyte pages

120

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.2.4 Operating Modes
The processor has three operating modes that function in both 32- and 64-bit operations:

<> User mode
< Supervisor mode
<> Kernel mode

User and Kernel modes are common to all Vr-Series processors. Generally, Kernel mode is used to executing
the operating system, while User mode is used to run application programs. The Vr4000 series processors have a
third mode, which is called Supervisor mode and categorized in between User and Kernel modes. This mode is
used to configure a high-security system.

When an exception occurs, the CPU enters Kernel mode, and remains in this mode until an exception return
instruction (ERET) is executed. The ERET instruction brings back the processor to the mode in which it was just
before the exception occurs.

These modes are described in the next three sections.

5.2.5 User Mode Virtual Addressing

During the single user mode, a 2-Gbyte (2* bytes) virtual address space (useg) can be used in the 32-bit mode.
In the 64-bit mode, a 1-Thyte (2* bytes) virtual address space (xuseg) can be used.

As shown in Tables 5-2 and 5-3, each virtual address is extended independently as another virtual address by
setting an 8-bit address space ID area (ASID), to support user processes of up to 256. The contents of TLB can be
retained after context switching by allocating each process by ASID. useg and xuseg can be referenced via TLB.
Whether a cache is used or not is determined for each page by the TLB entry (depending on the C bit setting in the
TLB entry).

The User segment starts at address 0 and the current active user process resides in either useg (in 32-bit mode)
or xuseg (in 64-bit mode). The TLB identically maps all references to useg/xuseg from all modes, and controls
cache accessibility.

The processor operates in User mode when the Status register contains the following bit-values:

< KSU =10
< EXL=0
< ERL=0

In conjunction with these bits, the UX bit in the Status register selects 32- or 64-bit User mode addressing as
follows:

< When UX = 0, 32-bit useg space is selected.
< When UX = 1, 64-bit xuseg space is selected.

Table 5-1 lists the characteristics of each user segment (useg and xuseg).

121

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

Figure 5-4. User Mode Address Space

32-bit modéd***® 64-bitmode
OxFFFF FFFF OXFFFF FFFF FFFF FFFF
Address error Address error
0x8000 0000 0x0000 0100 0000 0000
Ox7FFF FFFF 0x0000 00FF FFFF FFFF
2 Gbytes with 1 Tbyte with
TLB mapping useg TLB mapping xuseg
0x0000 0000 0x0000 0000 0000 0000

Note The Vr4102 uses 64-bit addresses within it. When the processor is running in Kernel mode, it saves

122

the contents of each register or restores their previous contents to initialize them before switching the
context. For 32-bit mode addressing, bit 31 is sign-extended to bits 32 to 63, and the resulting 32 bits
are used for addressing. Usually, it is impossible for 32-bit mode programs to generate invalid
addresses. If context switching occurs and the processor enters Kernel mode, however, an attempt
may be made to save an address other than the sign-extended 32-bit address mentioned above to a
64-bit register. In this case, user-mode programs are likely to generate an invalid address.

Table 5-1. Comparison of useg and xuseg

Address bit Status register bit value Segment Address range Size
value KSU | EXL | ERL | UX name
32-bit 10 0 0 0 useg 0x0000 0000 2 Gbytes
A[31]=0 to (2% bytes)
OX7FFF FFFF
64-bit 10 0 0 1 xuseg 0x0000 0000 0000 0000 1 Thyte
A[63..40] =0 to (2% bytes)

0x0000 OOFF FFFF FFFF

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

)

)

useg (32-bit mode)

In User mode, when UX = 0 in the Status register and the most significant bit of the virtual address is 0, User
mode addressing is compatible with the 32-bit addressing model shown in Figure 5-4, and a 2-Gbyte user
address space is available, labeled useg.

Any attempt to reference an address with the most-significant bit set while in User mode causes an Address
Error exception (see CHAPTER 6 EXCEPTION PROCESSING).

The TLB Mismatch exception vector is used for TLB misses.

xuseg (64-bit mode)

In User mode, when UX = 1 in the Status register and bits 63 to 40 of the virtual address are all 0, User mode
addressing is extended to the 64-bit addressing model shown in Figure 5-4. In 64-bit User mode, the processor
provides a single address space of 240 bytes, labeled xuseg.

Any attempt to reference an address with bits 63:40 equal to 1 causes an Address Error exception (see
CHAPTER 6 EXCEPTION PROCESSING).

The XTLB Mismatch exception vector is used for TLB misses.

123

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.2.6 Supervisor-mode Virtual Addressing

Supervisor mode is designed for layered operating systems in which a true kernel runs in Kernel mode, and the
rest of the operating system runs in Supervisor mode.

All of the suseg, sseg, xsuseg, xsseg, and csseg spaces are referenced via TLB. Whether cache can be used or
not is determined by bit C of each page’s TLB entry.

The processor operates in Supervisor mode when the Status register contains the following bit-values:

< KSU =01
< EXL=0
< ERL=0

In conjunction with these bits, the SX bit in the Status register selects 32- or 64-bit Supervisor mode addressing:

< When SX = 0, 32-bit supervisor space is selected.
< When SX =1, 64-bit supervisor space is selected.

Table 5-2 lists the characteristics of the Supervisor mode segments.

124

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

Figure 5-5. Supervisor Mode Address Space

32-bit mode™*® 64-bit mode
OXFFFF FFFF OXFFFF FFFF FFFF FFFF
Address error Address error
0XE000 0000 OxFFFF FFFF E000 0000
OXDFFFFFFE | 05 Ghytes with OXFFFF FFFF DFFF FFFF | 0.5 Ghytes with
0xC000 0000 | LB mapping sseq OXFFFF FFFF C000 0000 TLB mapping csseg
OXBFFF FFFF OXFFFF FFFF BFFF FFFF
Address error Address error
0x8000 0000 0x4000 0100 0000 0000
OX7FFF FFFF 0x4000 OOFF FFFF FFFF 1 Thyte with
TLB mapping Xsseg
2 Ghytes with 0x4000 0000 0000 0000
TLB mapping Ox3FFF FFFF FFFF FFFF
suseg Address error
0x0000 0100 0000 0000
0x0000 OOFF FFFF FFFF 1 Thyte with
0X0000 0000 0x0000 0000 0000 0000 TLB mapping xsuseg

Note The Vr4102 uses 64-bit addresses within it. For 32-bit mode addressing, bit 31 is sign-extended to bits
32 to 63, and the resulting 32 bits are used for addressing. Usually, it is impossible for 32-bit mode
programs to generate invalid addresses. In an operation of base register + offset for addressing,
however, a two’s complement overflow may occur, causing an invalid address. Note that the result
becomes undefined. Two factors that can cause a two’s complement follow:

<~ When offset bit 15 is 0, base register bit 31 is 0, and bit 31 of the operation “base register + offset” is 1
<~ When offset bit 15 is 1, base register bit 31 is 1, and bit 31 of the operation “base register + offset” is 0

125

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

1)

@)

®)

126

Table 5-2. 32-bit and 64-bit Supervisor Mode Segments

Address bit Status register bit value Segment Address range Size
value KSuU EXL ERL SX name
32-bit 01 0 0 0 suseg 0x0000 0000 2 Gbytes
A[31]=0 to (2” bytes)
OX7FFF FFFF
32-bit 01 0 0 0 sseg 0xC000 0000 512 Mbytes
A[31..29] = 110 to (2% bytes)
OXDFFF FFFF
64-bit 01 0 0 1 Xsuseg 0x0000 0000 0000 0000 1 Thyte
A[63..62] = 00 to (2% bytes)
0x0000 00FF FFFF FFFF
64-bit 01 0 0 1 xsseg 0x4000 0000 0000 0000 1 Thyte
A[63..62] = 01 to (2% bytes)
0x4000 00FF FFFF FFFF
64-bit 01 0 0 1 csseg OXFFFF FFFF CO00 0000 512 Mbytes
Al63..62] = 11 to (2” bytes)

OxFFFF FFFF DFFF FFFF

suseg (32-bit Supervisor mode, user space)

When SX = 0 in the Status register and the most-significant bit of the virtual address space is set to 0, the suseg
virtual address space is selected; it covers 2 Gbytes (2* bytes) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This mapped
space starts at virtual address 0x0000 0000 and runs through 0x7FFF FFFF.

sseg (32-bit Supervisor mode, supervisor space)

When SX = 0 in the Status register and the three most-significant bits of the virtual address space are 110, the
sseg virtual address space is selected; it covers 512 Mbytes (229 bytes) of the current supervisor virtual address
space. The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.
This mapped space begins at virtual address 0xC000 0000 and runs through OXDFFF FFFF.

xsuseg (64-bit Supervisor mode, user space)

When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 00, the xsuseg
virtual address space is selected; it covers 1 Thyte (2 bytes) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This mapped
space starts at virtual address 0x0000 0000 0000 0000 and runs through 0x0000 O0FF FFFF FFFF.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

(4) xsseg (64-bit Supervisor mode, current supervisor space)
When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 01, the xsseg
virtual address space is selected; it covers 1 Tbyte (2% bytes) of the current supervisor virtual address space.
The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This
mapped space begins at virtual address 0x4000 0000 0000 0000 and runs through 0x4000 00FF FFFF FFFF.

(5) csseg (64-bit Supervisor mode, separate supervisor space)
When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 11, the csseg
virtual address space is selected; it covers 512 Mbytes (2% bytes) of the separate supervisor virtual address
space. The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.
This mapped space begins at virtual address OxFFFF FFFF C000 0000 and runs through OxFFFF FFFF DFFF
FFFF.

5.2.7 Kernel-mode Virtual Addressing
If the Status register satisfies any of the following conditions, the processor runs in Kernel mode.

< KSU =00
< EXL=1
< ERL=1

The addressing width in Kernel mode varies according to the state of the KX bit of the Status register, as follows:

< When KX = 0, 32-bit kernel space is selected.
< When KX = 1, 64-bit kernel space is selected.

The processor enters Kernel mode whenever an exception is detected and it remains in Kernel mode until an
exception return (ERET) instruction is executed and results in ERL and/or EXL = 0. The ERET instruction restores
the processor to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual
address, as shown in Figure 5-6. Table 5-3 lists the characteristics of the 32-hit Kernel mode segments, and Table
5-4 lists the characteristics of the 64-bit Kernel mode segments.

127

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

Figure 5-6. Kernel Mode Address Space

32-bit mode™*® ! 64-bit mode
OXFFFF FFFF OXFFFF FFFF FFFF FFFF .
) 0.5 Ghytes with
0.5 Gbytes with TLB rr¥tapping ckseg
TLB mapping kseg3 OXFFFF FFFF E000 0000
0xE000 0000 OxFFFF FFFF DFFF FFFF 0.5 Gbytes with
OXDFFF FFFF TLB mapping cksseg
0.5 Ghytes with OxFFFF FFFF C0O00 0000
. ksseg -
TLB mapping OxFFFF FFFF BFFF FFFF 0.5 Ghytes without
0xC000 0000 TLB mapping cksegl
OXBEFFE FFEF _ OxFFFF FFFF AO0O 0000 uncacheable
0.5 Ghytes without OXFFFF FFFF 9FFF FFFF | 0.5 Gbytes without
e meppng | cices
0xA000 0000 OxFFFF FFFF 8000 0000 cacheableNote 2
OXFFFF FFFF 7FFF FFFF
OX9FFF FFFF _
X 0.5 Gbytes without Address error
TLB mapping kseg0 0xC000 00OFF 8000 0000
cacheable Note?
0x8000 0000 0xC000 OOFF 7FFF FFFF _ _
With TLB mapping xkseg
OX7TFFF FFFF 0xC000 0000 0000 0000
OXBFFF FFFF FFFF FFFF | \ithout TLB mapping
(See Table 5-7 for xkphys
0x8000 0000 0000 0000 details.)
2 Ghytes with TLB OX7FFF FFFF FFFF FFFF
mapping Address error
0x4000 0100 0000 0000
kuseg 0x4000 OOFF FFFF FFFF 1 Thyte with TLB
mapping xksseg
0x4000 0000 0000 0000
Ox3FFF FFFF FFFF FFFF
Address error
0x0000 0100 0000 0000
0x0000 OOFF FFFF FFFF 1 Thyte with TLB
mapping xkuseg
0x0000 0000 0x0000 0000 0000 0000
Notes 1. The VR4102 uses 64-bit addresses within it. For 32-bit mode addressing, bit 31 is sign-extended to

bits 32 to 63, and the resulting 32 bits are used for addressing. Usually, a 64-bit instruction is used
for the program in 32-bit mode. In an operation of base register + offset for addressing, however, a
two’s complement overflow may occur, causing an invalid address. Note that the result becomes
undefined. Two factors that can cause a two’s complement follow:

< When offset bit 15 is 0, base register bit 31 is 0, and bit 31 of the operation “base register + offset”
is1
< When offset bit 15 is 1, base register bit 31 is 1, and bit 31 of the operation “base register + offset”

is0

2. The KO field of the Config register controls cacheability of kseg0 and cksegO.

128

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

Figure 5-7. xkphys Area Address Space

OXBFFF FFFF FFFF FFFF

0xB800 0001 0000 0000
0xB800 0000 FFFF FFFF

0xB80O 0000 0000 0000
O0XB7FF FFFF FFFF FFFF

0xB00O 0001 0000 0000
0xB00O 0000 FFFF FFFF

0xB00O 0000 0000 0000
OXAFFF FFFF FFFF FFFF

0xA800 0001 0000 0000
0xA800 0000 FFFF FFFF

0XA800 0000 0000 0000
OXA7FF FFFF FFFF FFFF

0xA000 0001 0000 0000
0xA000 0000 FFFF FFFF

0XA000 0000 0000 0000
OX9FFF FFFF FFFF FFFF

0x9800 0001 0000 0000
0x9800 0000 FFFF FFFF

0x9800 0000 0000 0000
0x97FF FFFF FFFF FFFF

0x9000 0001 0000 0000
0x9000 0000 FFFF FFFF

0x9000 0000 0000 0000
OX8FFF FFFF FFFF FFFF

0x8800 0001 0000 0000
0x8800 0000 FFFF FFFF

0x8800 0000 0000 0000
O0x87FF FFFF FFFF FFFF

0x8000 0001 0000 0000
0x8000 0000 FFFF FFFF

0x8000 0000 0000 0000

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

Address error

4 Gbytes without
TLB mapping
cacheable

129

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

Table 5-3. 32-bit Kernel Mode Segments

Address bit value Status register bit value Segment Virtual address Physical Size
KSU | EXL | ERL | KX name address
32-bit KSU =00 0 kuseg 0x0000 0000 TLB map 2 Gbytes
A[31]=0 or to (2” bytes)
EXL=1 OX7FFF FFFF
32-hit or 0 ksegO 0x8000 0000 0x0000 0000 512 Mbytes
A[31..29] = 100 ERL=1 to to (2% bytes)
OX9FFF FFFF Ox1FFF FFFF
32-bit 0 ksegl 0xA000 0000 0x0000 0000 512 Mbytes
A[31..29] =101 to to (2” bytes)
OXBFFF FFFF | OX1FFFFFFF
32-bit 0 ksseg 0xC000 0000 TLB map 512 Mbytes
A[31..29] = 110 to (2” bytes)
OXDFFF FFFF
32-bit 0 kseg3 0xE000 0000 TLB map 512 Mbytes
A[31..29] = 111 to (2% bytes)
OXFFFF FFFF

(1) kuseg (32-bit Kernel mode, user space)
When KX = 0 in the Status register, and the most-significant bit of the virtual address space is 0, the
virtual address space is selected; it is the current 2-Ghyte (2*-byte) user address space.
The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

)

kuseg

References to kuseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 Gbytes (2* bytes) without TLB
mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached so
that the cache error handler can use it. This allows the Cache Error exception code to operate uncached using
r0 as a base register.

ksegO (32-bit Kernel mode, kernel space 0)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 100, the
ksegO virtual address space is selected; it is the current 512-Mbyte (2%-byte) physical space.

References to kseg0 are not mapped through TLB; the physical address selected is defined by subtracting
0x8000 0000 from the virtual address.

The KO field of the Config register controls cacheability (see CHAPTER 6 EXCEPTION PROCESSING).

130

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

©)

4

®)

ksegl (32-bit Kernel mode, kernel space 1)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 101, the
ksegl virtual address space is selected; it is the current 512-Mbyte (2%-byte) physical space.

References to ksegl are not mapped through TLB; the physical address selected is defined by subtracting
0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and main memory (or memory-mapped /O device
registers) is accessed directly.

ksseg (32-hit Kernel mode, supervisor space)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 110, the
ksseg virtual address space is selected: it is the current 512-Mbyte (2”-byte) virtual address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to ksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

kseg3 (32-bit Kernel mode, kernel space 3)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 111, the
kseg3 virtual address space is selected; it is the current 512-Mbyte (2%-byte) kernel virtual space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to kseg3 are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

131

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

Table 5-4. 64-bit Kernel Mode Segments

Address bit Status register bit value | Segment Virtual address Physical Size
value KSU | EXL ERL KX name address
64-bit KSU =00 1 | xkuseg 0x0000 0000 0000 0000 TLB map 1 Thyte
A[63..62] = 00 or to (2* bytes)
EXL=1 0x0000 O0FF FFFF FFFF
64-bit or 1 | xksseg 0x4000 0000 0000 0000 TLB map 1 Thyte
A[63..62] = 01 ERL=1 to (2° bytes)
0x4000 00FF FFFF FFFF
64-bit 1 | xkphys 0x8000 0000 0000 0000 0x0000 0000 | 4 Gbytes
A[63..62] = 10 to to (2% bytes)
OXBFFF FFFF FFFF FFFF | OXFFFF FFFF
64-bit 1 xkseg 0xC000 0000 0000 0000 TLB map 29 . 2%
A[63..62] = 11 to bytes
0xC000 00FF 7FFF FFFF
64-bit 1 | cksegd | OxFFFF FFFF 80000000 | 0Ox0000 0000 | 512 Mbytes
A[63..62] = 11 to to (2* bytes)
A[63..31] = -1 OXFFFF FFFF 9FFF FFFF | OX1FFF FFFF
64-bit 1 | cksegl | OxFFFF FFFF AO0O0 0000 | 0x0000 0000 | 512 Mbytes
A[63..62] = 11 to to (2% bytes)
A[63..31] = -1 OXFFFF FFFF BFFF FFFF | Ox1FFF FFFF
64-bit 1 | cksseg | OXFFFF FFFF C000 0000 TLB map 512 Mbytes
Al63..62] = 11 to (2* bytes)
A[63..31] = -1 OXFFFF FFFF DFFF FFFF
64-bit 1 | ckseg3 | OxFFFF FFFF E000 0000 TLB map 512 Mbytes
A[63..62] = 11 to (2” bytes)
A[63..31] = -1 OXFFFF FFFF FFFF FFFF

(6)

@)

132

xkuseg (64-bit Kernel mode, user space)

When KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 00, the xkuseg virtual
address space is selected; it is the 1-Tbyte (2* bytes) current user address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to xkuseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 Gbytes (2* bytes) without TLB
mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached so
that the cache error handler can use it. This allows the Cache Error exception code to operate uncached using
r0 as a base register.

xksseg (64-bit Kernel mode, current supervisor space)

When KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 01, the xksseg address
space is selected; it is the 1-Tbyte (2* bytes)current supervisor address space. The virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address.

References to xksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

(8) xkphys (64-bit Kernel mode, physical spaces)
When the KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 10, the virtual
address space is called xkphys and selected as either cached or uncached. If any of bits 58 to 32 of the
address is 1, an attempt to access that address results in an address error.
Whether cache can be used or not is determined by bits 59 to 61 of the virtual address. Table 5-5 shows
cacheability corresponding to 8 address spaces.

Table 5-5. Cacheability and the xkphys Address Space

Bits 61-59 Cacheability Start address

0 Cached 0x8000 0000 0000 0000
to
0x8000 0000 FFFF FFFF

1 Cached 0x8800 0000 0000 0000
to
0x8800 0000 FFFF FFFF

2 Uncached 0x9000 0000 0000 0000
to
0x9000 0000 FFFF FFFF

3 Cached 0x9800 0000 0000 0000
to
0x9800 0000 FFFF FFFF

4 Cached 0xA000 0000 0000 0000
to
0XA000 0000 FFFF FFFF

5 Cached 0xA800 0000 0000 0000
to
0xA800 0000 FFFF FFFF

6 Cached 0xB000 0000 0000 0000
to
0xB000 0000 FFFF FFFF

7 Cached 0xB800 0000 0000 0000
to
0xB800 0000 FFFF FFFF

(9) xkseg (64-bit Kernel mode, physical spaces)
When the KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 11, the virtual
address space is called xkseg and selected as either of the following:

« kernel virtual space, xkseg, the current kernel virtual space; the virtual address is extended with the contents
of the 8-bit ASID field to form a unique virtual address
References to xkseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

« one of the four 32-bit kernel compatibility spaces, as described in the next section.

133

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

(10) 64-bit Kernel mode compatible spaces (cksegO, cksegl, cksseg, and ckseg3)

If the conditions listed below are satisfied in Kernel mode, ckseg0, cksegl, cksseg, or ckseg3 (each having 512
Mbytes) is selected as a compatible space according to the state of the bits 30 and 29 (two low-order bits) of the
address.

< The KX bit of the Status register is 1.
< Bits 63 and 62 of the 64-bit virtual address are 11.
< Bits 61 to 31 of the virtual address are all 1.

(i) cksegO

This space is an unmapped region, compatible with the 32-bit mode kseg0 space. The KO field of the Config
register controls cacheability and coherency.

(i) cksegl

This space is an unmapped and uncached region, compatible with the 32-bit mode ksegl space.

(i) cksseg

This space is the current supervisor virtual space, compatible with the 32-bit mode ksseg space.
References to cksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

(iv) ckseg3

134

This space is the current supervisor virtual space, compatible with the 32-bit mode kseg3 space.
References to ckseg3 are mapped through TLB. Whether cache can be used or not is determined by bit C of
each page’s TLB entry.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.3 PHYSICAL ADDRESS SPACE

Using a 32-bit address, the processor physical address space encompasses 4 Gbytes. The Vr4102 uses this 4-
Ghyte physical address space as shown in Figure 5-8.

Figure 5-8. V r4102 Physical Address Space

OXFFFF FFFF
(Mirror Image of 0x0000 0000 to Ox1FFF FFFF

0x2000 0000
OXLFFF FFFF

ROM Area (Include Boot ROM)

0x1800 0000
OX17FF FFFF

System Bus I/0O Area (ISA-10)

0x1400 0000
Ox13FF FFFF

System Bus I/O Area (ISA-MEM)

0x1000 0000
OXOFFF FFFF

RFU

0x0D00 0000
OXOCFF FFFF

Internal 1/0 Area 1
0x0C00 0000

OXOBFF FFFF

Internal 1/0O Area 2
0x0B00O 0000
Ox0AFF FFFF

LCD/High-Speed System Bus Area

0x0A00 0000
OX09FF FFFF

RFU

0x0400 0000
0x03FF FFFF

DRAM Area

0x0000 0000

135

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

136

Table 5-6. VR4102 Physical Address Space

Physical address Space Capacity (bytes)
OxFFFF FFFF to 0x2000 0000 Mirror image of Ox1FFF FFFF to 0x0000 0000 35G
O0x1FFF FFFF to 0x1800 0000 ROM space 128 M
0x17FF FFFF to 0x1400 0000 System bus I/0 space (ISA-10) 64 M
0x13FF FFFF to 0x1000 0000 System bus memory space (ISA-MEM) 64 M
OxOFFF FFFF to 0xODOO 0000 Space reserved for future use 48 M
0xOCFF FFFF to 0x0C00 0000 Internal 1/0O space 1 16 M
O0xOBFF FFFF to 0x0B0OO 0000 Internal 1/0 space 2 16 M
OXOAFF FFFF to 0xOA00 0000 LCD/high-speed system bus memory space 16 M
0x09FF FFFF to 0x0400 0000 Space reserved for future use 96 M
0x03FF FFFF to 0x0000 0000 DRAM space 64 M

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.3.1 ROM Space
The ROM space differs depending on the data bus’ bit width and the capacity of the ROM being used.

« The data bus’ bit width is set via the DBUS32 pin.
¢ The ROM capacity is set via the BCUNTREG1's ROM64 bit.

The physical addresses of the ROM space are listed below.

Table 5-7.

ROM Addresses (when using 16-bit data bus)

Physical address

ADD[25:0] pin

When using 32-M ROM

When using 64-M ROM

Ox1FFF FFFF to Ox1FCO 0000

OX3FF FFFF to
0x3C0 0000

Bank 3 (ROMCS[3]#)

0x1FBF FFFF to 0x1F80 0000

0x3BF FFFF to
0x380 0000

Bank 2 (ROMCS[2]#)

Bank 3 (ROMCS[3]#)

O0x1F7F FFFF to Ox1F40 0000

0x37F FFFF to
0x340 0000

Bank 1 (ROMCS[1]#)

0x1F3F FFFF to Ox1F00 0000

0x33F FFFF to
0x300 0000

Bank 0 (ROMCS[0]#)

Bank 2 (ROMCS[2]#)

Ox1EFF FFFF to Ox1E80 0000

OX2FF FFFF to
0x280 0000

O0x1E7F FFFF to Ox1EO0O0 0000

0x27F FFFF to
0x200 0000

0x1DFF FFFF to 0x1800 0000

OX1FF FFFF to
0x000 0000

ROM space reserved for
future use

Bank 1 (ROMCS[1]#)

Bank 0 (ROMCS|0]#)

ROM space reserved for
future use

Table 5-8.

ROM Addresses (when using 32-bit data bus)

Physical address

ADDI[25:0] pin

When using 32-Mbit ROM

When using 64-Mbit ROM

Ox1FFF FFFF to Ox1F80 0000

OX3FF FFFF to
0x380 0000

Bank 1 (ROMCS[1]#)

0x1F7F FFFF to Ox1F00 0000

0x37F FFFF to
0x300 0000

Bank 0 (ROMCS|0]#)

Bank 1 (ROMCS[1]#)

Ox1EFF FFFF to Ox1E00 0000

O0x2FF FFFO to
0x200 0000

0x1DFF FFFF to 0x1800 0000

OXLFF FFFF to
0x000 0000

ROM space reserved for
future use

Bank 0 (ROMCS[OJ#)

ROM space reserved for
future use

137

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.3.2 System Bus Space
The following three types of system bus space are available.

138

System bus 1/O space
This corresponds to the ISA’s I/O space.

System bus memory space
This corresponds to the ISA’s memory space.

High-speed system bus memory space

The access speed can be set independently of the system bus memory space.

There are 16 Mbytes of high-speed system bus memory space. Therefore, the ADD[25:24] pin is fixed as
10.

When system bus memory has been accessed from the high-speed system bus memory space, the
LCDCS# pin becomes active.

The high-speed system bus memory space is used exclusively from the LCD space. To switch between
these two types of space, set the ISAM/LCD bit in BCUCNTREG1.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.3.3 Internal I/O Space

The VR4102 has two internal I/O spaces. Each of these spaces are described below.

Table 5-9. Internal I/O Space 1

Physical address

Internal 1/0

O0xOCFF FFFF to 0x0C00 0060

Reserved for future use

0x0CO00 005F to 0x0C00 0040

FIR

0x0CO00 003F to 0x0C00 0020

HSP (Software modem interface)

0x0CO00 001F to 0x0C00 0000

SIU (16550)

Table 5-10. Internal I/O Space 2

Physical address

Internal 1/0O

O0xOBFF FFFF to 0x0B0O 02C0

Reserved for future use

0x0B00 02BF to 0x0B0OO 02A0

PIU2

0x0B00 029F to 0x0B0OO 0280

Reserved for future use

0x0B00 027F to 0x0BOO 0260

A/D test

0x0B00 025F to 0x0B0OO 0240

LED

0x0B00 023F to 0x0BO0O 0220

Reserved for future use

0x0B00 021F to 0x0B0OO 0200

ICU2

0x0B0O0 01FF to 0xOBOO O1EO

Reserved for future use

0x0B00 01DF to 0x0B0OO 01C0O | RTC2
0x0B00 01BF to 0x0B0O 01A0 | DSIU
0x0B0O0 019F to 0xOB0OO 0180 Klul
0x0B00 017F to 0xOB0OO 0160 | AIU

0x0B0O0 015F to 0xOB0OO 0140

Reserved for future use

0x0B00 013F to 0x0BOO 0120 PIU1
0x0B0O0 011F to 0xOB0OO 0100 GlUul
0x0BO00 OOFF to 0xOBOO O0OEO | DSU
0x0B0O OODF to 0x0B0OO 00CO | RTC1
0x0B00 O0BF to 0x0B0O 00A0 | PMU
0x0B0O0 009F to 0xOBOO 0080 ICU1
0x0B00 007F to 0xOBOO 0060 CMU
0x0B0O0 005F to 0xOB0OO 0040 DCU
0x0B00 003F to 0x0BOO 0020 DMAAU
0x0B0O0 001F to 0xOBOO 0000 BCU

139

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.3.4 LCD Space

This space is used to access the external LCD controller.

All data that is accessed via this space is inverted-bit data.

The LCD space is used exclusively from the high-speed system bus memory space. To switch between these
two types of space, set the ISAM/LCD bit in BCUCNTREG1.

5.3.5 DRAM Space
The DRAM space differs depending on the data bus’ bit width and the capacity of the DRAM being used.

« The data bus’ bit width is set via the DBUS32 pin.
* The DRAM capacity is set via the BCUCNTREG1's DRAM64 bit.

The physical addresses of the DRAM space are listed below.

Table 5-11. DRAM Addresses (when using 16-bit data bus)

Physical address When using 16-Mbit DRAM When using 64-Mbit DRAM

0x03FF FFFF to 0x0200 0000 | DRAM space reserved for future use | DRAM space reserved for future use

OXO1FF FFFF to 0x0180 0000 Bank 3 (MRAS[3]#/UUCAS#)
0x017F FFFF to 0x0100 0000 Bank 2 (MRAS[2J#/ULCAS#)
OXOOFF FFFF to 0x0080 0000 Bank 1 (MRAS[1]#)
0x007F FFFF to 0x0060 0000 | Bank 3 (MRAS[3J#/UUCASH#) Bank 0 (MRAS[OJ#)

0X005F FFFF to 0x0040 0000 | Bank 2 (MRAS[2]#/ULCAS#)

0X003F FFFF to 0x0020 0000 | Bank 1 (MRAS[1]#)

0X001F FFFF to 0x0000 0000 | Bank 0 (MRAS[O}#)

Table 5-12. DRAM Addresses (when using 32-bit data bus)

Physical address When using 16-Mbit DRAM When using 64-Mbit DRAM

0x03FF FFFF to 0x0200 0000 | DRAM space reserved for future use | DRAM space reserved for future use

OX01FF FFFF to 0x0180 0000 Bank 1 (MRAS[1]#)

0x017F FFFF to 0x0100 0000

OX00FF FFFF to 0x0080 0000 Bank 0 (MRAS[OJ#)

0X007F FFFF to 0x0060 0000 | Bank 1 (MRAS[1]#)

0x005F FFFF to 0x0040 0000

0X003F FFFF to 0x0020 0000 | Bank O (MRAS[O}#)

0x001F FFFF to 0x0000 0000

140

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.4 SYSTEM CONTROL COPROCESSOR

The System Control Coprocessor (CP0) is implemented as an integral part of the CPU, and supports memory
management, address translation, exception handling, and other privileged operations. CPO contains the registers

shown in Figure 5-9 plus a 32-entry TLB. The sections that follow describe how the processor uses each of the

memory management-related registers.

Remark Each CPO register has a unique number that identifies it; this number is referred to as the register

number.

between exception processing and registers.

31

Caution When accessing the CPO register, some instructions require consideration of the interval time
until the next instruction is executed, because it takes a while from when the contents of the
CPO register change to when this change is reflected on the CPU operation. This time lag is

Figure 5-9. CPO Registers and the TLB

EntryLo0 Index Context BadVAddr
EntryHi 2* 0* 8*
10* EntryLol i
3* Random : Count Compare
1* : 11*
PageMask [Status Cause
TLB 5* 12* 13*
Wired EPC WatchLo
6* : 14* 18*
(Safe entries) PRId 'l watchHi XContext
(See Random register for the 15* : 19* 20*
TLB Wired boundary.) :
Config Parity Error Cache Error
127/255 16* 26* 27*
LLAddr TagLo TagHi ErrorEPC
17+ 28+ 29 ; 30*

Used for memory management

Remark

*. Register number

called CPO hazard. For details, see Chapter 28.

Used for exception processing

See Chapter 1 for details. Also see Chapter 6 for the CPO functions and the relationships

141

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.4.1 Format of a TLB Entry
Figure 5-10 shows the TLB entry formats for both 32- and 64-bit modes. Each field of an entry has a

corresponding field in the EntryHi, EntryLoO, EntryLol, or PageMask registers.

Figure 5-10. Format of a TLB Entry

(a) 32-bit mode

127 115 114 107 106 96
| 0 MASK 0 I
13 8 11
95 75 74 73 72 71 64
| VPN2 G 0 ASID I
21 1 2 8
63 60 59 38 37 35 34 33 32
| 0 PFN C D(v]o I
4 22 3 1 1 1
31 28 27 6 5 3 1 0
| 0 PFN C D|VI|oO I
4 22 3 1 1 1
(b) 64-bit mode
255 211 210 203 202 192
0 MASK 0 I
45 8 11
191 190 189 168 167 139 138 137 136 135 128
R 0 VPN2 G 0 ASID I
2 22 29 1 2 8
127 92 91 70 69 67 66 65 64
| 0 PFN C D|V]|O I
36 22 3 1 1 1
63 28 27 6 5 3 2 1 0
| 0 PFN C D(v]o I
36 22 3 1 1 1

The format of the EntryHi, EntryLoO, EntryLol, and PageMask registers are nearly the same as the TLB entry.
However, it is unknown what bit of the EntryHi register corresponds to the TLB G hit.

142

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

Figure 5-11. Format of a TLB Entry (1/2)

(a) PageMask Register

31 19 18 11 10 0
0 MASK 0 I

13 8 11

MASK : Page comparison mask, which determines the virtual page size for the corresponding entry.

0 . Reserved for future use. Write 0 in a write operation. When this field is read, O is read.
(b) EntryHi Register

(@) 32-bit mode
31 11 10 8 7 0
VPN2 0 ASID I

21 3 8

(b) 64-bit mode
63 62 61 40 39 11 10 8 7 0
R Fill VPN2 0 ASID I

VPN2: Virtual page number divided by two (mapping to two pages)

ASID : Address space ID. An 8-bit ASID field that lets multiple processes share the TLB; each process has a

distinct mapping of otherwise identical virtual page numbers.

R : Space type (00 — user, 01 — supervisor, 11 — kernel). Matches bits 63 and 62 of the virtual address.
Fill : Reserved. Ignored on write. When read, returns zero.
0 . Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

143

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

Figure 5-11. Format of a TLB Entry (2/2)

(c) EntryLoO and EntryLol Registers

(@) 32-bit mode

31 28 27 6 5 3 2 1 0
EntryLo0 | 0 PEN c |o|v]e I
4 22 3 11 1
31 28 27 6 5 3 2 1
EntryLol | 0 PFN C D|V|G I
4 22 3 11 1

(b) 64-bit mode

63 28 27 6 5 3 2 1 0
EntryLoO | 0 PFN C DIV |G I
36 22 3 1 1 1
63 28 27 6 5 3 2 1 O
EntryLol | 0 PFN c |o|v]e I
36 22 3 1 1 1
PFN : Page frame number; high-order bits of the physical address.
C : Specifies the TLB page attribute.
D . Dirty. If this bit is set to 1, the page is marked as dirty and, therefore, writable. This bit is actually a
write-protect bit that software can use to prevent alteration of data.
\Y : Valid. If this bit is set to 1, it indicates that the TLB entry is valid; otherwise, a TLB Invalid exception

(TLBL or TLBS) occurs.

G : Global. If this bit is set in both EntryLoO and EntryLo1, then the processor ignores the ASID during TLB
lookup.

0 . Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

The coherency attribute (C) bits are used to specify whether to use the cache in referencing a page. When the

cache is used, whether the page attribute is “cached” or “uncached” is selected by algorithm.
Table 5-13 lists the page attributes selected according to the value in the C bits.

144

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

Table 5-13. Cache Algorithm

C bit value

Cache algorithm

Cached

Cached

Uncached

Cached

Cached

Cached

Cached

~N~N|lojloa |~]J]wW]|N | |O

Cached

145

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.5 CPO REGISTERS

The CPO registers explained below are accessed by the memory management system and software.

parenthesized number that follows each register name is a register number.

5.5.1 Index Register (0)

A

The Index register is a 32-bit, read/write register containing five bits to index an entry in the TLB. The most-
significant bit of the register shows the success or failure of a TLB probe (TLBP) instruction.
The Index register also specifies the TLB entry affected by TLB read (TLBR) or TLB write index (TLBWI)

instructions.

Figure 5-12. Index Register

31 30 5 4 0
P 0 Index I
1 26 5
P : Indicates whether probing is successful or not. It is set to 1 if the latest TLBP instruction fails. It is

cleared to 0 when the TLBP instruction is successful.

Index : Specifies an index to a TLB entry that is a target of the TLBR or TLBWI instruction.
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

5.5.2 Random Register (1)

The Random register is a read-only register. The low-order 5 bits are used in referencing a TLB entry. This
register is decremented each time an instruction is executed. The values that can be set in the register are as

follows:

< The lower bound is the content of the Wired register.
< The upper bound is 31.

The Random register specifies the entry in the TLB that is affected by the TLBWR instruction. The register is

readable to verify proper operation of the processor.

The Random register is set to the value of the upper bound upon Cold Reset. This register is also set to the

upper bound when the Wired register is written. Figure 5-13 shows the format of the Random register.

Figure 5-13. Random Register

31 5 4 0
0 Random I
27 5
Random : TLB random index
0 : Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

146

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.5.3 EntryHi (10), EntryL o0 (2), EntryL ol (3), and PageMask (5) Registers

These registers are used in address translation, to rewrite TLB or to find match of TLB entry. When a TLB

exception occurs, the information of the address that causes the exception is loaded into these registers. For the
formats of these registers, see Figure 5-11.

(1) EntryHi Register (10)

)

®)

The EntryHi register is read/write-accessible. It is used to access the high-order bits of built-in TLB. The
EntryHi register holds the high-order bits of a TLB entry for TLB read and write operations. If a TLB Mismatch,
TLB Invalid, or TLB Modified exception occurs, the EntryHi register sets the virtual page number (VPN2) for a
virtual address where an exception occurred and the ASID. See Chapter 6 for details of the TLB exception.

The ASID is used to read from or write to the ASID field of the TLB entry. It is also checked with the ASID of the
TLB entry as the ASID of the virtual address during address translation.

The EntryHi register is accessed by the TLBP, TLBWR, TLBWI, and TLBR instructions.

EntryLoO (2) and EntryLol (3) Registers

The EntryLo register consists of two registers that have identical formats: EntryLoO, used for even virtual pages
and EntryLo1, used for odd virtual pages. The EntryLoO and EntryLol registers are both read-/write-accessible.
They are used to access the low-order bits of the built-in TLB. When a TLB read/write operation is carried out,
the EntryLoO and EntryLo1l registers hold the contents of the low-order 32 bits of TLB entries at even and odd
addresses, respectively.

PageMask Register (5)

The PageMask register is a read/write register used for reading from or writing to the TLB; it holds a comparison
mask that sets the five types of page sizes for each TLB entry, as shown in Table 5-14. Page sizes must be
from 1 Kbyte to 256 Kbytes.

TLB read and write instructions use this register as either a source or a destination; Bits 18 to 11 that are targets
of comparison are masked during address translation.

Table 5-14 lists the mask pattern for each page size. If the mask pattern is one not listed below, the TLB
behaves unexpectedly.

Table 5-14. Mask Values and Page Sizes

Page size Bit
18 17 16 15 14 13 12 11
1 Kbyte 0 0 0 0 0 0 0 0
4 Kbytes 0 0 0 0 0 0 1 1
16 Kbytes 0 0 0 0 1 1 1 1
64 Kbytes 0 0 1 1 1 1 1 1
256 Kbytes 1 1 1 1 1 1 1 1

147

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.5.4 Wired Register (6)

The Wired register is a read/write register that specifies the lower boundary of the random entry of the TLB as
shown in Figure 5-14. Wired entries cannot be overwritten by a TLBWR instruction. They can, however, be
overwritten by a TLBWI instruction. Random entries can be overwritten by both instructions.

Figure 5-14. Positions Indicated by the Wired Register

T 21

Range specified by
the Random register

Value in the Wired register

T

Range of Wired
entries

il 0

The Wired register is set to 0 upon Cold Reset. Writing this register also sets the Random register to the value of
its upper bound (see 5.5.2 Random register (1)). Figure 5-15 shows the format of the Wired register.

Figure 5-15. Wired Register

31 5 4 0
0 Wired I

27 5

Wired : TLB wired boundary
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

148

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.5.5 Processor Revision Identifier (PRId) Register (15)
The 32-hit, read-only Processor Revision Identifier (PRId) register contains information identifying the
implementation and revision level of the CPU and CPO. Figure 5-16 shows the format of the PRId register.

Figure 5-16. PRId Register

31 16 15 8 7 0
0 Imp Rev I

16 8 8

Imp : CPU core processor ID number (0x0C for the Vr4102)
Rev : CPU core processor revision number
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The processor revision number is stored as a value in the form y.x, where y is a major revision humber in bits 7 to
4 and x is a minor revision number in bits 3 to 0.

The processor revision number can distinguish some CPU core revisions, however there is no guarantee that
changes to the CPU core will necessarily be reflected in the PRId register, or that changes to the revision number
necessarily reflect real CPU core changes. Therefore, create a program that does not depend on the processor
revision number area.

149

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.5.6 Config Register (16)

The Config register indicates and specifies various configuration options selected on Vr4102 processors.

Some configuration options, as defined by the EC and BE fields, are set by the hardware during Cold Reset and
are included in the Config register as read-only status bits for the software to access. Other configuration options
(AD, EP, and KO fields) can be read/written and controlled by software; on Cold Reset these fields are undefined.
Since only a subset of the Vr4000 options are available in the Vr4102, some bits are set to constants (e.g., bits
14:13) that were variable in the Vr4000. The Config register should be initialized by software before caches are
used. Figure 5-17 shows the format of the Config register.

Figure 5-17. Config Register Format

31 30 2827 2423 22 18 17 16 15 14 13 1211 9 8 6 5 3 2 0
0 EC EP |[AD 0 1|0 |BE|1]0|CS| IC DC 0 KO I
1 3 4 1 5 1 1 1 1 1 1 3 3 3 3

EC : System interface clock ratio (read only)
000 — Processor clock frequency divided by 2
Others — Reserved
EP : Transfer data pattern (cache write-back pattern)
0000 — DD: 1 word/1 cycle
Others — Reserved
AD : Accelerate data mode setting
0 — VRrR4000 Series compatible mode
1 — Reserved
BE : BigEndianMem. Indicates endian.
0 — Little endian
1 — Reserved
CS : Cache size mode indication
0 — Reserved
1 — Cache of small capacity
IC : Instruction cache size indication. The size is 2"°"'° bytes when CS bit is set to 1.
2 — 4 Khytes
Others — Reserved
DC : Data cache size indication. The size is 2"°°° bytes when CS bit is set to 1.
0 — 1 Kbytes
Others — Reserved
KO : ksegO cache coherency algorithm
010 — Uncached
Others — Cached
1: 1is returned when it is read.
0: Ois returned when it is read.

150

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

Caution The value that can be set is different from that of the V r4100. Be sure to set the EP field and
the AD bit to 0. If they are set with any other values, the processor may behave unexpectedly.

5.5.7 Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register is a read/write register, and not used with the Vr4102
processor except for diagnostic purpose, and serves no function during normal operation.

LLAddr register is implemented just for compatibility between the Vr4102 and Vr4000/Vr4400.

Figure 5-18. LLAddr Register

31 0
PAddr I

32

PAddr: 32-bit physical address

151

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.5.8 Cache Tag Registers (TagLo (28) and TagHi (29))

The TagLo and TagHi registers are 32-bit read/write registers that hold the primary cache tag and parity during
cache initialization, cache diagnostics, or cache error processing. The Tag registers are written by the CACHE and
MTCO instructions.

The P fields of these registers are ignored on Index Store Tag operations by the CACHE instruction. Parity is
computed by the store operation. Figure 5-19 shows the format of these registers.

Figure 5-19. TaglLo and TagHi Registers

31 10 9 7 6 2 1 0
Data cache PTagLo V|D|W 0 w’ PI
22 1 1 1 5 1 1
31 10 9 8 1 0
Instruction
cache | PTagLo \Y 0 P I
22 1 8 1
31 0
Tag Hi | 0 I
32

PTaglLo: Specifies physical address bits 31 to 10.

\Y, : Valid bit

D . Dirty bit. However, this bit is defined only for the compatibility with the VR4000 Series processors,
and does not indicate the status of cache memory in spite of its readability and writability. This bit
cannot change the status of cache memory.

W . Write-back bit (set if cache line has been updated)
w’ . Even parity for the write-back bit
. Even parity bit for primary cache tag
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

152

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.5.9 Virtual-to-Physical Address Translation

During virtual-to-physical address translation, the CPU compares the 8-bit ASID (and while the Global bit, G, is
not set to 1) of the virtual address to the ASID of the TLB entry to see if there is a match. One of the following
comparisons are also made:

< In 32-bit mode, the high-order bits"* of the 32-bit virtual address are compared to the contents of the VPN2
(virtual page number divided by two) of each TLB entry.

< In 64-bit mode, the high-order bits"* of the 64-bit virtual address are compared to the contents of the R and
the VPN2 (virtual page number divided by two) of each TLB entry.

If a TLB entry matches, the physical address and access control bits (C, D, and V) are retrieved from the
matching TLB entry. While the V bit of the entry must be set to 1 for a valid address translation to take place, it is
not involved in the determination of a matching TLB entry.

Figure 5-20 illustrates the TLB address translation flow.

Note The number of bits differs from page sizes. The table below shows the examples of high-order bits of the
virtual address in page size of 256 Kbytes and 1 Kbytes.

Page size 256 Kbytes 1 Kbytes
Mode
32-bit mode bits 31 to 19 bits 31to 11
64-bit mode bits 63, 62, 39 to 19 bits 63, 62, 39 to 11

153

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

154

TLB
Modified

Exception

Figure 5-20. TLB Address Translation

Virtual address (input)

Address
error

Exception

Address
error

Exception

Supervisor

VPN

match?

ASID

Access
main
memory

Physical address (output)

Access
cache
memory

Y

Address
error

Exception

32-bit N\ _"°
address?
Yes
»| Yes
y v
No
Uncached TLB LB XTLB
area? Invalid Mismatch Mismatch
v Exception Exception Exception

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

5.5.10 TLB Misses

If there is no TLB entry that matches the virtual address, a TLB Refill (miss) exception occurs™®. If the access

control bits (D and V) indicate that the access is not valid, a TLB Modified or TLB Invalid exception occurs. If the C

bit

is 010, the retrieved physical address directly accesses main memory, bypassing the cache.

Note See Chapter 6 for details of the TLB Miss exception.

5.5.11 TLB Instructions

1)

@)

®)

(4)

The instructions used for TLB control are described below.

Translation lookaside buffer probe (TLBP)

The translation lookaside buffer probe (TLBP) instruction loads the Index register with a TLB number that
matches the content of the EntryHi register. If there is no TLB number that matches the TLB entry, the highest-
order bit of the Index register is set.

Translation lookaside buffer read (TLBR)
The translation lookaside buffer read (TLBR) instruction loads the EntryHi, EntryLoO, EntryLol, and PageMask
registers with the content of the TLB entry indicated by the content of the Index register.

Translation lookaside buffer write index (TLBWI)
The translation lookaside buffer write index (TLBWI) instruction writes the contents of the EntryHi, EntryLoO,
EntryLol, and PageMask registers to the TLB entry indicated by the content of the Index register.

Translation lookaside buffer write random (TLBWR)

The translation lookaside buffer write random (TLBWR) instruction writes the contents of the EntryHi, EntryLoO,
EntryLol, and PageMask registers to the TLB entry indicated by the content of the Random register.

155

[MEMO]

156

CHAPTER 6 EXCEPTION PROCESSING

This chapter describes CPU exception processing, including an explanation of hardware that processes
exceptions, followed by the format and use of each CPU exception register.

The chapter concludes with a description of each exception’s cause, together with the manner in which the CPU
processes and services each exception.

6.1 HOW EXCEPTION PROCESSING WORKS

The processor receives exceptions from a number of sources, including translation lookaside buffer (TLB) misses,
arithmetic overflows, 1/O interrupts, and system calls. When the CPU detects an exception, the normal sequence of
instruction execution is suspended and the processor enters Kernel mode (see Chapter 5 for a description of system
operating modes).

The processor then disables interrupts and transfers control for execution to the exception handler (located at a
specific address as an exception handling routine implemented by software). The handler saves the context of the
processor, including the contents of the program counter, the current operating mode (User or Supervisor), statuses,
and interrupt enabling. This context is saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program Counter (EPC) register with a location where
execution can restart after the exception has been serviced. The restart location in the EPC register is the address
of the instruction that caused the exception or, if the instruction was executing in a branch delay slot, the address of
the branch instruction immediately preceding the delay slot.

The Vr4102 processor supports a Supervisor mode and fast TLB refill for all address spaces. The Vr4102 also
provides the following functions:

< Interrupt enable (IE) bit

< Operating mode (User, Supervisor, or Kernel)

< Exception level (normal or exception is indicated by the EXL bit in the Status register)
< Error level (normal or error is indicated by the ERL bit in the Status register).

Interrupts are enabled when the following conditions are satisfied:

(1) Interrupt enable
An interrupt is enabled when the following conditions are satisfied.

e Interrupt enable bit (IE) = 1

e EXLbit=0, ERLbit=0
e Corresponding IM field bits in the Status register = 1

157

CHAPTER 6 EXCEPTION PROCESSING

(2) Operating mode
The operating mode is specified by KSU bit in the Status register when both the exception level and error level
are normal (0).

(3) Exception/error levels
The operation enters Kernel mode when either EXL bit or ERL bit in the Status register is set to 1. Returning
from an exception resets the exception level to normal (0) (for details, see Chapter 27).

The registers that retain address, cause, and status information during exception processing are described in 6.3
EXCEPTION PROCESSING REGISTERS. For a description of the exception process, see 6.4 DETAILS OF
EXCEPTIONS.

6.2 PRECISION OF EXCEPTIONS

VRrR4102 exceptions are logically precise; the instruction that causes an exception and all those that follow it are
aborted and can be re-executed after servicing the exception. When succeeding instructions are killed, exceptions
associated with those instructions are also killed. Exceptions are not taken in the order detected, but in instruction
fetch order.

There is a special case in which the Vr4102 processor may not be able to restart easily after servicing an
exception. When a cache data parity error exception occurs on a load with a cache hit, the VrR4102 processor does
not prevent the cache data (with erroneous parity) from being written back into the register file during the WB stage.
The exception is still precise, since both the EPC and CacheError registers are updated with the correct virtual
address pointing to the offending load instruction, and the exception handler can still determine the cause of
exception and its origin. The program can be restarted by rewriting the destination register - not automatically,
however, as in the case of all the other precise exceptions where no status change occurs.

158

CHAPTER 6 EXCEPTION PROCESSING

6.3 EXCEPTION PROCESSING REGISTERS

This section describes the CPO registers that are used in exception processing. Table 6-1 lists these registers,
along with their number-each register has a unique identification number that is referred to as its register number.
The CPO registers not listed in the table are used in memory management (see Chapter 5 for details).

The exception handler examines the CPO registers during exception processing to determine the cause of the
exception and the state of the CPU at the time the exception occurred.

The registers in Table 6-1 are used in exception processing, and are described in the sections that follow.

Table 6-1. CP0O Exception Processing Registers

Register name Register number
Context register 4
BadVAddr register 8
Count register 9
Compare register 11
Status register 12
Cause register 13
EPC register 14
WatchLo register 18
WatchHi register 19
XContext register 20
Parity Error register 26
Cache Error register 27
ErrorEPC register 30

159

CHAPTER 6 EXCEPTION PROCESSING

6.3.1 Context Register (4)

The Context register is a read/write register containing the pointer to an entry in the page table entry (PTE) array
on the memory; this array is a table that stores virtual-to-physical address translations. When there is a TLB miss,
the operating system loads the unsuccessfully translated entry from the PTE array to the TLB. The Context register
is used by the TLB Refill exception handler for loading TLB entries. The Context register duplicates some of the
information provided in the BadVAddr register, but the information is arranged in a form that is more useful for a
software TLB exception handler. Figure 6-1 shows the format of the Context register.

Figure 6-1. Context Register Format

(a) 32-bit mode
31 25 24 4 3 0
PTEBase BadVPN2 0 I

7 21 4

(b) 64-bit mode
63 25 24 4 3 0
PTEBase BadVPN2 0 I

39 21 4

PTEBase : The PTEBase field is a read/write field. It is used by software as the pointer to the base address
of the PTE table in the current user address space.
BadVPN2 : The BadVPN2 field is written by hardware if a TLB miss occurs. This field holds the value (VPN2)

obtained by halving the virtual page number of the most recent virtual address for which
translation failed.

0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The 21-bit BadVPN2 field contains bits 31-11 of the virtual address that caused the TLB miss; bit 10 is excluded
because a single TLB entry maps to an even-odd page pair. For a 1-Kbyte page size, this format can directly

address the pair-table of 8-byte PTEs. When the page size is 4 Kbytes or more, shifting or masking this value
produces the correct PTE reference address.

160

CHAPTER 6 EXCEPTION PROCESSING

6.3.2 BadVAddr Register (8)

The Bad Virtual Address (BadVAddr) register is a read-only register that saves the most recent virtual address
that failed to have a valid translation, or that had an addressing error. Figure 6-2 shows the format of the BadVAddr
register.

Caution This register saves no information after a bus error exception, because it is not an address
error exception.

Figure 6-2. BadVAddr Register Format

(a) 32-bit mode
31 0
BadVAddr I

32

(b) 64-bit mode
63 0
BadVAddr I

64

BadVAddr: Most recent virtual address for which an addressing error occurred, or for which address
translation failed

6.3.3 Count Register (9)

The read/write Count register acts as a timer. It is incremented in synchronization with the MasterOut clock,
regardless of whether instructions are being executed, retired, or any forward progress is actually made through the
pipeline.

This register is a free-running type. When the register reaches all ones, it rolls over to zero and continues
counting. This register is used for self-diagnostic test, system initialization, or the establishment of inter-process
synchronization.

Figure 6-3 shows the format of the Count register.

Figure 6-3. Count Register Format

31 0
Count I

32

Count: 32-bit up-date count value that is compared with the value of the Compare register

161

CHAPTER 6 EXCEPTION PROCESSING

6.3.4 Compare Register (11)

The Compare register causes a timer interrupt; it maintains a stable value that does not change on its own.

When the value of the Count register (see 6.3.3) equals the value of the Compare register, the IP(7) bit in the
Cause register is set. This causes an interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer interrupt request.

For diagnostic purposes, the Compare register is a read/write register. Normally, this register should be only
used for a write. Figure 6-4 shows the format of the Compare register.

Figure 6-4. Compare Register Format

31 0
Compare I

32

Compare: Value that is compared with the count value of the Count register

6.3.5 Status Register (12)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the
diagnostic states of the processor. Figure 5-5 shows the format of the Status register. Figure 5-6 shows the details
of the Diagnostic Status (DS) field. All DS field bits other than the TS bit are writable.

Figure 6-5. Status Register Format

31 29 28 27 26 25 24 16 15 8 7 6 5 4 3 2 1 0
0 cuo 0 RE DS IM (7:0) KX [SX|UX| KSU [ERL[ExL|IE I
3 1 2 1 9 8 1 1 1 2 1 1 1
CUO : Enables/disables the use of the coprocessor (1 — Enabled, 0 — Disabled).
CPO can be used by the kernel at all times.
0 . Reserved for future use. Write 0 in a write operation. When this bit is read, O is read.
RE . Enables/disables reversing of the endian setting in User mode (0 — Disabled, 1 — Enabled). This bit
must be set to 0 since the Vr4102 supports the little-endian order only.
DS . Diagnostic Status field (see Figure 6-6).
IM . Interrupt Mask field used to enable/disable interrupts (0 — Disabled, 1 — Enabled). This field consists

of 8 bits that are used to control eight interrupts. The bits are assigned to interrupts as follows:
IM7 : Masks a timer interrupt.

IM(6:2) : Mask ordinary interrupts (Int(4:0)"*). However, Int4"™ never occur in the Vr4102.
IM(1:0) : Mask software interrupts or Cause register IP(1:0).

Note Int(4:0) are internal signals of the VR4100 CPU core. For details about connection to the on-
chip peripheral units, refer to Chapter 14.

162

CHAPTER 6 EXCEPTION PROCESSING

KX : Enables 64-bit addressing in Kernel mode (0 — 32-bit, 1 — 64-bit). If this bit is set, an XTLB Refill
exception occurs if a TLB miss occurs in the Kernel mode address space.

SX : Enables 64-bit addressing and operation in Supervisor mode (0 — 32-bit, 1 — 64-bit). If this bit is
set, an XTLB Refill exception occurs if a TLB miss occurs in the Supervisor mode address space.

UX: . Enables 64-bit addressing and operation in User mode (0 — 32-bit, 1 — 64-bit). If this bit is set, an
XTLB Refill exception occurs if a TLB miss occurs in the User mode address space.

KSU : Sets and indicates the operating mode (10 — User, 01 — Supervisor, 00 — Kernel).

ERL : Sets and indicates the error level (0 — Normal, 1 — Error).

EXL : Sets and indicates the exception level (0 —» Normal, 1 — Exception).

IE . Sets and indicates interrupt enabling/disabling (0 — Disabled, 1 — Enabled).

Figure 6-6. Status Register Diagnostic Status Field

24 23 22 21 20 19 18 17 16
0 BEV TS SR 0 CH CE DE I
2 1 1 1 1 1 1 1

BEV : Specifies the base address of a TLB Refill exception vector and common exception vector (0 —
Normal, 1 — Bootstrap).

TS : Occurs the TLB to be shut down (read-only) (O — Not shut down, 1 — Shut down). This bit is used to
avoid any problems that may occur when multiple TLB entries match the same virtual address. After
the TLB has been shut down, reset the processor to enable restart. Note that the TLB is shut down
even if a TLB entry matching a virtual address is marked as being invalid (with the V bit cleared).

SR : Occurs a Soft Reset or NMI exception (O — Not occurred, 1 — Occurred).

CH : CPO condition bit (0 — False, 1 — True). This bit can be read and written by software only; it cannot
be accessed by hardware.

CE : When CE = 1, the contents of the PErr register are written to the check bits of the cache (See 6.3.10)

DE . Specifies whether a cache parity error causes an exception (0 — Enable parity check, 1 — Disable
parity check).

0 . Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

The status register has the following fields where the modes and access status are set.

163

CHAPTER 6 EXCEPTION PROCESSING

@

@

©)

4

®)

(6)

™

Interrupt enable
Interrupts are enabled when all of the following conditions are true:

< IEissetto 1.

< EXL is cleared to 0.

< ERL is cleared to 0.

< The appropriate bit of the IM is set to 1.

Operating modes
The following Status register bit settings are required for User, Kernel, and Supervisor modes.

< The processor is in User mode when KSU = 10, EXL = 0, and ERL = 0.
< The processor is in Supervisor mode when KSU = 01, EXL =0, and ERL = 0.
<> The processor is in Kernel mode when KSU = 00, EXL =1, or ERL = 1.

32- and 64-bit modes

The following Status register bit settings select 32- or 64-bit operation for User, Kernel, and Supervisor
operating modes. Enabling 64-bit operation permits the execution of 64-bit opcodes and translation of 64-bit
addresses. 64-bit operation for User, Kernel and Supervisor modes can be set independently.

< 64-bit addressing for Kernel mode is enabled when KX bit = 1. 64-bit operations are always valid in Kernel
mode.

< 64-bit addressing and operations are enabled for Supervisor mode when SX bit = 1.

< 64-bit addressing and operations are enabled for User mode when UX bit = 1.

Kernel address space accesses
Access to the kernel address space is allowed when the processor is in Kernel mode.

Supervisor address space accesses
Access to the supervisor address space is allowed when the processor is in Supervisor or Kernel mode.

User address space accesses
Access to the user address space is allowed in any of the three operating modes.

Status after reset

The contents of the Status register are undefined after resets, except for the following bits.
e TS and SR are cleared to 0.

e ERL and BEV are set to 1.

e SRis 0 after Cold reset, and is 1 after Soft reset or NMI interrupt.

Remark Cold reset and Soft reset are CPU core reset (see 7.4 RESET OF THE CPU CORE). For the reset of

164

all the Vr4102 including peripheral units, refer to CHAPTER 7 INITIALIZATION INTERFACE and
CHAPTER 15 PMU.

CHAPTER 6 EXCEPTION PROCESSING

6.3.6 Cause Register (13)
The 32-bit read/write Cause register holds the cause of the most recent exception. A 5-bit exception code

indicates one of the causes (see Table 6-2). Other bits holds the detailed information of the specific exception. All
bits in the Cause register, with the exception of the IP1 and IPO bits, are read-only; IP1 and IP0O are used for software
interrupts. Figure 6-7 shows the fields of this register; Table 6-2 describes the Cause register codes.

Figure 6-7. Cause Register Format

31 30 29 28 27 16 15 8 7 6 2 1 0
BD| O CE 0 IP(7..0) 0 | ExcCode 0 I
1 1 2 12 8 1 5 2
BD . Indicates whether the most recent exception occurred in the branch delay slot (1 — In delay slot, O
- Normal).
CE . Indicates the coprocessor number in which a Coprocessor Unusable exception occurred.
This field will remain undefined for as long as no exception occurs.
IP . Indicates whether an interrupt is pending (1 — Interrupt pending, 0 — No interrupt pending).
IM7 : A timer interrupt.
IM(6:2) : Ordinary interrupts (Int(4:0)"*). However, Int4"* never occurs in the Vr4102.
IM(1:0) : Software interrupts. Only these bits cause an interrupt exception, when they are set to 1

by means of software.

Note Int(4:0) are internal signals of the VR4100 CPU core. For details about connection to the on-
chip peripheral units, refer to Chapter 14.

ExcCode: Exception code field (refer to Table 6-2 for details)
0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

165

CHAPTER 6 EXCEPTION PROCESSING

Table 6-2. Cause Register Exception Code Field

Exception code Mnemonic Description
0 Int Interrupt exception
1 Mod TLB Modified exception
2 TLBL TLB Refill exception (load or fetch)
3 TLBS TLB Refill exception (store)
4 AdEL Address Error exception (load or fetch)
5 AdES Address Error exception (store)
6 IBE Bus Error exception (instruction fetch)
7 DBE Bus Error exception (data load or store)
8 Sys System Call exception
9 Bp Breakpoint exception
10 RI Reserved Instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Integer Overflow exception
13 Tr Trap exception
14 to 22 — Reserved for future use
23 WATCH Watch exception
2410 31 — Reserved for future use

The Vr4102 has eight interrupt request sources, IP7 to IPO.

For the detailed description of interrupts, refer to Chapter 9.

@

@

©)

166

IP1 and IPO
These bits are used to set/clear a software interrupt request.

This bit indicates whether there is a timer interrupt request.
It is set when the values of Count register and Compare register match.

IP6 to IP2 reflect the state of the interrupt request signal of the CPU core.

CHAPTER 6 EXCEPTION PROCESSING

6.3.7 Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing
resumes after an exception has been serviced.

The EPC register contains either:

< Virtual address of the instruction that was the direct cause of the exception
< Virtual address of the immediately preceding branch or jump instruction (when the instruction associated with
the exception is in a branch delay slot, and the BD bit in the Cause register is set to 1).

The EXL bit in the Status register is set to 1 to keep the processor from overwriting the address of the exception-
causing instruction contained in the EPC register in the event of another exception.
Figure 6-8 shows the format of the EPC register.

Figure 6-8. EPC Register Format

(@) 32-bit mode
31 0
EPC I

32

(b) 64-bit mode
63 0

EPC I

64

EPC: Restart address after exception processing

167

CHAPTER 6 EXCEPTION PROCESSING

6.3.8 WatchLo (18) and WatchHi (19) Registers
The Vr4102 processor provides a debugging feature to detect references to a selected physical address; load
and store instructions to the location specified by the WatchLo and WatchHi registers cause a Watch exception.
Figures 5-9 and 5-10 show the format of the WatchLo and WatchHi registers.

Figure 5-9. WatchLo and WatchHi Register Format

WatchLo Register

31 3 2 1 0
PAddro 0| R([W I
29 1 1 1

WatchHi Register
31 0

32

PAddr0 : Specifies physical address bits 31 to 3.

R : If this bit is set to 1, an exception will occur when a load instruction is executed.
W : If this bit is set to 1, an exception will occur when a store instruction is executed.
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

168

CHAPTER 6 EXCEPTION PROCESSING

6.3.9 XContext Register (20)

The read/write XContext register contains a pointer to an entry in the page table entry (PTE) array, an operating
system data structure that stores virtual-to-physical address translations. If a TLB miss occurs, the operating system
loads the untranslated data from the PTE into the TLB to handle the software error.

The XContext register is used by the XTLB Refill exception handler to load TLB entries in 64-bit addressing
mode.

The XContext register duplicates some of the information provided in the BadVAddr register, and puts it in a form
useful for the XTLB exception handler.

This register is included solely for operating system use. The operating system sets the PTEBase field in the
register, as needed. Figure 6-10 shows the format of the XContext register.

Figure 6-10. XContext Register Format

63 35 34 33 32 4 3 0
PTEBase R BadVPN2 0 I

29 2 29 4

PTEBase : The PTEBase field is a read/write field, and is used by software as the pointer to the base
address of the PTE table in the current user address space.

BadVPN2 : The BadVPN2 field is written by hardware if a TLB miss occurs. This field holds the value (VPN2)
obtained by halving the virtual page number of the most recent virtual address for which
translation failed.

R . Space type (00 — User, 01— Supervisor, 11 — Kernel). The setting of this field matches virtual
address bits 63 and 62.
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0O is read.

The 29-bit BadVPN2 field has bits 39 to 11 of the virtual address that caused the TLB miss; bit 10 is excluded
because a single TLB entry maps to an even-odd page pair. For a 1-Kbyte page size, this format may be used
directly to address the pair-table of 8-byte PTEs. For 4-Kbyte-or-more page and PTE sizes, shifting or masking this
value produces the appropriate address.

169

CHAPTER 6 EXCEPTION PROCESSING

6.3.10 Parity Error Register (26)

The read/write Parity Error (PErr) register contains the cache data parity bits for cache initialization, cache
diagnostics, or cache error processing.

The PErr register is loaded by the Index_Load_Tag CACHE instruction. All bits of the parity field are valid on the
data cache operation because data cache employs byte parity (1-bit parity for 1 byte). But a LSB of the parity field is
valid on the instruction cache operation because instruction cache employs word parity (1-bit parity for 1 word).

The contents of the PErr register are:

< written into the on-chip data cache on store instructions (instead of the computed parity) when the CE bit of
the Status register is setto 1
< substituted for the computed parity for the CACHE Fill instruction

In the Vr4102, parity check is performed only for cache memory.
It is not performed for main memory or peripheral units.
Figure 6-11 shows the format of the PErr register.

Figure 6-11. Parity Error Register Format

31 8 7 0
0 Parity I

24 8

Parity : Specifies the 8-bit parity data to be read from or written to the on-chip cache.
0 . Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

170

CHAPTER 6 EXCEPTION PROCESSING

6.3.11 Cache Error Register (27)

The 32-bit read/write Cache Error (CacheErr) register processes parity errors in the on-chip cache. Parity errors
cannot be corrected by on-chip hardware.

The CacheErr register holds cache index and status bits that indicate the cause of the error.

In the Vr4102, parity check is performed only for cache memory.

It is not performed for main memory or peripheral units.

Figure 6-12 shows the format of the CacheErr register.

Figure 6-12. CacheErr Register Format

31 30 29 28 27 26 25 24 11 10 0
er| O |ep|et| O |ee|eB 0 Pldx I
1111111 14 11

ER : Reference type (0 — Instruction, 1 — Data)

ED : Indicates whether an error occurred in the data field (0 — Normal, 1 — Error).

ET : Indicates whether an error occurred in the tag field (0 — Normal, 1 — Error).

EE : This bit is set if an error occurs on the SysAD bus.

EB : This bit is set if a data error occurs subsequent to an instruction error. (The error status is indicated by
the remaining bit positions.) In this case, the data cache must be flushed upon the completion of
instruction error processing.

Pldx: Cache index

0 : Reserved for future use. Write O in a write operation. When this field is read, O is read.

6.3.12 ErrorEPC Register (30)

The Error Exception Program Counter (ErrorEPC) register is similar to the EPC register. It is used to store the
Program Counter value at which the Cache Error, Cold Reset, Soft Reset, or NMI exception has been serviced.

The read/write ErrorEPC register contains the virtual address at which instruction processing can resume after
servicing an error. This address can be:

< the virtual address of the instruction that caused the error exception
<~ the virtual address of the immediately preceding branch or jump instruction, when the instruction associated
with the error exception is in a branch delay slot.

The contents of the ErrorEPC register do not change when the ERL bit of the Status register is set to 1. This
prevents the processor when other exceptions occur from overwriting the address of the instruction in this register
which causes an error exception.

There is no branch delay slot indication for the ErrorEPC register.

Figure 6-13 shows the format of the ErrorEPC register.

171

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-13. The ErrorEPC Register Format

(@) 32-bit mode
31 0
ErrorEPC I

32

(b) 64-bit mode
63 0
ErrorEPC I

64

ErrorEPC: Restart address after parity error exception processing. Also indicates the value of the program counter
when Cold reset, Soft reset, or NMI exceptions occurred.

172

CHAPTER 6 EXCEPTION PROCESSING

6.4 DETAILS OF EXCEPTIONS

This section describes causes, processes, and services of the Vr4102's exceptions.

6.4.1 Exception Types
This section gives sample exception handler operations for the following exception types:

< Cold Reset

< Soft Reset

< NMI

< Cache error

<~ Remaining processor exceptions

When the EXL and ERL bits in the Status register are 0, either User, Supervisor, or Kernel operating mode is
specified by the KSU bits in the Status register. When either the EXL or ERL bit is set to 1, the processor is in
Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, meaning the system is in Kernel mode. After
saving the appropriate state, the exception handler typically resets the EXL bit back to 0. The exception handler
sets the EXL bit to 1 so that the saved state is not lost upon the occurrence of another exception while the saved
state is being restored.

Returning from an exception also resets the EXL bit to 0. For details, see Chapter 27.

6.4.2 Exception Vector Locations
The Cold Reset, Soft Reset, and NMI exceptions are always branched to the following reset exception vector

address (virtual). This address is in an uncached, unmapped space.

< OxBFCO0 0000 in 32-bit mode
<~ OxFFFF FFFF BFCO 0000 in 64-bit mode

Addresses for the remaining exceptions are a combination of a vector offset and a base address.
64-/32-bit mode exception vectors and their offsets are shown below.

173

CHAPTER 6 EXCEPTION PROCESSING

Table 6-3. 64-Bit Mode Exception Vector Base Addresses

Vector base address (virtual) Vector offset
Cold Reset OxFFFF FFFF BFCO 0000 0x0000
Soft Reset (BEV is automatically set to 1)
NMI
Cache Error OxFFFF FFFF A000 0000 (BEV = 0) 0x0100
OxFFFF FFFF BFCO 0200 (BEV = 1)
TLB Refill (EXL = 0) OxFFFF FFFF 8000 0000 (BEV = 0) 0x0000
XTLB Refill (EXL = 1) OxFFFF FFFF BFCO 0200 (BEV = 1) 0x0080
Other exceptions 0x0180
Table 6-4. 32-Bit Mode Exception Vector Base Addresses
Vector base address (virtual) Vector offset
Cold Reset OxBFCO 0000 0x0000
Soft Reset (BEV is automatically set to 1)
NMI
Cache Error 0xA000 0000 (BEV = 0) 0x0100
0xBFCO0 0200 (BEV = 1)
TLB Refill (EXL = 0) 0x8000 0000 (BEV = 0) 0x0000
XTLB Refill (EXL = 1) 0xBFCO 0200 (BEV = 1) 0x0080
Other exceptions 0x0180

Examples 1. TLB Refill Exception Vector
When BEV bit = 0, the vector base address (virtual) for the TLB Refill exception is in ksegO
(unmapped) space.

<~ 0x8000 0000 in 32-bit mode
< OxFFFF FFFF 8000 0000 in 64-bit mode

When BEV bit = 1, the vector base address (virtual) for the TLB Refill exception is in ksegl (uncached,
unmapped) space.

<> O0xBFCO0 0200 in 32-bit mode
<> OxFFFF FFFF BFCO0 0200 in 64-bit mode

This is an uncached, non-TLB-mapped space, allowing the exception handler to bypass the cache and
TLB.

174

CHAPTER 6 EXCEPTION PROCESSING

Example 2. Cache Error Exception Vector

When BEV bit = 0, the vector base address (virtual) for the Cache Error exception is in ksegl
(uncached, unmapped) space.

<> 0xA000 0000 in 32-bit mode
< OxFFFF FFFF A000 0000 in 64-bit mode

When BEV bit = 1, the vector base address (virtual) for the Cache Error exception is in ksegl
(uncached, unmapped) space.

<> OxBFCO0 0200 in 32-bit mode
< OxFFFF FFFF BFCO0 0200 in 64-bit mode

This is an uncached, non-TLB-mapped space, allowing the exception handler to bypass the cache and
TLB.

175

CHAPTER 6 EXCEPTION PROCESSING

6.4.3 Priority of Exceptions
While more than one exception can occur for a single instruction, only the exception with the highest priority is
reported. Table 6-5 lists the priorities.

Table 6-5. Exception Priority Order

Priority Exceptions
High Cold Reset
0 Soft Reset
NMI

Address Error (instruction fetch)
TLB/XTLB Reéfill (instruction fetch)
TLB Invalid (instruction fetch)
Cache Error (instruction fetch)
Bus Error (instruction fetch)
System Call

Breakpoint

Reserved Instruction

Trap

Integer Overflow

Address Error (data access)
TLB/XTLB Refill (data access)
TLB Invalid (data access)
TLB Modified (data write)

|

|

|

|

|

|

|

|

\ Coprocessor Unusable
|

|

|

|

|

|

|

| Cache Error (data access)
|

Watch
J Bus Error (data access)
Low Interrupt (other than NMI)

Hereafter, handling exceptions by hardware is referred to as “process”, and handling exception by software is
referred to as “service”.

176

CHAPTER 6 EXCEPTION PROCESSING

6.4.4 Cold Reset Exception

Cause
The Cold Reset exception occurs when the ColdReset# signal (internal) is asserted and then deasserted. This
exception is not maskable. The Reset# signal (internal) must be asserted along with the ColdReset# signal (for
details, see Chapter 7).

Processing
The CPU provides a special interrupt vector for this exception:

OxBFCO0 0000 (virtual) in 32-bit mode
OxFFFF FFFF BFCO 0000 (virtual) in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so the hardware need not
initialize the TLB or the cache to process this exception. It also means the processor can fetch and execute
instructions while the caches and virtual memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception occurs, except for the following
register fields:

When ERL bit of the Status register is 0, the program counter’s value at the exception occurrence is saved
to the EPC register.

TS and SR of the Status register are cleared to 0.

ERL and BEV of the Status register are setto 1.

The Random register is initialized to the value of its upper bound (31) (refer to 5.4.2 Random Register (1)).
The Wired register is initialized to 0.

Bits 31 to 28 of the Config register are set to 0, and bits 22 to 3 to 0x04800.

All other bits are undefined.

Servicing
The Cold Reset exception is serviced by:

Initializing all processor registers, coprocessor registers, TLB, caches, and the memory system

Performing diagnostic tests
Bootstrapping the operating system

177

CHAPTER 6 EXCEPTION PROCESSING

6.4.5 Soft Reset Exception

Cause
A Soft Reset (sometimes called Warm Reset) occurs when the ColdReset# signal remains deasserted while the
Reset# signal goes from assertion to deassertion (for details, see Chapter 7).
A Soft Reset immediately resets all state machines, and sets the SR bit of the Status register. Execution begins
at the reset vector when the reset is deasserted. This exception is not maskable.

Caution In the V r4102, a soft reset never occurs.

Processing
The CPU provides a special interrupt vector for this exception (same location as Cold Reset):

0 0xBFCO0 0000 (virtual) in 32-bit mode
0 OxFFFF FFFF BFCO 0000 (virtual) in 64-bit mode

This vector is located within unmapped and uncached address space, so that the cache and TLB need not be
initialized to process this exception. The SR bit of the Status register is set to 1 to distinguish this exception from
a Cold Reset exception.

When this exception occurs, the contents of all registers are preserved except for the following registers:

0 When ERL bit of the Status register is 0, the program counter’s value at the exception occurrence is saved
to the EPC register.

O TS bit of the Status register is cleared to 0.

0 ERL, SR, and BEV bits of the Status register are set to 1.

During a soft reset, access to the operating cache or system interface is aborted. This means that the contents of
the cache and memory will be undefined if a Soft Reset occurs.

Servicing
The Soft Reset exception is serviced by:

O Preserving the current processor states for diagnostic tests
O Reinitializing the system in the same way as for a Cold Reset exception

178

CHAPTER 6 EXCEPTION PROCESSING

6.4.6 NMI Exception

Cause
The Nonmaskable Interrupt (NMI) exception occurs in response to the input of the NMI signal (internal). This
interrupt is not maskable; it occurs regardless of the settings of the EXL, ERL, and the IE bits in the Status
register (for details, see Chapters 9 and 14).

Processing
The CPU provides a special interrupt vector for this exception:

O O0xBFCO0 0000 (virtual) in 32-bit mode
0 OxFFFF FFFF BFCO 0000 (virtual) in 64-bit mode

This vector is located within unmapped and uncached address space so that the cache and TLB need not be
initialized to process an NMI interrupt. The SR bit of the Status register is set to 1 to distinguish this exception
from a Cold Reset exception.

Unlike Cold Reset and Soft Reset, but like other exceptions, NMI is taken only at instruction boundaries. The
states of the caches and memory system are preserved by this exception.

When this exception occurs, the contents of all registers are preserved except for the following registers:

O When ERL bit of the Status register is 0, the program counter’s value at the exception occurrence is saved
to the EPC register.

O The TS bit of the Status register is cleared to 0.

0 The ERL, SR, and BEV bits of the Status register are set to 1.

Servicing
The NMI exception is serviced by:

O Preserving the current processor states for diagnostic tests
O Reinitializing the system in the same way as for a Cold Reset exception

179

CHAPTER 6 EXCEPTION PROCESSING

6.4.7 Address Error Exception

Cause
The Address Error exception occurs when an attempt is made to execute one of the following. This exception is
not maskable.

Execution of the LW, LWU, SW, or CACHE instruction for word data that is not located on a word boundary
Execution of the LH, LHU, or SH instruction for half-word data that is not located on a half-word boundary
Execution the LD or SD instruction for double-word data that is not located on a double-word boundary
Referencing the kernel address space in User or Supervisor mode

Referencing the supervisor space in User mode

Referencing an address that does not exist in the kernel, user, or supervisor address space in 64-bit Kernel,
User, or Supervisor mode

Branching to an address that is not located on a word boundary

Processing

The common exception vector is used for this exception. The AdJEL or AJES code in the Cause register is set. If
this exception has been caused by an instruction reference or load operation, AdEL is set. If it has been caused
by a store operation, AdES is set.

When this exception occurs, the BadVAddr register stores the virtual address that was not properly aligned or
was referenced in protected address space. The contents of the VPN field of the Context and EntryHi registers
are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless this instruction is in a
branch delay slot. If it is in a branch delay slot, the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set to 1.

Servicing

The kernel reports the UNIX™ SIGSEGV (segmentation violation) signal to the current process, and this exception
is usually fatal.

180

CHAPTER 6 EXCEPTION PROCESSING

6.4.8 TLB Exceptions
Three types of TLB exceptions can occur:

TLB Refill exception occurs when there is no TLB entry that matches a referenced address.

A TLB Invalid exception occurs when a TLB entry that matches a referenced virtual address is marked as
being invalid (with the V bit set to 0).

The TLB Modified exception occurs when a TLB entry that matches a virtual address referenced by the
store instruction is marked as being valid (with the V bit set to 1).

The following three sections describe these TLB exceptions.

(1) TLB Refill Exception (32-bit Space Mode)/XTLB Refill Exception (64-bit Space Mode)

Cause
The TLB Refill exception occurs when there is no TLB entry to match a reference to a mapped address space.
This exception is not maskable.

Processing
There are two special exception vectors for this exception; one for references to 32-bit address spaces, and one
for references to 64-bit address spaces. The UX, SX, and KX bits of the Status register determine whether the
user, supervisor or kernel address spaces referenced are 32-bit or 64-bit spaces. When the EXL bit of the Status
register is set to 0, either of these two special vectors is referenced. When the EXL bit is set to 1, the common
exception vector is referenced.
This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register. If this exception has been
caused by an instruction reference or load operation, TLBL is set. If it has been caused by a store operation,
TLBS is set.
When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers hold the virtual address that
failed address translation. The EntryHi register also contains the ASID from which the translation fault occurred.
The Random register normally contains a valid location in which to place the replacement TLB entry. The
contents of the EntryLo register are undefined.
The EPC register contains the address of the instruction that caused the exception, unless this instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set to 1.

Servicing

To service this exception, the contents of the Context or XContext register are used as a virtual address to fetch
memory words containing the physical page frame and access control bits for a pair of TLB entries. The memory
word is written into the TLB entry by using the EntryLoO, EntryLol, or EntryHi register.

It is possible that the physical page frame and access control bits are placed in a page where the virtual address
is not resident in the TLB. This condition is processed by allowing a TLB Refill exception in the TLB Refill
exception handler. In this case, the common exception vector is used because the EXL bit of the Status register
issetto 1.

181

CHAPTER 6 EXCEPTION PROCESSING

(2) TLB Invalid Exception

Cause
The TLB Invalid exception occurs when the TLB entry that matches with the virtual address to be referenced is
invalid (the V bit is set to 0). This exception is not maskable.

Processing
The common exception vector is used for this exception. The TLBL or TLBS code in the ExcCode field of the
Cause register is set. If this exception has been caused by an instruction reference or load operation, TLBL is
set. If it has been caused by a store operation, TLBS is set.
When this exception occurs, the BadVAddr, Context, Xcontext, and EntryHi registers contain the virtual address
that failed address translation. The EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally stores a valid location in which to place the replacement TLB entry.
The contents of the EntryLo register are undefined.
The EPC register contains the address of the instruction that caused the exception unless this instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set to 1.

Servicing
Usually, the V bit of a TLB entry is cleared in the following cases:

When a virtual address does not exist
When the virtual address exists, but is not in main memory (a page fault)

When a trap is required on any reference to the page (for example, to maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with a TLBP (TLB Probe) instruction,
and replaced by an entry with its Valid bit set to 1.

182

CHAPTER 6 EXCEPTION PROCESSING

(3) TLB Modified Exception

Cause
The TLB Modified exception occurs when the TLB entry that matches with the virtual address referenced by the
store instruction is valid (bit V is 1) but is not writable (bit D is 0). This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Mod code in the ExcCode field of the Cause
register is set.
When this exception occurs, the BadVAddr, Context, Xcontext, and EntryHi registers contain the virtual address
that failed address translation. The EntryHi register also contains the ASID from which the translation fault
occurred. The contents of the EntryLo register are undefined.
The EPC register contains the address of the instruction that caused the exception unless that instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set to 1.

Servicing
The kernel uses the failed virtual address or virtual page number to identify the corresponding access control bits.
The page identified may or may not permit write accesses; if writes are not permitted, a write protection violation
occurs.
If write accesses are permitted, the page frame is marked dirty (/writable) by the kernel in its own data structures.
The TLBP instruction places the index of the TLB entry that must be altered into the Index register. The word
data containing the physical page frame and access control bits (with the D bit set to 1) is loaded to the EntryLo
register, and the contents of the EntryHi and EntryLo registers are written into the TLB.

183

CHAPTER 6 EXCEPTION PROCESSING

6.4.9 Cache Error Exception

Cause
The Cache Error exception occurs when a cache parity error is detected. This exception is not maskable, but
error detection can be disabled by setting the DE bit of the Status register.

If a parity error is detected when the DE bit of Status register is not set, a cache error exception is taken during
one of the following operations:

An instruction fetch from instruction cache
A load from the data cache

Tag parity check on a store

Main memory read by the processor

Most of the CACHE instructions (no exception is taken for the Index_Load_Tag and Index_Store_Tag
CACHE instructions)

In the VrR4102, the parity error from the external bus and on-chip peripheral buses is not checked.

Processing

The processor sets the ERL bit in the Status register, saves the address to recover from the exception to the
ErrorEPC register, and then transfers to a special vector in uncached space.
If the BEV bit = 0, the vector is one of the following:

<> 0xA000 0100 (virtual) in 32-bit mode
< OXFFFF FFFF A000 0100 (virtual) in 64-bit mode

If the BEV bit = 1, the vector is one of the following:

< OXxBFCO0 0300 (virtual) in 32-bit mode
< OxFFFF FFFF BFCO 0300 (virtual) in 64-bit mode

Servicing

All errors should be logged. To correct cache parity errors, the system uses the CACHE instruction to invalidate
the cache block, overwrites the old data through a cache miss, and resumes execution with an ERET instruction.
Other errors are not correctable and are likely to be fatal to the current process.

184

CHAPTER 6 EXCEPTION PROCESSING

6.4.10 Bus Error Exception

Cause
A Bus Error exception is raised by board-level circuitry for events such as bus time-out, local bus parity errors,
and invalid physical memory addresses or access types. This exception is not maskable.
A Bus Error exception occurs only when a cache miss refill, uncached reference, or unbuffered write occurs
synchronously. In other words, it occurs when an illegal access is detected during BCU read.
For details of illegal accesses, refer to 10.4.6 lllegal Access Notification

Processing
The common interrupt vector is used for a Bus Error exception. The IBE or DBE code in the ExcCode field of the
Cause register is set, signifying whether the instruction caused the exception by an instruction reference, load
operation, or store operation.
The EPC register contains the address of the instruction that caused the exception, unless it is in a branch delay
slot, in which case the EPC register contains the address of the preceding branch instruction and the BD bit of the
Cause register is set to 1.

Servicing
The physical address at which the fault occurred can be computed from information available in the System
Control Coprocessor (CPO) registers.

If the IBE code in the Cause register is set (indicating an instruction fetch), the virtual address is contained
in the EPC register (or 4 + the contents of the EPC register if the BD bit of the Cause register is set to 1).

If the DBE code is set (indicating a load or store), the virtual address of the instruction that caused the
exception (the address of the preceding branch instruction if the BD bit of the Cause register is set to 1) is
saved to the EPC register (or 4 + the contents of the EPC register if the BD bit of the Cause register is set to
1).

The virtual address of the load and store instruction can then be obtained by interpreting the instruction. The
physical address can be obtained by using the TLBP instruction and reading the EntryLo register to compute the
physical page number.

At the time of this exception, the kernel reports the UNIX SIGBUS (bus error) signal to the current process, but
the exception is usually fatal.

185

CHAPTER 6 EXCEPTION PROCESSING

6.4.11 System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL instruction. This exception is not
maskable.

Processing
The common exception vector is used for this exception, and the Sys code in the ExcCode field of the Cause
register is set.
The EPC register contains the address of the SYSCALL instruction unless it is in a branch delay slot, in which
case the EPC register contains the address of the preceding branch instruction.
If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register is set to 1; otherwise this bit
is cleared.

Servicing
When this exception occurs, control is transferred to the applicable system routine.
To resume execution, the EPC register must be altered so that the SYSCALL instruction does not re-execute; this
is accomplished by adding a value of 4 to the EPC register before returning.
If a SYSCALL instruction is in a branch delay slot, interpretation of the branch instruction is required to resume
execution.

6.4.12 Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction. This exception is not
maskable.

Processing
The common exception vector is used for this exception, and the BP code in the ExcCode field of the Cause
register is set.
The EPC register contains the address of the BREAK instruction unless it is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction.
If the BREAK instruction is in a branch delay slot, the BD bit of the Status register is set to 1; otherwise this bit is
cleared.

Servicing
When the Breakpoint exception occurs, control is transferred to the applicable system routine. Additional
distinctions can be made by analyzing the unused bits of the BREAK instruction (bits 25 to 6), and loading the
contents of the instruction whose address the EPC register contains. A value of 4 must be added to the contents
of the EPC register to locate the instruction if it resides in a branch delay slot.
To resume execution, the EPC register must be altered so that the BREAK instruction does not re-execute; this is
accomplished by adding a value of 4 to the EPC register before returning.
If a BREAK instruction is in a branch delay slot, interpretation (decoding) of the branch instruction is required to
resume execution.

186

CHAPTER 6 EXCEPTION PROCESSING

6.4.13 Coprocessor Unusable Exception

Cause
The Coprocessor Unusable exception occurs when an attempt is made to execute a coprocessor instruction for
either:

a corresponding coprocessor unit that has not been marked usable (Status register bit, CU[0] = 0), or
CPO instructions, when the unit has not been marked usable (Status register bit, CU[0] = 0) and the process
executes in User or Supervisor mode.

This exception is not maskable.

Processing
The common exception vector is used for this exception, and the CPU code in the ExcCode field of the Cause
register is set. The CE bit of the Cause register indicates which of the four coprocessors was referenced.
The EPC register contains the address of the coprocessor instruction that causes an exception unless it is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set to 1.

Servicing
The coprocessor unit to which an attempted reference was made is identified by the CE bit of the Cause register.
One of the following processing is performed by the handler:

If the process is entitled access to the coprocessor, the coprocessor is marked usable and the
corresponding state is restored to the coprocessor.

If the process is entitled access to the coprocessor, but the coprocessor does not exist or has failed,
interpretation of the coprocessor instruction is possible.

If the BD bit in the Cause register is set to 1, the branch instruction must be interpreted; then the
coprocessor instruction can be emulated and execution resumed with the EPC register advanced past the
coprocessor instruction.

If the process is not entitled access to the coprocessor, the kernel reports UNIX SIGILL/ILL_PRIVIN_FAULT
(illegal instruction/privileged instruction fault) signal to the current process, and this exception is fatal.

187

CHAPTER 6 EXCEPTION PROCESSING

6.4.14 Reserved Instruction Exception

Cause
The Reserved Instruction exception occurs when an attempt is made to execute one of the following instructions:

<~ Instruction with an undefined major opcode (bits 31 to 26)

< SPECIAL instruction with an undefined minor opcode (bits 5 to 0)
< REGIMM instruction with an undefined minor opcode (bits 20 to 16)
< 64-bit instructions in 32-bit User or Supervisor mode

64-bit operations are always valid in Kernel mode regardless of the value of the KX bit in the Status register. This
exception is not maskable.

Processing
The common exception vector is used for this exception, and the RI code in the ExcCode field of the Cause
register is set.
The EPC register contains the address of the reserved instruction unless it is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction and the BD bit of the Cause register is
setto 1.

Servicing
All currently defined MIPS ISA instructions can be executed. The process executing at the time of this exception
is handled by a UNIX SIGILL/ILL_RESOP_FAULT (illegal instruction/reserved operand fault) signal. This error is
usually fatal.

6.4.15 Trap Exception

Cause
The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI, TLTUI, TEQI, or
TNEI instruction results in a TRUE condition. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Tr code in the ExcCode field of the Cause
register is set.
The EPC register contains the address of the trap instruction causing the exception unless the instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set to 1.

Servicing

At the time of a Trap exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point
exception/integer overflow) signal to the current process, but the exception is usually fatal.

188

CHAPTER 6 EXCEPTION PROCESSING

6.4.16 Integer Overflow Exception

Cause
An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI or DSUB instruction results in a
2’'s complement overflow. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Ov code in the ExcCode field of the Cause
register is set.
The EPC register contains the address of the instruction that caused the exception unless the instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set to 1.

Servicing
At the time of the exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point
exception/integer overflow) signal to the current process, and this exception is usually fatal.

6.4.17 Watch Exception

Cause
A Watch exception occurs when a load or store instruction references the physical address specified by the
WatchLo/WatchHi registers. The WatchLo/WatchHi registers specify whether a load or store or both could have
initiated this exception.

When the R bit of the WatchLo register is set to 1: Load instruction
When the W bit of the WatchLo register is set to 1: Store instruction
When both the R bit and W bit of the WatchLo register are set to 1: Load instruction or store instruction

The CACHE instruction never causes a Watch exception.
The Watch exception is postponed while the EXL bit in the Status register is set to 1, and Watch exception is only
maskable by setting the EXL bit in the Status register to 1.

Processing
The common exception vector is used for this exception, and the WATCH code in the ExcCode field of the Cause
register is set.
The EPC register contains the address of the load or store instruction that caused the exception unless it is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set to 1.

189

CHAPTER 6 EXCEPTION PROCESSING

Servicing
The Watch exception is a debugging aid; typically the exception handler transfers control to a debugger, allowing
the user to examine the situation. To continue, once the Watch exception must be disabled to execute the
faulting instruction. The Watch exception must then be reenabled. The faulting instruction can be executed
either by the debugger or by setting breakpoints.

6.4.18 Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions' is asserted. In the Vr4102, interrupt
requests from internal peripheral units first enter the ICU and are then notified to the CPU core via one of four
interrupt sources (Int [3:0]) or NMIL.
Each of the eight interrupts can be masked by clearing the corresponding bit in the IM field of the Status register,
and all of the eight interrupts can be masked at once by clearing the IE bit of the Status register or setting the
EXL/ERL bit.

Note: They are 1 timer interrupt, 5 ordinary interrupts, and 2 software interrupts.
Of the five ordinary interrupts, Int4 is never asserted active.

Processing
The common exception vector is used for this exception, and the Int code in the ExcCode field of the Cause
register is set.
The IP field of the Cause register indicates current interrupt requests. It is possible that more than one of the bits
can be simultaneously set (or cleared) if the interrupt request signal is asserted and then deasserted before this
register is read.
The EPC register contains the address of the instruction that caused the exception unless it is in a branch delay
slot, in which case the EPC register contains the address of the preceding branch instruction and the BD bit of the
Cause register is set to 1.

Servicing
If the interrupt is caused by one of the two software-generated exceptions (SWO0 or SW1), the interrupt condition
is cleared by setting the corresponding Cause register bit to 0.
If the interrupt is caused by hardware, the interrupt condition is cleared by deactivating the corresponding
interrupt request signal.

190

CHAPTER 6 EXCEPTION PROCESSING

6.5 EXCEPTION PROCESSING AND SERVICING FLOWCHARTS

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

< Common exceptions and a guideline to their exception handler

< TLB/XTLB Refill exception and a guideline to their exception handler

< Cache Error exception

< Cold Reset, Soft Reset and NMI exceptions, and a guideline to their handler.

Generally speaking, the exceptions are "processed” by hardware (HW); the exceptions are then “serviced” by
software (SW).

191

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-14. Common Exception Handler (1/2)

(a) Processing exceptions other than Cold reset, Soft reset, NMI,
TLB/XTLB Mismatch, and Cache Error exceptions (hardware)

s)

EntryHi — VPN2, ASID ; The EntryHi and X/Context registers are set
X/Context — VPN2 only when a TLB Mismatch, TLB Invalid, or
Set Cause Register (ExcCode, CE) TLB Modified exception occurs.

Check for multiple exceptions

Instruction
in branch delay
slot?

No

Yes

BadVAddr is set only when a TLB

Mismatch, TLB Invalid, or TLB Modified
BD bit ~ 1 BD bit —~ 0 exception occurs. (BadVAddr is not set
EPC - PC-4 EPC ~ PC when a Bus Error exception occurs.
EXL « 1 ; Kernel mode is set, and interrupts
are disabled.
=0 (normal) =1 (bootstrap)
PC ~ OxFFFF FFFF 8000 0000 + 180 PC ~ OxFFFF FFFF BFCO 0200 + 180
(Unmapped, cacheable space) (Unmapped, uncached space)

‘ i
>

(To guideline of general exception handler)

Remark The exceptions can be masked by the IE or IM bit. The Watch exception can be set to pending status by
setting the EXL bit.

192

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-14. Common Exception Handler (2/2)

(b) Guideline of general exception handler (software)

Guideline of general
exception handler
The occurance of TLB Mismatch, TLB Invalid, and TLB

Execute MECO instruction Modified exceptions is disabled by using an unmapped space.
X/Context register The occurance of the Watch and Interrupt exceptions is
EPC register disabled by setting EXL = 1.
Status register Other exceptions are avoided in the OS programs
Cause register However, the Cache error, Cold reset, Soft reset, and NMI
exceptions are enabled.

Execute MTCO instruction
(Status bit setting)

KSU bit — 00 (In Kernel mode, interrupts are enabled.)
EXL bit — 0
IE bit=1
Check the Cause register, ; After EXL = 0 is set, all exceptions are enabled (except for
and jump to each routine the interrupt exception masked by IE or IM and the Cache

Error exception masked by DE.

TS bit=0?
(SR21)

The processor is reset

1
Servicing by each 1 . .
! ; The register files are saved.

exception routine

EXL=1

Execute MTCO instruction
EPC register
Status register

; The execution of the ERET instruction is disabled in the
branch delay slots of the other jump instructions.

ERET ; The processor does not execute an instruction in the branch
delay slot of the ERET instruction.

: PC - EPC,EXL -~ 0

193

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-15. TLB/XTLB Refill Exception Handler (1/2)

(&) Hardware

s)

Instruction in
branch delay slot?

Yes

EntryHi — VPN2, ASID
X/Context — VPN2
Set Cause Register

EntryHi — VPN2, ASID
X/Context — VPN2

ExcCode
() Set Cause Register
(ExcCode)
EXL = 0? No
(SR1)
Yes . .
; Check for multiple exceptions.
BD bit ~ 1 BD bit ~ 0
EPC - PC-4 EPC -~ PC
XTLB exception?
XTLB Mismatch TLB Mismatch General Exception
vector offset = 0x080 vector offset = 0x000 vector offset = 0x180

I S

EXL < 1 ; Kernel mode is set and interrpts
are disabled.

=0 (normal) =1 (bootstrap)

PC ~ OxFFFF FFFF 8000 0000 + vector offset PC — OxFFFF FFFF BFCO 0200 + vector offset
(Unmapped, cacheable space) (Unmapped, uncached space)

%T%

(To guideline of TLB/XTLB exception hadler)

194

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-15. TLB/XTLB Refill Exception Handler (2/2)

(b) Guideline of TLB/XTLB exception handler (software)

CGuideIine of TLB/XTLB exception handler)

The occurence of TLB Mismatch, TLB Invalid, and TLB Modified
exception is disabled by using an unmapped space.

The occurence of the Watch and Interrupt exceptions is disabled by
setting EXL = 1.

Other exceptions are avoided in the OS programs.

However, the Cache error, Cold reset, Soft reset, and NMI exceptions
are enabled.

Execute MFCO instruction
X/Context register

The physical address for a virtual address loaded into the X/Context
register is loaded into the EntryLo register and written to the TLB.

! As long as a data/instruction address exists in the mapping space,

' another TLB Mismatch exception may occur. In such a case, EXL =1 is

: set, causing a jump to the common exception vector. (In this case, the
________________________ ' common exception handler handles the TLB miss or the ERET instruction
returns control to the user program, then a TLB Mismatch exception is
generated again.)

The execution of the ERET instruction is disabled in the branch delay

slots of other jump instructions.
ERET ; The processor does not execute an instruction in the branch delay slot
of the ERET instruction.
PC — EPC,EXL - 0

195

CHAPTER 6 EXCEPTION PROCESSING

196

Figure 6-16. Cache Error Exception Handler

Set cache
error register

; Check for multple exceptions

Instruction
in branch delay
slot?

Yes

BD bit ~ 1 BD bit —~ 0
Error EPC -« PC-4 Error EPC ~ PC
ERL - 1

=0 (normal) =1 (bootstrap)

PC ~ OXFFFF FFFF AO00 0000 + 100 PC ~ OXFFFF FFFF BFCO 0200 + 100
(Unmapped, uncached space) (Unmapped, uncached space)

Software
; The Cache Error and TLB-related Error exceptions do not occur because
. of unmapped/uncache vector.
1
' Servicing by exception routine! 4 The occurence of the Watch and Interrupt exceptions is disabled by
1

setting ERL = 1.
; Other exceptions are avoided in the OS programs.
However, the Cold reset, Soft reset, and NMI exceptions are enabled.

; The execution of the ERET instruction is disabled in the branch delay

slots of other jump instructions.
ERET < ; The processor does not execute an instruction in the branch delay slot

of the ERET instruction.
; PC < Error EPC,ERL - O

Remark The Cache Error exception can be masked by setting the DE (SR16) bit to 1. When ERL = 1, Cache
Error exceptions are masked.

CHAPTER 6 EXCEPTION PROCESSING

Figure 6-17. Cold Reset, Soft Reset, and NMI Exception Handler

Soft reset or Cold reset
NMI exception exception

Hardware

Instruction
in branch delay
slot?

Instruction
in branch delay
slot?

Yes Yes

No No
BD bit ~ 1 BD bit — 0 BD bit ~ 1 BD bit — 0
Error EPC - PC-4 Error EPC ~ PC Error EPC - PC-4 Error EPC ~ PC
\ -l \ -l
Set Status register Random register ~ 31
BEV bit « 1 Wired register — 0
TS bit « 0 Update Config register
SR bit « 1 bits 31:28 [1122:6
ERL bit ~ 1 Set Status register
BEV bit ~ 1
TS bit « 0
SR bit - 0
ERL bit - 1
|

o
7“

PC ~ OxFFFF FFFF BFCO 0000

Software

; The processor provides no means of
distinguishing between an NMI
exception and Soft reset exception,
such that this must be determined at
the system level.

Yes

Servicing by NMI
exception routine

No

(ERET) 1 Servicing by Soft reset | 1 Servicing by Cold reset!
! exception routine ! ! exception routine '

197

[MEMO]

198

CHAPTER 7 INITIALIZATION INTERFACE

This chapter describes the initialization interface and processor modes. It also explains the reset signal
descriptions and types, signal- and timing-related dependence, and the initialization sequence during each mode
that can be selected by the user.

Remark # that follows signal names indicates active low.

7.1 RESET FUNCTION

There are five ways to reset the VR4102. Each is summarized below.

7.1.1 RTC Reset

During power-on, set the RTCRST# pin as active. After waiting (about 600 ms) for the 32.768-kHz oscillator to
begin oscillating when the power supply is stable at 3.0 V or above, setting the RTCRST# pin as inactive causes the
RTC unit to begin counting. Next, when the POWER pin, DCD# pin, or GPIO[3] pin becomes inactive, the VR4102
asserts the POWERON pin and uses the BATTINH/BATTINT# signal to perform a battery level check. If the battery
check’s result is OK, the VR4102 asserts the MPOWER pin and waits for the stabilization time period (about 350 ms)
for the external agent's DC/DC converter, then begins PLL oscillation and starts all clocks (a period of about 16 ms
following the start of PLL oscillation is required for stabilization of PLL oscillation).

An RTC reset does not save any of the status information and it completely initializes the processor’s internal
state. Since the DRAM is not switched to self refresh mode, the contents of DRAM after an RTC reset are not at all
guaranteed.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to
access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the
VR4102, the processor should be completely initialized by software.

199

CHAPTER 7

INITIALIZATION INTERFACE

200

Figure 7-1. RTC Reset

/L
17

RTCRST#(i) j
#/ I/I, I/JI
POWER() 1o\ . .
17 7 7
POWERON(0) 1l lt p p
1 7L 7
L 7 77 7/
MPOWER(0) 1
’ —
ColdReset#(internal) L . ., 1

Reset#(internal)

/L

PLL(internal)

RTC _
(internal, 32kHz) f

Ul

Undefined f

Stable oscillation
-

>600ms

>32ms

Undefined

i | /

UL

Stable oscillation

350ms

[
011
U

16ms
> -
16MasterClock™ "

Note MasterClock is the basic clock used in the CPU core.

CHAPTER 7 INITIALIZATION INTERFACE

7.1.2 RSTSW

After the RSTSW# pin becomes active and then becomes inactive 100 us later, the VR4102 starts PLL oscillation
and starts all clocks (a period of about 16 ms following the start of PLL oscillation is required for stabilization of PLL
oscillation).

A reset by RSTSW initializes the entire internal state except for the RTC timer and the PMU. Since the DRAM is
not switched to self refresh mode, the contents of DRAM after an RTC reset are not at all guaranteed.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to
access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the
VR4102, the processor should be completely initialized by software.

Figure 7-2. RSTSW

/L /L

RSTSWH#()) 4[t

MRAS(0:3)#(0)) I 7

UCASH#/LCASH#(0)
POWER(i) L . .
7L i
7/ 7
MPOWER(0) H

L
J
ColdReset#(internal \ ; 7L_/

J/

Reset#(internal \
() Stable oscillation \ -) ,J Stable oscillation

PLL(internal) ﬂ“ﬂ”_ﬂﬂ”ﬂ“ﬂﬂmu...umeﬁned_.. ;M]'I;“’l”]’“‘”’“’“’”’l_ﬂj’”m
e s JUUUUU UL, UL LUUTIUL

Stable oscillation =
16ms
>3RTC 16MasterClock™*

Note MasterClock is the basic clock used in the CPU core.

201

CHAPTER 7 INITIALIZATION INTERFACE

7.1.3 Deadman’s Switch

After the Deadman’s switch unit is enabled, if the Deadman’s switch is not cleared within the specified time
period, the VR4102 is immediately returned to reset status. Setting and clearing of the Deadman’s switch is
performed by software.

A reset by the Deadman’s switch initializes the entire internal state except for the RTC timer and the PMU. Since
the DRAM is not switched to self refresh mode, the contents of DRAM after a Deadman’s switch reset are not at all
guaranteed.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to
access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the
VR4102, the processor should be completely initialized by software.

Figure 7-3. Deadman’s Switch

(L /L
7/ 77

RSTSW#(j) H
POWER(i) L P .
/// /f
17 7/
MPOWER(0) H
L
J
ColdReset#(internal) Jt]ﬂ
. \ [
Reset#(internal) Stable oscillation Y_//__,/J Stable oscillation

s STV VUL UV
e TP UL UL LU

Stable oscillation) - >
Undefined 16ms

Ll .

16MasterClock"°*®

Note MasterClock is the basic clock used in the CPU core.

202

CHAPTER 7 INITIALIZATION INTERFACE

7.1.4 Software Shutdown

When the software executes the HIBERNATE instruction, the VR4102 sets the DRAM to self refresh mode and
sets the MPOWER pin as inactive, then enters reset status. Recovery from reset status occurs when the POWER
pin is asserted, when a WakeUpTimer interrupt occurs, or when the DCD# pin is asserted.

A reset by software shutdown initializes the entire internal state except for the RTC timer and the PMU.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to
access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the
VR4102, the processor should be completely initialized by software.

Figure 7-4. Software Shutdown

MRAS(0:3)#/
UCASH#/LCASH# \
(L (L /L /L
(0) 7) 1/)

Jr }{}r lr/r /r/r
POWER() 71_/ Y

POWERON(0) 71_/ j_lr
MPOWER(0) \ - QL " " "

ColdReset#(internal) 1

.

/L (L (L
7 77 7

Reset#(internal) \

/L Iya (L

PLL(internal) -I_I-IJ—IJ-IJ-“-”-IJ-“-” /j Stopped fl/ / {-“-”-U.I;I.’”“_
(el 5201 MMMLMM,MM I

o

Stable oscillation <>
>32ms Undefined

Stable oscillation

-

|

16ms

A
/

Rl

350ms 16MasterClock"°*®

Note MasterClock is the basic clock used in the CPU core.

203

CHAPTER 7 INITIALIZATION INTERFACE

7.1.5 HALTimer Shutdown

After an RTC reset is canceled, if the HAL timer is not canceled by software within about four seconds (the
HALTIMERRST bit of the PMUCNTREG register is not set to 1), the VR4102 enters reset status. Recovery from
reset status occurs when the POWER pin is asserted or when a WakeUpTimer interrupt occurs.

A reset by HAL timer initializes the entire internal state except for the RTC timer and the PMU.

After a reset, the processor becomes the system bus master and it begins the Cold reset exception sequence to
access the reset vectors in the ROM space. Since only part of the internal status is reset when a reset occurs in the
VR4102, the processor should be completely initialized by software.

Figure 7-5. HALTimer Shutdown

MRAS(0:3)#/ __ﬂ_j

UCASHILCASH# X P . . .
© l_[1 3 7f 3
POWER() i] L i " /
POWERON(0) P 7ﬂ !T . . .
—— r z —

MPOWER(0)
1 :
ColdReset#(internal \ 7[/
llll /L /L

/_
[_//_ 7 77
(L (L /L
7 7/, 7
7J bt

Reset#(internal) j
77

\ N
PLL(internal) mﬂﬂ_ﬂ_j”m_m S / ”jmm-l'l_
oo UL UV UL U T

Stable oscillation Stable oscillation

>32ms Undefined

-l
- |

- > 16ms
4s <

350ms 16MasterClock™°®

Note MasterClock is the basic clock used in the CPU core.

204

CHAPTER 7 INITIALIZATION INTERFACE

7.2 POWERON SEQUENCE

The factors that cause the VR4102 to switch from hibernate mode or shutdown mode to full speed mode are
called power-on factors. There are four power-on factors: assertion of the POWERON pin, assertion of the DCD#
pin, activation of the wakeup timer, and assertion of the GPIO pins (GPIO[3..0], GPIO[12..9]). When an activation
factor occurs, the VR4102 asserts the POWERON pin, then provides notification to external agents that the VR4102
is ready for power-on. Three RTC clocks after the POWERON pin is asserted, the VR4102 checks the state of the
BATTINH/BATTINT# pin. If the BATTINH/BATTINT# pin’s state is low, the POWERON pin is deasserted one RTC
clock after the BATTINH/BATTINT# pin check is completed, then the VR4102 is not activated. If the
BATTINH/BATTINT# pin's state is high, the POWERON pin is deasserted three RTC clocks after the
BATTINH/BATTINT# pin check is completed, then the MPOWER pin is asserted and the VR4102 is activated.

Figure 7-6 shows a timing chart of VR4102 activation and Figure 7-7 shows a timing chart of when activation fails
due to the BATTINH/BATTINT# pin’s “low” state.

For details of poweron sequence according to each power-on factor, refer to chapter 15.

205

CHAPTER 7 INITIALIZATION INTERFACE

206

Figure 7-6. V R4102 Activation Sequence (when Battery Check Is OK)

POWERON(0) / j

MPOWER(0)

ColdReset#(internal) /
Reset#(internal) ,

A\
BATTINH/BATTINTA() / \

PLL(internal) Stopped | e | I | I | I | I | I | I | I
=< [UUUUUUUUUL

(internal, 32kHz)
A A

Undefined Stable oscillation

Check BATTINH/ Activation of
BATTINT# pin CPU

Detection of
activation factor

Figure 7-7. V R4102 Activation Sequence (when Battery Check Is NG)

POWERON(0) / \

MPOWER(0) L

ColdReset#(internal) |

Reset#(internal) L

BATTINH/BATTINT#(i) \ /

PLL(internal) H

< [[[UUUUUUUUUudvduyuuul

(internal, 32kHz)
A T

Check BATTINH/ CPU not
BATTINT# pin

Detection of

activation activated

CHAPTER 7 INITIALIZATION INTERFACE

7.3 RESET OF THE CPU CORE

This section describes the reset sequence of the VR4100 CPU core. For details about factors of reset or reset of
the whole VR4102, refer to 7.1 and Chapter 15.

7.3.1 Cold Reset
In the VrR4102, a cold reset sequence is executed in the CPU core in the following cases:

e RTC reset

e RSTSW reset

¢ Deadman’s SW shutdown

e Software shutdown

e HAL Timer shutdown

e Battery low shutdown

e Battery lock release shutdown

A Cold Reset completely initializes the CPU core, except for the following register bits.

e The TS and SR bits of the Status register are cleared to 0.

e The ERL and BEV bits of the Status register are setto 1.

e The upper limit value (31) is set in the Random register.

e The Wired register is initialized to 0.

e Bits 31 to 28 of the Config register are set to 0 and bits 22 to 3 to 0x04800; the other bits are undefined.
e The values of the other registers are undefined.

Once power to the processor is established, the ColdReset# (internal) and the Reset# (internal) signals are
asserted and a Cold Reset is started. After approximately 2 ms assertion, the ColdReset# signal is deasserted
synchronously with MasterOut. Then the Reset# signal is deasserted synchronously with MasterOut, and the Cold
Reset is completed.

Upon reset, the CPU core becomes bus master and drives the SysAD bus (internal). After Reset# is deasserted,
the CPU core branches to the Reset exception vector and begins executing the reset exception code.

207

CHAPTER 7 INITIALIZATION INTERFACE

7.3.2 Soft Reset

Caution Soft Reset is not supported in the present V. rR4102.

A Soft Reset initializes the CPU core without affecting the clocks; in other words, a Soft Reset is a logic reset. In a
Soft Reset, the CPU core retains as much state information as possible; all state information except for the following
is retained:

e The TS bit of the Status register is cleared to 0.

e The SR, ERL and BEV bits of the Status register are set to 1.
e The Count register is initialized to O.

e The IP7 bit of the Cause register is cleared to 0.

e Any Interrupts generated on the SysAD bus are cleared.

¢ NMl is cleared.

e The Config register is initialized.

A Soft Reset is started by assertion of the Reset# signal, and is completed at the deassertion of the Reset# signal
synchronized with MasterOut. In general, data in the CPU core is preserved for debugging purpose.

Upon reset, the CPU core becomes bus master and drives the SysAD bus (internal). After Reset# is deasserted,
the CPU core branches to the Reset exception vector and begins executing the reset exception code.

208

CHAPTER 7 INITIALIZATION INTERFACE

Figure 7-8. Cold Reset

(L {{ II
77

MasterClock "°* /_
(Internal)
_/rr
ColdReset# \
(Internal) /L /L

77 17
Reset# \ % - [
(Internal) /L s I]
77 77 77 4» ‘

R U R S /__7[_\ ’__?(_
(IToral) sesesmans U O S _I-_I—_ﬂ LU

Note MasterClock is the basic clock used in the CPU core.

Figure 7-9. Soft Reset

(L

VDD H

v\ __ [\ [J
e S) [-
_J

wseow\ M\ M\ M\ T\
.S AR ANANANAVARAWANRNANAWAY]

Note MasterClock is the basic clock used in the CPU core.

209

CHAPTER 7 INITIALIZATION INTERFACE

7.4 VrR4102 PROCESSOR MODES

wri

The VR4102 supports various modes, which can be selected by the user. The CPU core mode is set each time a
te occurs in the Status register and Config register. The on-chip peripheral unit mode is set by writing to the 1/O

register.

This section describes the CPU core’s operation modes. For operation modes of on-chip peripheral units, see the

chapters describing the various units.

7.4.1 Power Modes

1)

)

®)

The VR4102 supports four power modes: Fullspeed mode, Standby mode, Suspend mode, and Hibernate mode.

Fullspeed Mode

This is the normal operation mode.

The VR4102's default status sets operation under Fullspeed mode. After the processor is reset, the VR4102
returns to Fullspeed mode.

Standby Mode

When a STANDBY instruction has been executed, the processor can be set to Standby mode. During Standby
mode, all of the internal clocks in the CPU core except for the timer and interrupt clocks are held at high level.
The peripheral units all operate as they do during Fullspeed mode. This means that DMA operations are
enabled during Standby mode.

When the STANDBY instruction completes the WB stage, the VR4102 remains idle until the SysAD internal bus
enters the idle state. Next, the clocks in the CPU core are shut down and pipeline operation is stopped.
However, the PLL, timer, and interrupt clocks continue to operate, as do the internal bus clocks (TClock and
MasterOut).

During Standby mode, the processor is returned to Fullspeed mode if any interrupt occurs, including a timer
interrupt that occurs internally.

Suspend Mode

When the SUSPEND instruction has been executed, the processor can be set to Suspend mode. During
Suspend mode, the processor stalls the pipeline and supplying all of the internal clocks in the CPU core except
for PLL timer and interrupt clocks are stopped. The VR4102 stops supplying TClock to peripheral units.
Accordingly, during Suspend mode peripheral units can only be activated by a special interrupt unit (DCD#
control, etc.). While in this mode, the register and cache contents are retained.

When the SUSPEND instruction completes the WB stage, the VR4102 switches the DRAM to self refresh mode
and then waits for the SysAD internal bus to enter the idle state. Next, the clocks in the CPU core are shut down
and pipeline operation is stopped. The VR4102 then stops supplying TClock to peripheral units. However, the
PLL, timer, and interrupt clocks continue to operate, as do the MasterOut.

The processor remains in Suspend mode until an interrupt is received, at which time it returns to Fullspeed
mode.

210

CHAPTER 7 INITIALIZATION INTERFACE

(4) Hibernate Mode

When the HIBERNATE instruction has been executed, the processor can be set to Hibernate mode. During
Hibernate mode, the processor stops supplying clocks to all units. The register and cache contents are retained
and output of TClock and MasterOut is stopped. The processor remains in Hibernate mode until the POWER
pin is asserted, a WakeUpTimer interrupt occurs, DCD# pin is asserted, or GPIO[3] is asserted, at which the
processor returns to Fullspeed mode.

Power consumption during Hibernate mode is about 0 W (it does not go completely to 0 W due to the existence
of a 32.768-kHz oscillator, on-chip peripheral units that operate at 32.768 kHz, or DRAM self refresh).

7.4.2 Privilege Mode
The VR4102 supports three system modes: kernel expanded addressing mode, supervisor expanded addressing
mode, and user expanded addressing mode. These three modes are described below.

(1) Kernel Expanded Addressing Mode
When the Status register’'s KX bit has been set, an expanded TLB miss exception vector is used when a TLB
miss occurs for the kernel address. While in kernel mode, the MIPS Il operation code can always be used,
regardless of the KX bit.

(2) Supervisor Expanded Addressing Mode
When the Status register's SX bit has been set, the MIPS Il operation code can be used when in supervisor
mode and an expanded TLB miss exception vector is used when a TLB miss occurs for the supervisor address.

(3) User Expanded Addressing Mode
When the Status register’'s UX bit has been set, the MIPS Ill operation code can be used when in user mode,
and an expanded TLB miss exception vector is used when a TLB miss occurs for the user address. When this
bit is cleared, the MIPS | and Il operation codes can be used, as can 32-bit virtual addresses.

7.4.3 Reverse Endian

When the Status register’s RE bit has been set, the endian ordering is reversed to adopt the user software’s
perspective. However, the RE bit of the Status register must be set to 0 since the VR4102 supports the little-endian
order only.

7.4.4 Bootstrap Exception Vector (BEV)

The BEV bit is used to generate an exception during operation testing (diagnostic testing) of the cache and main
memory system. This bit is automatically set to 1 after reset or NMI exception.

When the Status register’s BEV bit has been set, the address of the TLB miss exception vector is changed to the
virtual address OxFFFF FFFF BFCO 0200 and the ordinary execution vector is changed to address OxFFFF FFFF
BFCO 0380.

When the BEV bit is cleared, the TLB miss exception vector’s address is changed to OxFFFF FFFF 8000 0000
and the ordinary execution vector is changed to address OxFFFF FFFF 8000 0180.

211

CHAPTER 7 INITIALIZATION INTERFACE

7.4.5 Cache Error Check

When the Status register's CE bit has been set, the contents of the PErr register can be written to the data
cache’s parity bit instead of the parity generated by the STORE instruction. If the CACHE instruction’s “Fill” option is
executed, the contents of the PErr register can be written to the instruction cache’s parity bit instead of the
instruction parity.

7.4.6 Parity Error Prohibit
When the Status register’'s DE bit has been set, the processor does not issue any cache parity error exceptions.

7.4.7 Interrupt Enable (IE)

When the Status register’s IE bit has been cleared, no interrupts can be received except for reset interrupts and
nonmaskable interrupts.

212

CHAPTER 8 CACHE MEMORY

This chapter describes in detail the cache memory: its place in the VR4100 CPU core memory organization, and
individual organization of the caches.
This chapter uses the following terminology:

<~ The data cache may also be referred to as the D-cache.
< The instruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

8.1 MEMORY ORGANIZATION

Figure 8-1 shows the VR4100 CPU core system memory hierarchy. In the logical memory hierarchy, the caches
lie between the CPU and main memory. They are designed to make the speedup of memory accesses transparent
to the user.

Each functional block in Figure 8-1 has the capacity to hold more data than the block above it. For instance,
physical main memory has a larger capacity than the caches. At the same time, each functional block takes longer
to access than any block above it. For instance, it takes longer to access data in main memory than in the CPU on-
chip registers.

Figure 8-1. Logical Hierarchy of Memory

VR4100 CPU core
|Register | |Register | Register A

|I-cache | |D-cache|

Cache
Cache

Y

Faster Increasing
access time data capacity

ey |

Disc, CD-ROM, Memory
tape, etc. media

213

CHAPTER 8 CACHE MEMORY

The VR4100 CPU core has two on-chip caches: one holds instructions (the instruction cache), the other holds
data (the data cache). The instruction and data caches can be read in one PClock cycle.

Data writes are pipelined and can complete at a rate of one per PClock cycle. In the first stage of the cycle, the
store address is translated and the tag is checked; in the second stage, the data is written into the data RAM.

8.2 CACHE ORGANIZATION

This section describes the organization of the on-chip data and instruction caches. Figure 8-2 provides a block
diagram of the VR4100 CPU core cache and memory model.

Figure 8-2. Cache Support

VR4100 CPU core
Cache controller Main memory
|I-cache
Caches
D-cache I-cache: Instruction cache
D-cache: Data cache

(1) Cache Line Lengths
A cache line is the smallest unit of information that can be fetched from main memory for the cache, and that is
represented by a single tag.
The line size for the instruction/data cache is 4 words (16 bytes).
For cache tag, refer to 8.2.1 and 8.2.1.

(2) Cache Sizes
The instruction cache in the VR4100 CPU core is 4 Kbytes; the data cache is 1 Kbytes.

8.2.1 Organization of the Instruction Cache (I-Cache)

Each line of I-cache data (although it is actually an instruction, it is referred to as data to distinguish it from its tag)
has an associated 24-hit tag that contains a 22-hit physical address, a single Valid bit, and a single Parity bit. Word
parity is used on I-cache data (1 bit of parity per word).

The VR4100 CPU core I-cache has the following characteristics:

direct-mapped
indexed with a virtual address
checked with a physical tag

e

organized with a 4-word (16-byte) cache line.

Figure 8-3 shows the format of a 4-word (16-byte) I-cache line.

214

CHAPTER 8 CACHE MEMORY

Figure 8-3. Cache Line Format

23 22 21 0
Y, PTag I
1 1 22

32 31 0

PTag Physical tag DataP Data

(bits 31 to 10 of the physical address)

- F DataP Data
When a tag is specified by the Cache
instruction, however, the high-order 20 DataP Data
bits are used. DataP Data
Y, Valid bit
P Even parity for the Ptag and V bit
Data I-cache data

DataP Even parity for the data
(1-bit parity for 4-byte data)

8.2.2 Organization of the Data Cache (D-Cache)

Each line of D-cache data has an associated 26-bit tag that contains a 22-bit physical address, a Valid bit, a
Parity bit, a Write-back bit, and a parity bit for Write-back.

The VR4100 CPU core D-cache has the following characteristics :

write-back

direct-mapped

indexed with a virtual address
checked with a physical tag

R R

organized with a 4-word (16-byte) cache line.

Figure 8-4 shows the format of a 4-word (16-byte) D-cache line.

Figure 8-4. Data Cache Line Format

25 24 23 22 21 0
lwiw/[P]|v PTag I

1 1 1 1 22

PTag Physical tag 71 64 63 0
(bits 31 to 10 of the physical address) DataP Data

\Y Valid bit

P Even parity for the Ptag and V bit DataP Data

w Write-back bit
(set if cache line has been written)

w’ Even parity for the write-back bit

Data D-cache data
DataP Even parity for the data (1-bit parity for
4-byte data)

215

CHAPTER 8 CACHE MEMORY

8.2.3 Accessing the Caches
Figure 8-5 shows the virtual address (VA) index into the caches. The number of virtual address bits used to index
the instruction and data caches depends on the cache size.

(1) Data cache addressing
This addressing uses bits VA [9:4]. The most significant bit is VA9 because the cache size is 1 Kbyte. The least
significant bit is VA4 because the line size is 4 words (16 bytes).

(2) Instruction cache addressing

This addressing uses bits VA [11:4]. The most significant bit is VA1l because the cache size is 4 Kbytes. The
least significant bit is VA4 because the line size is 4 words (16 bytes).

Figure 8-5. Cache Data and Tag Organization

Tags Data

Tag line Data line

—>
VA (9:4) for 1-Kbyte D-cache
and
VA (11:4) for 4-Kbyte I-cache

P VTag W Data

216

CHAPTER 8 CACHE MEMORY

8.3 CACHE OPERATIONS

As described earlier, caches provide fast temporary data storage, and they make the speedup of memory
accesses transparent to the user. In general, the CPU core accesses cache-resident instructions or data through
the following procedure:

1. The CPU core, through the on-chip cache controller, attempts to access the next instruction or data in the
appropriate cache.

2. The cache controller checks to see if this instruction or data is present in the cache.
< If the instruction/data is present, the CPU core retrieves it. This is called a cache hit.

< If the instruction/data is not present in the cache, the cache controller must retrieve it from memory. This is
called a cache miss.

3. The CPU core retrieves the instruction/data from the cache and operation continues.

It is possible for the same data to be in two places (main memory and cache) simultaneously. This data is kept
consistent through the use of a write-back methodology; that is, modified data is not written back to memory until the
cache line is to be replaced.

Instruction and data cache line replacement operations are described in the following sections.

8.3.1 Cache Write Policy

The VR4100 CPU core manages its data cache by using a write-back policy; that is, it stores write data into the
cache, instead of writing it directly to memory
the VR4102 implementation, a modified cache line is not written back to the main memory until the cache line is to be

Note

. Some time later this data is independently written into memory. In
replaced either in the course of satisfying a cache miss, or during the execution of a write-back CACHE instruction.
When the CPU core writes a cache line back to the main memory, it does not ordinarily retain a copy of the cache

line, and the state of the cache line is changed to invalid.

Note Write-through cache policy performs the function contrary to the write-back policy. Data written into memory
is also written into cache simultaneously.

217

CHAPTER 8 CACHE MEMORY

8.4 CACHE STATES

(1) Cache line
The three terms below are used to describe the state of a cache line:

< Dirty: a cache line containing data that has changed since it was loaded from memory.
< Clean: a cache line that contains data that has not changed since it was loaded from memory.

< Invalid: a cache line that does not contain valid information must be marked invalid, and cannot be used. For
example, after a Soft Reset, software sets all cache lines to invalid. A cache line in any other state than
invalid is assumed to contain valid information. Neither Cold reset nor Soft reset sets caches invalid.
Software can invalidate caches.

(2) Data cache
The data cache supports three cache states:

< invalid
< valid clean
< valid dirty

(3) Instruction cache
The instruction cache supports two cache states:

< invalid
< valid

The state of a valid cache line may be modified when the processor executes a CACHE operation. CACHE
operations are described in Chapter 27.

218

CHAPTER 8 CACHE MEMORY

8.5 CACHE STATE TRANSITION DIAGRAMS

The following section describes the cache state diagrams for the data and instruction caches. These state
diagrams do not cover the initial state of the system, since the initial state is system-dependent.

8.5.1 Data Cache State Transition

The following diagram illustrates the data cache state transition sequence. A load or store operation may include
one or more of the atomic read and/or write operations shown in the state diagram below, which may cause cache
state transitions.

< Read (1) indicates a read operation from memory to cache, inducing a cache state transition.

< Write (1) indicates a write operation from CPU core to cache, inducing a cache state transition.

< Read (2) indicates a read operation from cache to the CPU core, which induces no cache state transition.
< Write (2) indicates a write operation from CPU core to cache, which induces no cache state transition.

Figure 8-6. Data Cache State Diagram

CACHE op CACHE op
Write (1) Read (1)
Read (2) ia Write (1)
Write (2) al CACHE op

Dirty

Write-back

8.5.2 Instruction Cache State Transition
The following diagram illustrates the instruction cache state transition sequence.

< Read (1) indicates a read operation from memory to cache, inducing a cache state transition.
< Read (2) indicates a read operation from cache to the CPU core, which induces no cache state transition.

Figure 8-7. Instruction Cache State Diagram

« CACHEop
Read (2) P Read (1) Invalid

-«

219

CHAPTER 8 CACHE MEMORY

8.6 CACHE DATA INTEGRITY

The D- and I-cache data RAM arrays are protected by parity (byte parity for D-cache, word parity for I-cache). D-
and I-cache tag RAM arrays are also protected by parity.

These parity bits are checked for errors on every cache read access. Cache error exception occurs if the CPU
core encounters a parity error during an instruction cache access, a data cache access, or memory read access.
The CachekErr register indicates the source of the error.

Figure 8-8 to Figure 8-22 shows the parity generation and checking operations for various cache accesses.

Figure 8-8. Data flow on Instruction Fetch

Error

TagParity

[Cache Error

OK,DE=1

orERL=1 Exception

Miss or
Invalid

(See Figure 8-21) Refill

Desigerd Error

OK, DE Cache Error
or ERL =1 Exception

Data Fetch

END

220

CHAPTER 8 CACHE MEMORY

Figure 8-9. Data Integrity on Load Operations

Error

TagParity

OK,DE=1
orERL=1

Hit

Cache Error
Exception

)

TagCheck

Miss or
Invalid

Error

OK,DE=1
orERL=1

V =0 (invalid) or
W =0 (clean)

Valid bit &
Whit

V =1 (valid) and
W =1 (dirty)

Refill

Writeback
& Refill

(See Figure 8-22)

Cache Error
Exception

)

(See Figure 8-21)

Desigerd Error

Data Pari

OK,DE=1
or ERL =
Data Load
to register
END

Cache Error
Exception

221

CHAPTER 8 CACHE MEMORY

222

Figure 8-10. Data Integrity on Store

Error

Operations

TagParity

OK,DE=1
orERL=1
Hit
TagCheck

Cache Error
Exception

]

Miss

Error

OK,DE=1

orERL=1 V = 0 (invalid) or

W =0 (clean)
Valid bit &
Whit

V =1 (valid) and
W =1 (dirty)

Refill

(See Figure 8-22) | Writeback
& Refill

Cache Error
Exception

(See Figure 8-21)

Data Parity
Generate

Data Parity

from PErr reg.

H_I

Data Write to
D-Cache

END l

CHAPTER 8 CACHE MEMORY

Figure 8-11. Data Integrity on Index_Invalidate Operations

Error

TagParity

OK,DE=1
orERL=1 Cache Error
Exception
Valid bit clear
END

Figure 8-12. Data Integrity on Index_Writeback_Invalidate Operations

Error

Tag Parity,
Whit Pari

OK,DE=1 [Cache Error]

Exception

=1 (valid)

=0 (clean)

= 1 (dirty)

Error

(See Figure 8-20) | Writeback

Valid bit and orERL=1
Whit clear

Cache Error
Exception

223

CHAPTER 8 CACHE MEMORY

224

Figure 8-13. Data Integrity on Index_Load_Tag Operations

Tag and Tag Parity
Read to TagLo

Whit and Whit Parity iD-Cache
Read to TagLo lonly
END

Figure 8-14. Data Integrity on Index_Store_Tag Operations

Start

Tag Parity Tag Parity

Generate from TagLo

Whit Parity Whit Parity i D-Cache
: Generate from TagLo i only
[P S L IO i

Tag Write

from TagLo

END

CHAPTER 8 CACHE MEMORY

Figure 8-15. Data Integrity on Create_Dirty Operations

Error

Tag Parity,
Whit Parit

Cache Error
Exception

OK,DE=1
orERL=1

Miss or Invalid

Valid bit &

=1 (dirty)

(See Figure 8-20) | Writeback

Cache Error
Exception

Valid bit and
Whit set.
Tag write.
Whit parity

and Tag parity
generate.

Figure 8-16. Data Integrity on Hit_Invalidate Operations

Error

TagParity |

[Cache Error

OK,DE=1

OrERL =1 Miss or Exception

Invalid

Valid bit clear.
Tag parity generate.

lENDl

225

CHAPTER 8 CACHE MEMORY

226

Figure 8-17. Data Integrity on Hit_Writeback_Invalidate Operations

Error

Tag Parity,
Whit Pari

OK,DE=1 [Cache Error

Exception

Miss or Invalid

TagCheck

=0 (clean)

Error
=1 (dirty)

(See Figure 8-20) | Writeback

[Cache Error

Exception
Valid bit clear.
Tag parity generate. OK,DE =1 Cache Error
> orERL =1 Exception
END l

Figure 8-18. Data Integrity on Fill Operations

l Start l

(See Figure 8-21) Refill

CHAPTER 8 CACHE MEMORY

Figure 8-19. Data Integrity on Hit_Writeback Operations

Error

Tag Parity,

Whit Parit |

Cache Error
Exception

Whit Parity check is
D-Cache only [

Miss or Invalid

= 1 (dirty)

(See Figure 8-20) | Writeback

;. ------------------------------- , ."""""E Cache Error
: Exception

Whit clear

D-Cache only

END

227

CHAPTER 8 CACHE MEMORY

Figure 8-20. Data Integrity on Writeback Flow

Erroneous
Erroneous bit =1
bit =0
Writeback
to memory

No

Error existed in
Writeback N\ Writeback data

OK, DE [Cache Error]

Exception

Figure 8-21. Data Integrity on Refill Flow

Q

<
[

Write data
to cache

No

Error existed in
refill data

Erroneous bit

Cache line
Invalidate

Bus Error
Exception

228

CHAPTER 8 CACHE MEMORY

Figure 8-22. Data Integrity on Writeback & Refill Flow

Erroneous
Erroneous bit = 1

bit=0

|<—I

Writeback
to memory

No

EOD?
Yes

Refill start

Error existed in
writeback data

Writeback

OK,DE=1

or ERL =
Write data
to cache

Error existed in
writeback data

Writeback
Data Parit)

Cache Error
Exception

OK,DE=1or
ERL=1

Error existed in
refill data

CErroneous bi
OK

Cache line
Invalidate

Bus Error
Exception

Remark Write-back Procedure:

On a store miss write-back, data tag and tag parity are checked and data parity is transferred to the write
buffer. Byte parity is generated for the physical address and transferred to write buffer. If an error is
detected on the data field, the write back is not terminated; the erroneous data is still written out. If an
error is detected in the tag field, the write-back bus cycle is not issued. In both cases a cache error
exception is taken.

During a Cache operation, cache data may not be checked in some cases, but tag parity is always
checked. At that time, if a tag parity error occurs, the Cache Error exception is taken and the operation is

not permitted to complete.

229

CHAPTER 8 CACHE MEMORY

8.7 MANIPULATION OF THE CACHES BY AN EXTERNAL AGENT

The VR4102 does not provide any mechanisms for an external agent to examine and manipulate the state and
contents of the caches.

230

CHAPTER 9 CPU CORE INTERRUPTS

Four types of interrupt are available on the CPU core. These are:

<~ one non-maskable interrupt, NMI
< five ordinary interrupts

< two software interrupts

< one timer interrupt

These are described in this chapter.

9.1 NON-MASKABLE INTERRUPT (NMI)

The non-maskable interrupt request signal is acknowledged by asserting the NMI signal (internal), forcing the
processor to branch to the Reset Exception vector. This NMI signal is latched into an internal register at the rising

edge of MasterOut, as shown in Figure 9-1.
NMI only takes effect when the processor pipeline is running.
This interrupt cannot be masked.

Figure 9-1 shows the internal derivation of the NMI signal. The NMI signal is latched into an internal register at
the rising edge of MasterOut. The latched NMI signal is inverted and then transmitted as an NMI request.
Figure 9-1. Non-maskable Interrupt Signal

(Internal register)

NMI signal NMI request

MasterOut

9.2 ORDINARY INTERRUPTS
Ordinary interrupts are set by asserting the Int(4:0) signals (internal). However, Int4 never occur on the

VR4102.
These interrupts can be masked with the IM(6..2), IE, and EXL fields of the Status register.

231

CHAPTER 9 CPU CORE INTERRUPTS

9.3 SOFTWARE INTERRUPTS GENERATED IN CPU CORE

Software interrupts generated in the CPU core are acknowledged by setting bits 1 and 0 of the IP (interrupt
pending) field in the Cause register. These may be written by software, but there is no hardware mechanism to set
or clear these bits.

After the processing of a software interrupt exception, corresponding bit of the IP field in the Cause register must
be cleared before returning to ordinary routine or enabling multiple interrupts.

These interrupts are maskable through the IM(1:0), IE, and EXL fields of the Status register.

9.4 TIMER INTERRUPT

The timer interrupt uses bit 15 of the Cause register, which is bit 7 of the IP (interrupt pending) field. This bit is
automatically set whenever the value of the Count register equals the value of the Compare register, to acknowledge
an interrupt request. This interrupt is maskable by setting IM7 of the Status register.

9.5 ASSERTING INTERRUPTS

9.5.1 Detecting Hardware Interrupts
Figure 9-2 shows how the hardware interrupt request is detected through the Cause register.

< The timer interrupt signal, IP7, is directly readable as bit 15 of the Cause register.
< Bits 4:0 of the Interrupt register are bit-wise ORed with the current value of the Int(4:0) signals and the result is

directly readable as bits 14:10 of the Cause register.

IP(1:0) of the Cause register, which are described in Chapter 6, are software interrupts. There is no hardware
mechanism for setting or clearing the software interrupts.

232

CHAPTER 9 CPU CORE INTERRUPTS

Figure 9-2. Hardware Interrupt Signals

o

Timer interrupt

N

MasterOut ——m{

Int4

Remark Int4 never occurs in the

Int3

VR4102.

A*A*A

Intl

Int2

Int0

IP2 g 10

IP3 g 11
P4 Qg 12
IP5 g 13
IP6 g 14

IP7 g 15

(15:10)

I (Internal register)

I Interrupt register (4:0)

——m See Figure 9-3

Cause register

233

0: Disable

1: Enable for individual bits

0: Disable for individual bits

1: Pending request for individual bits
0: No pending fi dividual b

pts | 1: Enable

terrupt enable for all interru

IM (7:0)
IP (7:0)

IE

234

CHAPTER 10 BCU (BUS CONTROL UNIT)

This chapter describes the BCU’s operations and register settings.

10.1 GENERAL

In the VR4102, the BCU receives data that has passed via the VR4100 CPU core and the SysAD bus. The BCU
also controls external agents via the system bus, such as an LCD controller, DRAM, ROM (Flash memory or masked
ROM), or PCMCIA controller, and it transmits and receives data with these external agents via the ADD bus and

DATA bus.

10.2 REGISTER SET

The BCU registers are listed below.

Table 10-1. BCU Registers

Address R/W Register symbols Function
0x0B00 0000 R/W | BCUCNTREG 1 BCU Control Register 1
0x0B00 0002 R/W | BCUCNTREG 2 BCU Control Register 2
0x0B00 000A R/W | BCUSPEEDREG BCU Access Cycle Change Register
0x0B00 000C R/W | BCUERRSTREG BCU BUS ERROR Status Register
0x0B00 000E R/W | BCURFCNTREG BCU Refresh Control Register
0x0B00 0010 R REVIDREG Revision ID Register
0x0B00 0012 R/W | BCURFCOUNTREG | BCU Refresh Count Register
0x0B00 0014 R/W | CLKSPEEDREG Clock Speed Register

Each register is described in detail as follows.

235

CHAPTER 10

BCU (BUS CONTROL UNIT)

10.2.1 BCUCNTREG 1 (0x0B0O 0000)

(1/2)
Bit D15 D14 D13 D12 D11 D10 D9 D8
Name ROM64 DRAM64 ISAM/LCD PAGE128 Reserved [PAGEROM2| Reserved | PAGEROMO
R/W R/W R/W R/W R/W R R/W R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved ROMWEN2 Reserved ROMWENO Reserved Reserved |BUSHERREN| RSTOUT
R/W R R/W R R/W R R R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15] ROM64 Sets the capacity of the ROM to be used
1: 64M-bit ROM
0: 32M-bit ROM
D[14] DRAM64 Sets the capacity of the DRAM to be used
1: 64M-bit DRAM
0: 16M-bit DRAM
D[13] ISAM/LCD Assigns space from 0x0A00 0000 to OxOAFF FFFF as the physical address space.
1: As ISA high-speed memory space
0: As LCD space
D[12] PAGE128 Sets the maximum burst acceleration size for Page ROM.
1: 128-bit (16 byte)
0 : 64-bit (8 byte)
D[11] Reserved Write 0 when writing. O is returned after a read.
D[10] PAGEROM2 This is the page ROM access enable bit for the ROM space in banks 3 and 2 (16-bit
mode) or in bank 1 (32-bit mode).
1: Page ROM
0: Ordinary ROM
D[9] Reserved Write 0 when writing. O is returned after a read.
D[8] PAGEROMO This is the page ROM access enable bit for the ROM space in banks 1 and 0 (16-bit

mode) or in bank 0 (32-bit mode).
1: Page ROM
0: Ordinary ROM

236

CHAPTER 10 BCU (BUS CONTROL UNIT)

(2/2)
Bit Name Function
D[7] Reserved Write O when writing. O is returned after a read.
D[6] ROMWEN2 This enables flash memory write and issues a flash memory register read-only bus

cycle for the ROM space in banks 3 and 2 (16-bit mode) or in bank 1 (32-bit mode).
1: Enable (Not affected by PAGEROM2)

0: Prohibit
D[5] Reserved Write O when writing. O is returned after a read.
D[4] ROMWENO This enables flash memory write and issues a flash memory register read-only bus

cycle for the ROM space in banks 1 and 0 (16-bit mode) or in bank 0 (32-bit mode).
1: Enable (Not affected by PAGEROMO)

0 : Prohibit

D[3..2] Reserved Write O when writing. O is returned after a read.

D[1] BUSHERREN This is the bus timeout detection enable bit, which is used when a bus hold has been
received.

1: Performs timeout detection when a bus hold has been received.
0 : Does not perform timeout detection when a bus hold has been received.

DI[O] RSTOUT RSTOUT control bit
1: High level
0: Low level

This register is used to set parameters such as the bus interface’s bus cycle.

For the setting of the PAGEROM2 and ROMWEN?2 bits, the target ROM area differs depending on a data bus
mode. The access target ROM area is banks 3 and 2 in 16-bit data bus mode, and bank 1 in 32-bit data bus mode.

For the setting of the PAGEROMO and ROMWENQO bits, the target ROM area differs depending on the data bus
mode. The access target ROM area is banks 1 and 0 in 16-bit data bus mode, and bank 0 in 32-bit data bus mode.

When a timeout is detected while the BUSHERREN bit is set to 1, the BERRST bit of the BCUERRSTREG
register is set to 1 and an interrupt request is sent to the CPU. The RSTOUT pin is set to high to request bus release
from the external bus master.

237

CHAPTER 10

BCU (BUS CONTROL UNIT)

10.2.2 BCUCNTREG 2 (0x0B00 0002)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved GMODE
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O when writing. 0 is returned after a read.

D[0] GMODE This is the access data control bit for LCD space.
1: Do not invert the access data for LCD space
0 : Invert the access data for LCD space

This register is used to specify whether data is inverted (translated to 2's complement) or not when accessing the

LCD space.

The LCD space is accessed when the ISAM/LCD bit of BCUCNTREGL1 is 0. When it is 1, this address space is
used as the ISA high-speed memory space. In this case, the contents of the BCUCNTREG?2 register are invalid, and

inversion of access data is not performed.

238

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.2.3 BCUSPEEDREG (0x0B0O 000A)

(1/2)
Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved | WPROM[1] | WPROMIO] Reserved | WLCD/M[2] | WLCD/M[1] | WLCD/M[0]
R/W R R R/W R/W R R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved | WISAA[2] | WISAA[1] | WISAA[O] | Reserved | WROMA[2] | WROMA[1] | WROMAIQ]
R/W R R/W R/W R/W R R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15..14] Reserved Write 0 when writing. O is returned after a read.
D[13..12] WPROM[1..0] Page ROM access speed
11: RFU
10: 1TClock
01: 2TClock
00 : 3TClock
D[11] Reserved Write 0 when writing. O is returned after a read.
D[10..8] WLCD/M[2..0] Access speed to physical address space from 0x0OA00 0000 to OxOAFF FFFF
LCD(ISAM/LCD=0) ISA-MEM(ISAM/LCD=1)
111: RFU 1TClock
110: RFU 2TClock
101: RFU 3TClock
100 : RFU 4TClock
011: 2TClock 5TClock
010: 4TClock 6TClock
001 : 6TClock 7TClock
000 : 8TClock 8TClock
D[7] Reserved Write 0 when writing. O is returned after a read.

239

CHAPTER 10 BCU (BUS CONTROL UNIT)

2/2)

Bit

Name

Function

DI6..4]

WISAA[2..0]

System bus access speed
111:
110:
101:
100 :
011:
010:
001 :
000 :

RFU. Operation is not guaranteed when this value has been set.
RFU. Operation is not guaranteed when this value has been set.
3TClock "*

4TClock "™

5TClock

6TClock

7TClock

8TClock

D[3]

Reserved

Write O when writing. O is returned after a read.

D[2..0]

WROMA[2..0]

ROM access speed
111:
110:
101:
100:
011:
010:
001 :
000 :

2TClock
3TClock
4TClock
5TClock
6TClock
7TClock
8TClock
9TClock

Note When the WISAA [2:0] bits are set to 101 or 100, the AC characteristics between BUSCLK and the system
bus interface signals (ADD [25:0], SHB#, MEMR#, MEMWH#, IOR#, and IOW#) are not guaranteed.

This register is used to set the access speed for the LCD, system bus, page ROM, and ROM.

The lowest speed is set when “0” is set to all of the following bits: WLCD/M[2..0], WPROM][1..0], WISAA[2..0],
and WROMA[2..0]. Setting “1” to all of these bits sets the highest speed.

The value set to WPROM][1..0] is valid only when “1" has been set to the PAGEROM bit in BCUCNTREG.

240

CHAPTER 10

BCU (BUS CONTROL UNIT)

10.2.4 BCUERRSTREG (0x0B00 000C)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved BERRST
R/W R R R R R R R R/W1C
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O when writing. 0 is returned after a read.

D[0] BERRST Bus error status. Clear to 0 when 1 is written.
1: Bus error
0: Normal

This register is used to indicate when a bus error interrupt request has occurred.

241

CHAPTER 10

BCU (BUS CONTROL UNIT)

10.2.5 BCURFCNTREG (0x0B00O O0OE)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved BRF[13] BRF[12] BRF[11] BRF[10] BRF[9] BRF[8]
RIW R R RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 1 0
Other resets 0 0 Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name BRF[7] BRF[6] BRF[5] BRF[4] BRF[3] BRF[2] BRF[1] BRF[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets | Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit Name Function
D[15..14] Reserved Write 0 when writing. 0 is returned after a read.

D[13..0] BRF[13..0] Use this bit to set the number of refresh cycles (with TClock cycle).

This register is used to specify the number of refresh cycles (with Tclock cycle).

242

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.2.6 REVIDREG (0x0B00 0010)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name RID[3] RID[2] RID[1] RID[0] MJIREV[3] | MJREV[2] | MJIREV[1] | MJIREV[0]
RIW R R R R R R R R
RTCRST 0 0 0 1 Undefined Undefined Undefined Undefined
Other resets 0 0 0 1 Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved MNREVI[(3] | MNREVI[2] MNREV[1] | MNREVI[O0]
R/W R R R R R R R R
RTCRST 0 0 0 0 Undefined Undefined Undefined Undefined
Other resets 0 0 0 0 Undefined Undefined Undefined Undefined

Bit Name Function
D[15..12] RID[3:0] This is the processor revision ID. 0x01 indicates the VR4102.

D[11..8] MJREV([3..0] Major revision number
D[7..4] Reserved Write 0 when writing. 0 is returned after a read.
D[3..0] MNREV[3..0] Minor revision number

This register is used to indicate revisions of the VR4102's peripheral units.

The revision number is stored as a value in the form y.x, where y is a major revision number and x is a minor
revision number.

Major revision number and minor revision number can distinguish the revision of the CPU and the peripheral
units, however there is no guarantee that changes to the CPU and the peripheral units will necessarily be reflected in
this register, or that changes to the revision number necessarily reflect real CPU’s and units’ changes. For this
reason, these values are not listed and software should not rely on the revision number in PREVIDREG to
characterize the units.

243

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.2.7 BCURFCOUNTREG (0x0B00 0012)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved BRFC[13] BRFC[12] BRFC[11] BRFC[10] BRFC[9] BRFC[8]
RIW R R RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name BRFC[7] BRFC[6] BRFC[5] BRFC[4] BRFC[3] BRFC[2] BRFC[1] BRFC[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..14] Reserved Write 0 when writing. 0 is returned after a read.

D[13..0] BRFCJ[13..0] This is the down counter that counts the number of refresh cycles (with TClock cycle).

This register is used to indicate the current refresh cycle count value.

244

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.2.8 CLKSPEEDREG (0x0B00 0014)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name DIv2B Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved CLKSP[4] CLKSP[3] CLKSP[2] CLKSP[1] CLKSP[0]
R/W R R R R R R R R
RTCRST 0 0 0 Undefined Undefined Undefined Undefined Undefined
Other resets 0 0 0 Undefined Undefined Undefined Undefined Undefined

Bit Name Function
D[15] DIvV2B The multiplier of TClock frequency. This bit always indicates 0 in the current VR4102.

1: Reserved
0: Multiplied by 16
D[14..5] Reserved Write 0 when writing. O is returned after a read.
D[4..0] CLKSP[4..0] These bits indicate the value used to calculate the frequency of PClock and TClock.

This register is used to indicate the value to calculate the frequencies of the peripheral unit's operating clock
(TClock) and CPU core’s operating clock (PClock). The PClock frequency obtained from this register’s setting is the
same as the frequency selected by setting CLKSEL[2:0] pins.

The following method is used to calculate TClock frequency.

TClock = (18.432 MHz/CLKSP[4..0])*16

The following method is used to calculate PClock frequency.

PClock = (18.432 MHz/CLKSPI[4..0])*32

245

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.3 CONNECTION OF ADDRESS PINS

Physical address output from the CPU core is provided to external devices through ADD bus. The
correspondence between the address output to ADD bus and the address bits of external devices differs depending
on the external devices as shown in Table 10-2. Therefore, connect ADD bus and address pin of the external device
as shown in Table 10-3.

Table 10-2. Address Bit Correspondence between ADD Bus and External Devices

Devices connected ADD bus

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
ROM, LCD, ISA, 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
DRAM (ROW)
DRAM(COLUMN), |[O 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 19 20 19 20 21 22 23 24 25
DATA [15:0]
DRAM(COLUMN), [0 1 2 3 4 5 6 7 8 21 2 3 4 5 6 7 8 19 20 19 20 21 22 23 24 25
DATA [31:0]

Table 10-3. Address Connection Table with External Devices
VRrR4102 pin Address bits of external devices
16M-bit DRAM 64M-bit DRAM, 64M-bit DRAM,
DATAJ[15..0] DATA[31..0]

ADDI9] A0 A0 A0

ADDI[10] Al Al Al

ADDJ[11] A2 A2 A2

ADDI[12] A3 A3 A3

ADDJ[13] A4 A4 A4

ADDJ[14] A5 A5 A5

ADDJ15] A6 A6 A6

ADDI[16] A7 A7 A7

ADDJ[17] A8 A8 A8

ADDI[18] A9 A9 A9

ADDI[19] AL10/NC™** - -

ADD[20] A11/NC™** A12/NC"*? A12/NC"°

ADDJ[21] - A10 -

ADDI[22] - A1l A10

ADDI[23] - - All

Notes 1. A10, All: uPD42S16165, NC : uPD42S18165

246

2. Al2: uPD42S64165, NC : uPD42S65165
3. Al2: PD42S64165, NC : uPD42S65165

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.4 NOTES ON USING BCU

10.4.1 CPU Core Bus Modes
The VR4102 is designed on the assumption that the CPU core is set to the following mode.

* Writeback datarate : D
« Accelerate data ratio : VR4x00 compatible mode

Therefore, set the Config Register as below:

« EP:0000
e AD:O

10.4.2 Access Data Size
In the VR4102, access size is restricted for each address space. Access sizes for the following address spaces

are listed below.

Table 10-4. Access Size Restrictions for Address Spaces

Address space R/W Access size (bytes) Remark

16 8 4 3 2 1

ROM/PageROM R ©) ©) ©) O O @)

Flash memory W x x A x A x Note 1

System bus I/0 space R/W O O O X O O

System bus memory space R/W ©) @) @) x O O

On-chip I/O space 1 R/W ©) ©) ©) X @) @)

On-chip I/O space 2 R/W x @) @) x O x

LCD space R/W X O O X O O Notes 2, 3

High-speed system bus memory space R/W x O @) x O O | Note 3

DRAM R/IW O O O o o o

Notes 1. The access size when writing to flash memory must be the same as the data bus width such as below;
In 32-bit mode: 4 bytes
In 16-bit mode: 2 bytes
2. Use as uncached.
The LCD space and high-speed system bus memory space are mapped to the same physical
address.
Use BCUCNTREG1's ISAM/LCD bit to switch between the two.

Remark O, A : accessible, x : not accessible

247

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.4.3 ROM Interface

1)

)

248

Switching among ROM, PageROM, and Flash Memory Modes

The VR4102 supports three modes (ROM, PageROM and Flash Memory). The mode setting in ROM bank 3/2 is
set via BCUCNTREG1's ROMWEN2 and PAGEROM?2 bits, and the mode setting in ROM bank 1/0 is set via the
ROMWENO and PAGEROMO bits. In Ordinary ROM mode or Flash Memory mode, the VR4102 can access to
memories regardless of its mode name. Table 10-5 shows accessible memory types and methods of access in
each mode.

Table 10-5. Summary of ROM Modes

Mode Setting Access-enabled devices
ROMWEN2/0 PAGEROM2/0 Memory read Flash Memory Flash Memory
register read write

Ordinary ROM 0 0 Ordinary ROM N/A N/A
PageROM
Flash Memory

PageROM 0 1 PageROM N/A N/A

Flash Memory 1 don't care Ordinary ROM Flash Memory Flash Memory
PageROM
Flash Memory

Remark The initial setting is Ordinary ROM mode.

Access Speed Setting

The VR4102 enables the access speed to be changed when operating in Ordinary ROM mode or PageROM
mode.

For details, see 10.5.1.

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.4.4 Flash Memory Interface

(1) Notes for Specific Modes
The following two modes are available for flash memory.

@)

Ordinary ROM mode (memory read only)
Flash Memory mode (supports memory write and register read)

The following notes apply to these modes.

(a) Notes for Ordinary ROM mode

* Write is prohibited
The WR# pin is not asserted even when a write operation is attempted.

* Flash memory register read is prohibited
The Ordinary ROM mode is the mode in which bus cycles suite for memory read operations are issued.
Since the AC characteristics of flash memory are different for register read and memory read operations,
accurate data cannot be obtained by reading the flash memory register while in this mode.

(b) Notes for Flash Memory mode

« Be sure to access in double-byte units when writing to flash memory.

Example of write sequence for flash memory

An example of a write sequence for flash memory is shown below.

Caution This example’s operations have not been confirmed using an actual system.

~N o o WN

Using GPIO as an output port, apply the flash memory write voltage (Vep).

If the VR4102's on-chip GPIOs cannot be used, set up an external output port and then control the write
voltage.

Set the VR4102 to flash memory mode (Set “1” to the BCUCNTREG’s ROMWEN bit).

Wait until the flash memory write voltage become stable.

Issue the flash memory write command from the VR4102.

Write data from the VR4102 to flash memory.

Wait until the flash memory write completion signal (ry/by) becomes stable.

Wait until the flash memory write completion signal gives notification of write completion.

After write to flash memory is completed, notification can be obtained by receiving an interrupt from the flash
memory write completion signal (ry/by) or by polling the flash memory register.

Read the flash memory register.

« If write succeeded, start processing from “9”.

« If write failed, start processing from “12".

If writing new data to flash memory, start processing from “4”.

If write to flash memory is completed, start processing from “10".

249

CHAPTER 10 BCU (BUS CONTROL UNIT)

10 Compare the data written to flash memory with the original data.
« If the data matches, perform processing at “11".
¢ If the data does not match
Start processing from “1” when rewriting.
If processing is interrupted, start processing from “11”.
11 Reduce the flash memory write voltage (Vee) and end processing after flash memory mode has been
canceled.
12 Clear any error data in the flash memory register.
e If writing again
If the write voltage is too low, start processing from “1”.
In all other cases, start processing from “4”.
« If processing is completed, perform processing at “11”".

10.4.5 LCD Control Interface

(1) Access Size
Available access sizes for accessing the LCD controller interface are 1 byte, 2 bytes, 4 bytes, and 8 bytes.

(2) Data Inversion
When “0” has been set to the BCUCNTREG1's ISAM/LCD bit and to BCUCNTREG2's GMODE bit, the VR4102

inverts the bits in the data being read or written via the LCD controller interface.

Table 10-6. Example of Bit Inversion in Data in V. R4102 and at DATA [15:0] Pins

Data in VR4102 | Data at DATA [15:0] Pins

0x0000 OxFFFF
OxA5A5 Ox5A5A
0x1234 OXxEDCB

250

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.4.6 lllegal Access Notification

(1) Types of lllegal Access
Under the following circumstances, the VR4102 provides notification concerning illegal access of the CPU core.

* Bus deadlock
If CBR refresh does not occur at least twice, a deadlock is judged as having occurred due to the non-return of

a ready signal via the system bus or LCD controller interface, in which case natification of illegal access is

given.

» Address space reserved for future use
Notification of illegal access is given when the processor has accessed any of the following addresses.
O0xOFFF FFFF to 0x0C00 0000
0x09FF FFFF to 0x0400 0000

(2) Notification Method for lllegal Access
The methods used to notify the CPU core are listed below.

Table 10-7. lllegal Access Notification Methods

Access type lllegal access notification method

Processor read request Notification by bus error caused by SysCmd

Processor write request | Notification by interrupt exception (Int0)

Remark To clear the interrupt source caused by a processor write request, write “1” to BCUERRSTREG's
bit1.

251

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.5 BUS OPERATIONS

The bus operations of buses controlled by the BCU are described below.
The BCU's operating clock (TClock) appears in the timing chart for each bus operation.

Remark # that follows signal names indicates active low.

10.5.1 ROM Access
The VR4102 supports the following three modes for ROM access.
Use BCUCNTREG1's PAGEROM2/0 bits and ROMWENZ2/0 bits to set the mode.

e Ordinary ROM read mode (ROMWEN, PAGEROM = 00)
e PageROM read mode (ROMWEN, PAGEROM = 01)
e Flash Memory mode (ROMWEN = 1)

(1) Ordinary ROM Read Mode
Set ROMWEN = 0 and PAGEROM = 0.
WROMA[2:0] (BCUSPEEDREG [2:0]) can be used to set the access time.
Figures 10-1 and 10-2 show 4-byte read timing chart data for when WROMA [2:0] is set to “110". If access uses
a data size larger than 4 bytes, the Trom cycle is continued until the required access size is reached.

Table 10-8. Access Times during Ordinary ROM Read Mode

WROMA [2:0] | Trom (TClock)

000

001

010

011

100

101

110

N|w ||| |[N]|]00]|©

111

252

CHAPTER 10 BCU (BUS CONTROL UNIT)

Figure 10-1. ROM 4-byte Read, 16-bit Mode (WROMA[2:0] = 110)

Trom —p»] Trom —p
TClock(internal)

ADD[25:0] X X
ROMCS[3.0}# |\ |
S W i WY S

DATAUS0] J])rereresenee (e O

Remark The dotted lines indicate high impedance.

Figure 10-2. ROM 4-byte Read, 32-bit Mode (WROMA[2:0] = 110)

Trom —p|
TClock(Internal)

ADDI[25:0] X

ROMCS[3:0]# \ [
RD# __/

v
DATAIBLO] JJ)errreeeeeeseeses - (O

Remark The dotted lines indicate high impedance.

Data is sampled at the rising edge of the TClock following the last Trom-state TClock.
The bus operation types for ordinary ROM are as follows.

1-byte read, 2-byte read, 3-byte read, 1-word read, 2-word read, and 4-word read (1 word = 4 bytes)

253

CHAPTER 10 BCU (BUS CONTROL UNIT)

(2) PageROM Read Mode
Set ROMWEN = 0 and PAGEROM = 1.
WROMA[2:0] (BCUSPEEDREG [2:0]) and WPROM[1:0] (BCUSPEEDREG [13:12]) can be used to set the
access time.
Figures 10-3 and 10-4 show 16-byte read timing charts for when WROMA [2:0] is set to “111” and WPROM [1:0]
is set to “10". The ROMCS[3:0]# and RD# pins are held at low level during Trom cycles.

Table 10-9. PageROM Read Mode Access Time

WROMA [2:0] [Trom (TClock) WPROM [1:0] | Tprom (TClock)

000 9 00 3

001 8 01 2

010 7 10 1

011 6 11 RFU

100 5

101 4

110 3

111 2

Figure 10-3. PageROM 4-word Read, 16-bit Mode (WROMA[2:0] = 111, WPROM][1:0] = 10)

Trom Tprom Tprom Tprom Tprom Tprom Tprom Tprom

ADDI[25:0] X XX XK XXX X
ROMCS[3:0]# \ /

RD# \ /
LANE A A A AR A A
DATA[15:0] ID C X X X X X X X YU

Remark The dotted lines indicate high impedance.

254

CHAPTER 10 BCU (BUS CONTROL UNIT)

Figure 10-4. PageROM 4-word Read, 32-bit Mode (WROMA[2:0] = 111, WPROM[1:0] = 10)

Trom Tprom Tprom Tprom

[t >{e—>

ADDI[25:0] X X X X
ROMCS|[3:0}# \ /

L A
DATA[31:0] ID { X X X R {{{

Remark The dotted lines indicate high impedance.

(3) Flash Memory Mode

Set ROMWEN = 1.
This mode is used to meet the electrical characteristics required for writing to flash memory and for accessing

the flash register. This mode can also be used to read to flash memory.
Note that the access time is constant when in this mode.

Figure 10-5. Flash Memory Mode, 2-byte Access

L Flash Memory mode access cycle L
= >
ADD[25:0] X
ROMCSI[3:0}# \ [
RD#/WR# \ l

255

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.5.2 System Bus Access

(1) Bus Operations in System Bus
WISAA[2:0] (BCUSPEEDREG [6:4]) can be used to set the access time.

Table 10-10. System Bus Access Times

WISAA [2:0] | Tisa (TClock)
000 8
001 7
010 6
011 5
100 4
101 3
110 RFU
111 RFU

Figure 10-6. 1-byte Access to Even Address Using 16-bit Bus (WISAA[2:0] = 101)

| | Tisa | Tisa | Tisa | |

TCIock(InternaI)l|||||||||||||||||||||||

ADD[25:0] X

SHB# H
IOCS16# \
MEMCS16#

IOR#/IOW#
MEMR#/MEMW#

—
—

_— P

IOCHRDY

O
P
P

ZWSH# /

DATA[15:0](Write)]

DATA[15:0](Read)) ... (.).(

Remark The dotted lines indicate high impedance.

256

CHAPTER 10 BCU (BUS CONTROL UNIT)

Figure 10-7 illustrates 2-byte access when sampling IOCHRDY at high level. If the system bus access time has
been set as three TClocks (WISAA[2:0] = 101), the bus cycle will end after waiting for at least 3 TCLocks (Tisa
periods) after the ready signal is sampled using IOCHRDY.

Sampling of the IOCHRDY signal occurs at the rising edge of the TClock that follows the second or subsequent
Tisa period.

Figure 10-7. 2-byte Access when Sampling IOCHRDY at High Level Using 16-bit Bus (WISAA[2:0] = 101)

| | Tisa | Tisa | Tisa | |
reocmernay [L L LT LT LI LT LT LT LI LI LT 1L

ADD[25:0] X

SHB# L

I0CS16# \ /}\
MEMCS16# S
\

IOR#/IOW#
MEMR#/MEMW#

IOCHRDY

ZWSH /

DATA[15:0]
(Write) X

LB =) RPN NS
o R— <

Remark The dotted lines indicate high impedance.

257

CHAPTER 10 BCU (BUS CONTROL UNIT)

Figures 10-8 and 10-9 show timing charts for 1-byte access.

Figure 10-8. 1-byte Access to Odd Address Using 16-bit Bus (WISAA[2:0] = 101)

Tisa | Tisa | Tisa

TClock(Internal) I_|_l_| I_I I_I I_I I_I I_I I |_| |_| |_| |_I_|_
X

ADD[25:0]

SHB#

I0CS16#
MEMCS16#

IOR#/IOW#
MEMR#/MEMW#

IOCHRDY

Z\WSH

DATA[15:0]
(Write)

DATA[15:0]
(Read)

TClock(Internal) I

ADDI[25:0]
SHB#

I0CS16#
MEMCS16#

IOR#/IOW#
MEMR#/MEMW#

IOCHRDY

ZWS#

DATA[15:0]

(Write)

DATA[15:0]
(Read)

258

Remark The dotted lines indicate high impedance.

Figure 10-9. 1-byte Access to Odd Address Using 8-bit Bus (WISAA[2:0] = 101)

Tisa ‘ Tisa | Tisa

X

Remark The dotted lines indicate high impedance.

CHAPTER 10 BCU (BUS CONTROL UNIT)

Figures 10-10 and 10-11 illustrate 2-byte access when sampling ZWS# at low level. The bus cycle will end after
waiting for at least 1 TCLock (Tisa period) after the ready signal is sampled using ZWS#.

Sampling of the ZWS# signal occurs at the rising edge of the TClock that follows the second or subsequent Tisa
period.

Figure 10-10. 2-byte Access when Sampling ZWS# at Low Level on 16-bit Bus (WISAA[2:0] = 101)
| | Tisa | Tisa | |
reockeneerma) [L L L LJ LJ L |

ADD[25:0] X

SHB# L

I0CS16# \ A
MEMCS16# —
\

IOR#/IOW#
MEMR#/MEMW#

IOCHRDY

by

DATA[15:0]
(Write) X

DAT?é]éil:g% : ... @ C

Remark The dotted lines indicate high impedance.

259

CHAPTER 10 BCU (BUS CONTROL UNIT)

Figure 10-11. 2-byte Access when Sampling ZWS# at Low Level on 8-bit Bus (WISAA[2:0] = 101)

| | Tisa | Tisa | | Tisa | Tisa

TClock(Internal)

ADDI[25:0] X X

I0Cs16# .,
MEMCS16# /M(

IOR#IOW# \
MEMR#MEMW#

P al))

IOCHRDY

- o ——

DATA[15:0]
(Write) X X

DAT/(A'[éig} : ... @ ... @

Remark The dotted lines indicate high impedance.

(2) Bus Operations in High-Speed System Bus
The space of physical address from 0x0A00 0000 to OXOAFF FFFF can be used as the high-speed system bus
memory space by setting the ISAM/LCD bit of BCUCNTREG1. WLCD/M [2:0] (BCUSPEEDREG [10:8]) can be
used to set the access time for access to this space, as shown in the table below.

Table 10-11. High-Speed System Bus Access Times

WLCD/W [2:0] Tisa (TClock)

000

001

010

011

100

101

N | W ||l | N |

110

111 1

260

CHAPTER 10 BCU (BUS CONTROL UNIT)

Figure 10-12. 2-byte Access on 16-bit Bus (WLCD/M[2:0] = 101)

Tisa Tisa Tisa
TCIock(internaI)| |
ADD (25:0) X
SHB# L

LcDCS# \ /
MEMCS16# \ { { i i { { /
MEMR#/MEMW# \ /

IOCHRDY / \
zws# / \

DATA (15:0) X
(Write)

T B S— e ' A

Figure 10-13. 1-byte Access on 8-bit Bus (WLCD/M[2:0] = 101)

| | Tisa | Tisa | Tisa |
TCIock(internaI)| |
ADD (25:0) X
SHB# H

LCDCS# \ /
MEMCS16# \ # # ‘ ‘ # # /
MEMR#/MEMW# \ /

IOCHRDY / \
Z\WS# / \

DATA (15:0) X
(Write)

T s S——— —._ A

261

CHAPTER 10 BCU (BUS CONTROL UNIT)

Figure 10-14. 2-byte Access when Sampling ZWS# at Low Level
on 16-bit Bus (WLCD/M[2:0] = 101)

\ \ Tisa \ Tisa \

roockanemay || || [L[L] L L1 L1 LI [

ADD (25:0) X

SHB# L

LCDCS# \ /

MEMCS16# \ i f {

MEMR#/MEMW# \ /

IOCHRDY

wsi N A

DATA (15:0)
(Write) X

. Hi-z
] o

Figure 10-15. 1-byte Access when Sampling ZWS# at Low Level
on 8-bit Bus (WLCD/M[2:0] = 101)

\ | Tisa | Tisa |

TClock (internal) | | | | | | | | | | | | | | | | | |_

ADD (25:0) X

SHB# H

LCDCS# \ /

MEMCS16# \ { { {

MEMR#MEMW# \ /

IOCHRDY

ZWSH \ i i i /
DATA (15:0
(\(Nrite; X

DATA (15:0 Hi-z
(I(?ead; ------------------------------------ ()"-“(

262

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.5.3 LCD Interface
The space of the physical address, from 0xOA00 0000 to OXOAFF FFFF can be used as the LCD space by setting
the ISM/LCD bit of the BCUCNTREG1. WLCD/M[2:0] (BCUSPEEDREG [10:8]) can be used to set the access time.

Table 10-12. Access Times for LCD Interface

WLCD/M Tlcd (TClock)
[2:0]

000
001
010
011
100 - 111 RFU

N |~ |O |00

Figure 10-16. 2-byte Access to LCD Controller (WLCD/M[2:0] = 010)

| | |«—— Ticd ——»|
TClock(Internal)

ADD[25:0] X
LCDCSH# \ [
RD#/\WR# S\ /

h
LCDRDY [X

Figure 10-17. 2-byte Access to LCD Controller (WLCD/M[2:0] = 011)

Wait cycle insertion via LCDRDY signal

| | | I | | Tiea | |
TClock(Internal) I l I l I l I l I l I l I l I | I l I l I l I l I l

ADDI[25:0] X

SHB# L

LCDCs# \ /
RD#/WR# \ /

LCDRDY O\ /y—\ é /

DATA[15:0]
(Write) X

DATA[15:0]
(Read) >. .. (/\>.(

Remark The dotted lines indicate high impedance.

263

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.5.4 DRAM Access (EDO Type)
The access time is constant for DRAM.

TClock(Internal)

Figure 10-18. 4-byte Access to DRAM (16-bit Mode)

B R S I S I O B

MRAS[3:0]# \

UCASH#/LCAS#

/S S

ADDJ[25:19)/
ADDI[8:0]

X Row X

ADD[18:9]

RD#/WR#

DATA[15:0]
(Read)

DATA[15:0]
(Write)

TClock(Internal)

MRASI[1:0]# \

UUCAS#/ULCASH#/
UCASH#/LCASH#

ADDI[25:19]/
ADDI[8:0]

ADD[18:9]

RD#/WR#

DATA[31:0]
(Read)

DATA[31:0]
(Write)

264

Col. X

_ /

NI — (om0 X e Y77]TT]]

LTI T K pamo X

Datal

Remark The dotted lines indicate high impedance.

Figure 10-19. 8-byte Access to DRAM (32-bit Mode)

N S A A B I I I

/S

X Row A

Col. X

_ /

DR —— (o0 X o Y- TTTT]]

LTI T T X paeo X

Datal

Remark The dotted lines indicate high impedance.

CHAPTER 10 BCU (BUS CONTROL UNIT)

TClock(Internal)

MRAS[3:0]#

UCAS#

LCAS#

ADD[20:19]

ADD[18:9]

RD#

DATA[15:0]

TClock(Internal)

MRAS[3:0]#

UCAS#

LCAS#

ADD[20:19]

ADDI[18:9]

RD#

DATA[15:0]

Figure 10-20. Byte Read of Odd Address in DRAM (16-bit Mode)

A Row X
X Row X Col. X Col. X

Remark The dotted lines indicate high impedance.

Figure 10-21. Byte Read of Even Address in DRAM (16-bit Mode)

| S I A N S R
\ / _
/

X Row X
X _rw X Col X co. X
\ /
WITTTITD e —— { oaa Yy TTTTTTTTTTT]

Remark The dotted lines indicate high impedance.

265

CHAPTER 10 BCU (BUS CONTROL UNIT)

266

TClock(Internal)

MRAS[3:0]#

UCAS#

LCAS#

ADDI[20:19]

ADDI[18:9]

WR#

Figure 10-22. Byte Write to Odd Address in DRAM (16-bit Mode)

X Row

X

A rw X

Col.

X Col.

X

\

oarattsol [/ TTTTTTTT X

TClock(Internal)

Data

Figure 10-23. Byte Write to Even Address in DRAM (16-bit Mode)

MRAS[3:0]# \

UCAS#

LCAS#

ADD[20:19]

ADD[18:9]

WR#

DATA[15:0]

/

_/

X Row

[T TR

Data

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.5.5 Refresh
The VR4102 supports CBR refresh and self refresh.

(1) CBR Refresh

Figure 10-24. CBR Refresh (16-bit Mode)

TCIock(InternaI)l|||||||||||||||||

MRAS# \ / \
UCASH#/LCAS# \ /

WR#

(2) Self Refresh

Figure 10-25. Self Refresh (16-bit Mode)

TClock(Internal) |__I__I__‘_I_:__|_l__‘_‘_|_l_|_l._‘_‘_|_l
MRASH | | -

UCASH#/LCASH# \ B /

WR#

267

CHAPTER 10 BCU (BUS CONTROL UNIT)

10.5.6 Bus Hold

Caution The BUSCLK signal is fixed at low level during execution of the SUSPEND instruction.
Consequently, while the SUSPEND instruction is being executed, the bus is being used by an
external master device and cannot be used for BUSCLK.

Figure 10-26. Bus Hold in Fullspeed Mode

(a) Transition to Bus Hold from Ordinary Operation

TCIock(InternaI)|||||||||||||||||||||||||
MasterOut(Internal) I

HLDRQ# \ l

HLDACK# \
Note 1 / \ ...
Note 2) ...
BUSCLK]

(b)Transition to Ordinary Operation from Bus Hold

MasterOut(Internal) | l [l | l l | l

HLDRQ# /
HLDACK# /

NOte 1 -esemeersassssmsessssassasnsnnnans ./ \
NOtE 2 serrmssssrsssrerinssrsnnanaa (
BUSCLK

Notes 1. UUCAS#MRAS[3]#, ULCAS#MRAS|[2]#, MRAS[1..0]#, UCAS#, LCAS#
2. SHB#, IOR#, IOW#, MEMR#, MEMW#, RD#, WR#, ADD[25..0], DATA[15..0],
DATA[31..16]/GPIO[31..16] (in 32-bit data bus mode)

Remark The dotted lines indicate high impedance.

268

CHAPTER 10 BCU (BUS CONTROL UNIT)

Figure 10-27. Bus Hold in Suspend Mode

(a) Transition to Bus Hold from Ordinary Operation

MasterOut(Internal) I
HLDRQ# \ ’i

HLDACK# \
Note 1 ’ | OO
Note 2 ’ | OO
Note 3) ...

BUSCLK L

(b) Transition to Ordinary Operation from Bus Hold

MasterOut(Internal) J | | | | | |
!
HLDRQ# [

HLDACK# /

BUSCLK L

Notes 1. UUCAS#/MRASI[3]J#, ULCAS#MRAS[2]#, MRAS[1..0]# (in 16-bit data bus mode)
MRASI1..0J# (in 32-bit data bus mode)
2. UCAS#, LCAS# (in 16-bit data bus mode)
UUCAS#/MRAS#[3], ULCAS#/MRAS|2]#, UCAS#, LCAS# (in 32-bit data bus mode)
3. SHB#, IOR#, IOW#, MEMR#, MEMW#, RD#, WR#, ADD[25..0], DATA[15..0],
DATA[31..16]/GPIO[31..16] (in 32-bit data bus mode)

Remark The dotted lines indicate high impedance.

269

[MEMO]

270

CHAPTER 11 DMAAU (DMA ADDRESS UNIT)

This chapter describes the DMAAU register’'s operations and settings.

11.1 GENERAL

The DMAAU register controls the DMA addresses for the AlU and IrDA 4-Mbps communication module (FIR).

The DMA channel used for each unit can set a DMA start address as any half-word address in the space from
0x0000 0000 to OxO01FF FFFE, and is retained in DRAM as a 2-Kbyte block that starts at the address which is
generated by masking the low-order 10 bits of the DMA start address.

After a DMA start address is set to the DMA base address register, the VR4102 performs DMA transfer using the

registers of DMAAU as below.

(1) When the DMA start address is included in the first page of the DMA space
1. The VR4102 starts a DMA transfer after writing the start address to the DMA address register.
2. When the DMA transfer reaches the first page boundary, the VR4102 adds 1 Kbyte to the contents of the DMA
base address register, writes the value to the DMA address register, and continues the DMA transfer.
3. When the DMA transfer reaches the second page boundary, the VR4102 writes the contents of the DMA base
address register to the DMA address register and continues the DMA transfer.
4. The VR4102 repeats 2. and 3. until all the data is transferred.

(2) When the DMA start address is included in the second page of the DMA space
1. The VR4102 starts a DMA transfer after writing the start address to the DMA address register.
2. When the DMA transfer reaches the second page boundary, the VR4102 subtracts 1 Kbyte from the contents
of the DMA base address register, writes the value to the DMA address register, and continues the DMA

transfer.

3. When the DMA transfer reaches the first page boundary, the VrR4102 writes the contents of the DMA base
address register to the DMA address register and continues the DMA transfer.
4. The VR4102 repeats 2. and 3. until all the data is transferred.

Figure 11-1. DMA Space Used in DMA Transfers

(a) When the DMA start address is included

in the first page of the DMA space

Second page T ? ? T
214|618

First page boundary
fatstot

Base address —

DMA space address

(b) When the DMA start address is included

in the second page of the DMA space

Second page

Base address —

First page boundary

DMA space address

Caution DMA operations are not guaranteed if an address overlaps with another DMA buffer.

271

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

11.2 REGISTER SET

The DMAAU registers are listed below.

Table 11-1. DMAAU Registers

Address R/W Register Symbols Function
0x0B00 0020 R/W AIUIBALREG AIU IN DMA Base Address Register Low
0x0B00 0022 R/W AIUIBAHREG AIU IN DMA Base Address Register High
0x0B00 0024 R/W AIUIALREG AIU IN DMA Address Register Low
0x0B00 0026 R/W AIUIAHREG AIU IN DMA Address Register High
0x0B00 0028 R/IW AIUOBALREG AlU OUT DMA Base Address Register Low
0x0B00 002A R/W AIUOBAHREG AIU OUT DMA Base Address Register High
0x0B00 002C R/W AIUOALREG AlIU OUT DMA Address Register Low
0x0B00 002E R/W AIUCAHREG AIU OUT DMA Address Register High
0x0B00 0030 R/W FIRBALREG FIR DMA Base Address Register Low
0x0B00 0032 R/W FIRBAHREG FIR DMA Base Address Register High
0x0B00 0034 R/W FIRALREG FIR DMA Address Register Low
0x0B0O0 0036 R/W FIRAHREG FIR DMA Address Register High

These registers are described in detail below.

272

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

11.2.1 AIU IN DMA Base Address Registers

(1) AIUIBALREG (0xOB0O 0020)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name AIUIBA[15] | AIUIBA[14] | AIUIBA[13] | AIUIBA[12] | AIUIBA[11] | AIUIBA[10] | AIUIBA[9] | AIUIBA[8]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 1 1 1 1 1 0 0 0
Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name AIUIBA[7] AIUIBA[6] AIUIBA[5] AIUIBA[4] AIUIBA[3] AIUIBA[2] AIUIBA[1] AIUIBA[O]
R/W R/W R/W R/W R/W R/W R/W R/W R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:1] AIUIBA[15:1] DMA base address [15:1] for AlU input
D[0] AIUIBA[O] DMA base address [0] for AlU input

Write 0 when writing. O is returned after a read.
(2) AIUIBAHREG (0x0B00 0022)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name AIUIBA[31] | AIUIBA[30] | AIUIBA[29] | AIUIBA[28] | AIUIBA[27] | AIUIBA[26] | AIUIBA[25] | AIUIBA[24]
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 1
Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name AIUIBA[23] | AIUIBA[22] | AIUIBA[21] | AIUIBA[20] | AIUIBA[19] | AIUIBA[18] | AIUIBA[17] | AIUIBA[16]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 1 1 1 1 1 1 1 1
Other resets 1 1 1 1 1 1 1 1

Bit Name Function
D[15:9] AIUIBA[31:25] DMA base address [31:25] for AlU input

Write 0 when writing. O is returned after a read.
D[8:0] AIUIBA[24:16] DMA base address [24:16] for AlU input

273

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

AIUIBALREG and AIUIBAHREG are used to set the base addresses for the DMA channel used for audio input
(recording).

The addresses set to this register become DMA start addresses.

The DMA channel used for audio input is retained in DRAM as a 2-Kbyte buffer that starts at the address which is
generated by masking the low-order 10 bits of the DMA start address.

274

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

11.2.2 AIU IN DMA Address Registers

(1) AIUIALREG (0x0B00 0024)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name AIUIA[15] AlUIA[14] AIUIA[13] AlUIA[12] AIUIA[11] AIUIA[10] AIUIA9] AIUIA[8]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 1 1 1 1 1 0 0 0
Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name AIUIA[7] AIUIA[6] AIUIA[5] AlIUIA[4] AIUIA[3] AIUIA[2] AIUIA[1] AIUIA[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:0] AIUIA[15:0] Next DMA address [15:0] to be accessed for AlU input channel
(2) AIUIAHREG (0x0B00 0026)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name AIUIA[31] AIUIA[30] AlUIA[29] AlUIA[28] AIUIA[27] AlUIA[26] AlUIA[25] AlUIA[24]
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 1
Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name AlUIA[23] AlUIA[22] AlUIA[21] AIUIA[20] AIUIA[19] AIUIA[18] AIUIA[17] AlUIA[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 1 1 1 1 1 1 1 1
Other resets 1 1 1 1 1 1 1 1

Bit Name Function
D[15:0] AIUIA[31:16] Next DMA address [31:16] to be accessed for AlU input channel

275

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

11.2.3 AIU OUT DMA Base Address Registers

(1) AIUOBALREG (0x0B0O 0028)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name AIUOBA[15] | AIUOBA[14] | AIUOBA[13] | AIUOBA[12] | AIUOBA[11] | AIUOBA[10] | AIUOBA[9] | AIUOBA[8]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 1 1 1 1 1 0 0 0
Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name AIUOBA[7] | AIUOBA[6] | AIUOBA[5] | AIUOBA[4] | AIUOBA[3] | AIUOBA[2] | AIUOBA[1] | AIUOBAJOQ]
R/W R/W R/W R/W R/W R/W R/W R/W R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:1] AIUOBA[15:1] DMA base address [15:1] for AlU output
D[0] AIUOBA[O] DMA base address [0] for AlU output

Write 0 when writing. O is returned after a read.
(2) AIUVOBAHREG (0x0B00 002A)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name AIUOBA[31] [AIUOBA[30] | AIUOBA[29] | AIUOBA[28] | AIUOBA[27] | AIUOBA[26] | AIUOBA[25] | AIUOBA[24]
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 1
Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name AIUOBA[23] | AIUOBA[22] | AIUOBA[21] | AIUOBA[20] | AIUOBA[19] | AIUOBA[18] | AIUOBA[17] | AIUOBA[16]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 1 1 1 1 1 1 1 1
Other resets 1 1 1 1 1 1 1 1

Bit Name Function
D[15:9] AIUOBA[31:25] DMA base address [31:25] for AlU output

Write 0 when writing. O is returned after a read.
D[8:0] AIUOBA[24:16] DMA base address [24:16] for AlU output

276

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

AIUOBALREG and AIUOBAHREG are used to set the base addresses for the DMA channel used for audio output
(playback).

The addresses set to this register become DMA start addresses.

The DMA channel used for audio output is retained in DRAM as a 2-Kbyte buffer that starts at the address which
is generated by masking the low-order 10 bits of the DMA start address.

277

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

11.2.4 AIU OUT DMA Address Registers

(1) AIVOALREG (0x0B00 002C)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name AIUOA[15] | AIUOA[14] | AIUOA[13] | AIUOA[12] | AIUOA[11] | AIUOA[10] AIUOA[9] AIUOA[8]
R/IW R/W R/W R/IW R/IW R/W R/IW R/IW R/IW
RTCRST 1 1 1 1 1 0 0 0
Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name AIUOA[7] AIUOA[6] AIUOA[5] AIUOA[4] AIUOA[3] AIUOA[2] AIUOA[1] AIUOA[0]
R/IW R/W R/W R/IW R/IW R/W R/IW R/IW R/IW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:0] AIUOA[15:0] Next DMA address [15:0] to be accessed for AlU output channel
(2) AIUOAHREG (0x0B00 002E)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name AIUOA[31] | AIUOA[30] [AIUOA[29] | AIUOA[28] | AIUOA[27] | AIUOA[26] | AIUOA[25] | AIUOA[24]
R/IW R R R R R R R R/IW
RTCRST 0 0 0 0 0 0 0 1
Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name AIUOA[23] | AIUOA[22] [AIUOA[21] | AIUOA[20] | AIUOA[19] | AIUOA[18] | AIUOA[17] | AIUOA[16]
R/IW R/W R/W R/IW R/IW R/W R/IW R/IW R/IW
RTCRST 1 1 1 1 1 1 1 1
Other resets 1 1 1 1 1 1 1 1

Bit Name Function
D[15:0] AIUOA[31:16] Next DMA address [31:16] to be accessed for AlU output channel

278

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

11.2.5 FIR DMA Base Address Registers

(1) FIRBALREG (0x0B00 0030)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name FIRBA[15] | FIRBA[14] | FIRBA[13] | FIRBA[12] | FIRBA[11] | FIRBA[10] | FIRBA[9] FIRBA[8]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 1 1 1 1 1 0 0 0
Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name FIRBA[7] FIRBA[6] FIRBA[5] FIRBA[4] FIRBA[3] FIRBA[2] FIRBA[1] FIRBA[O]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:0] FIRBA[15:0] FIR DMA base address [15:0]

(2) FIRBAHREG (0x0B00 0032)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name FIRBA[31] | FIRBA[30] | FIRBA[29] | FIRBA[28] | FIRBA[27] | FIRBA[26] | FIRBA[25] | FIRBA[24]
RIW R R R R R R R RIW
RTCRST 0 0 0 0 0 0 0 1
Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name FIRBA[23] | FIRBA[22] | FIRBA[21] | FIRBA[20] | FIRBA[19] | FIRBA[18] | FIRBA[17] | FIRBA[16]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 1 1 1 1 1 1 1 1
Other resets 1 1 1 1 1 1 1 1

Bit Name Function
D[15:9] FIRBA[31:25] FIR DMA base address [31:25]

Write O when writing. 0 is returned after a read.
D[8:0] FIRBA[24:16] FIR DMA base address [24:16]

FIRBALREG and FIRBAHREG are used to set the base addresses for the FIR DMA channel.
The addresses set to this register become DMA start addresses.
The FIR DMA channel is retained in DRAM as a 2-Kbyte buffer that starts at the address that is generated by
masking the low-order 10 bits of the DMA start address.

279

CHAPTER 11 DMAAU (DMA ADDR ESS UNIT)

11.2.6 FIR DMA Address Registers

(1) FIRALREG (0x0OB0O 0034)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name FIRA[15] FIRA[14] FIRA[13] FIRA[12] FIRA[11] FIRA[10] FIRA[9] FIRA[8]
R/IW R/W R/W R/IW R/IW R/W R/IW R/IW R/IW
RTCRST 1 1 1 1 1 0 0 0
Other resets 1 1 1 1 1 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name FIRA[7] FIRA[6] FIRA[5] FIRA[4] FIRA[3] FIRA[2] FIRA[1] FIRA[O]
R/IW R/W R/W R/IW R/IW R/W R/IW R/IW R/IW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:0] FIRA[15:0] Next DMA address [15:0] to be accessed by FIR channel
(2) FIRAHREG (0x0B00 0036)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name FIRA[31] FIRA[30] FIRA[29] FIRA[28] FIRA[27] FIRA[26] FIRA[25] FIRA[24]
R/IW R R R R R R R R/IW
RTCRST 0 0 0 0 0 0 0 1
Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name FIRA[23] FIRA[22] FIRA[21] FIRA[20] FIRA[19] FIRA[18] FIRA[17] FIRA[16]
R/IW R/W R/W R/IW R/IW R/W R/IW R/IW R/IW
RTCRST 1 1 1 1 1 1 1 1
Other resets 1 1 1 1 1 1 1 1

Bit Name Function
D[15:0] FIRA[31:16] Next DMA address [31:16] to be accessed by FIR channel

280

CHAPTER 12 DCU (DMA CONTROL UNIT)

This chapter describes the DCU register’s operations and settings.
12.1 GENERAL

The DCU register is used for DMA control. Specifically, it controls acknowledgment from the BCU that handles
bus arbitration and DMA requests from the on-chip peripheral 1/O units (AlU and FIR). It also controls DMA
enable/prohibit settings.

12.2 DMA PRIORITY CONTROL

When a conflict occurs between DMA requests sent from on-chip peripheral 1/O units, the following priority levels
are used to resolve the conflict. These priority levels cannot be changed.

Table 12-1. DMA Priority Levels

Priority level Type of DMA operation
High Audio input (recording)
0 Audio output (playback)
Low FIR transmission/reception

12.3 REGISTER SET

The DCU register set is described below.

Table 12-2. DCU Registers

Address R/W Register symbols Function
0x0B00 0040 R/W | DMARSTREG DMA Reset Register
0x0B00 0042 R DMAIDLEREG DMA Idle Register
0x0B00 0044 R/W | DMASENREG DMA Sequencer Enable Register
0x0B00 0046 R/W | DMAMSKREG DMA Mask Register
0x0B00 0048 R/W | DMAREQREG DMA Request Register
0x0B00 004A R/W | TDREG Transfer Direction Register

These registers are described in detail below.

281

CHAPTER 12 DCU (DMA CONTROL UNIT)

12.3.1 DMARSTREG (0x0B00 0040)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DMARST
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O when writing. O is returned after a read.

DI[O0] DMARST Reset DMA controller
0: Reset
1: Normal

This register is used to reset the DMA controller.

282

CHAPTER 12 DCU (DMA CONTROL UNIT)

12.3.2 DMAIDLEREG (0x0B00 0042)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DMAISTAT
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O when writing. O is returned after a read.

DI[O0] DMAISTAT Display DMA sequencer status
1: D_IDLE status
0: DMA busy

This register is used to display the DMA sequencer status.

283

CHAPTER 12 DCU (DMA CONTROL UNIT)

12.3.3 DMASENREG (0x0B00 0044)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DMASEN
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O when writing. O is returned after a read.

DI[O0] DMASEN Enable DMA sequencer
1: Enable
0: Prohibit

This register is used to enable/prohibit the DMA sequencer.

284

CHAPTER 12 DCU (DMA CONTROL UNIT)

12.3.4 DMAMSKREG (0x0B0O 0046)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved | DMAMSKAIN DMAMSK Reserved DMAMSK

AOUT FOUT
R/W R R R R R/W R/W R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..4] Reserved Write 0 when writing. O is returned after a read.

D[3] DMAMSKAIN Audio input DMA transfer enable/prohibit

1: Enable

0 : Prohibit
D[2] DMAMSKAOUT Audio output DMA transfer enable/prohibit

1: Enable

0: Prohibit
D[1] Reserved Write O when writing. O is returned after a read.
D[0] DMAMSKFOUT FIR transmission DMA transfer enable/prohibit

1: Enable
0 : Prohibit

This register is used to enable/prohibit various types of DMA transfers.

The DMA transfer enable bits should be set when the units that receive DMA service have been stopped or when

there are no pending DMA requests. If any of the above bits are set to a unit while a DMA request is pending for that
unit, the CPU'’s operation will be undefined.

285

CHAPTER 12 DCU (DMA CONTROL UNIT)

12.3.5 DMAREQREG (0x0B00 0048)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved DRQAIN DRQAOUT Reserved DRQFOUT
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..4] Reserved Write O when writing. O is returned after a read.

D[3] DRQAIN Audio input DMA transfer request
1: Request pending
0: No request
D[2] DRQAOUT Audio output DMA transfer request
1: Request pending
0: No request
D[1] Reserved Write O when writing. O is returned after a read.
D[0] DRQFOUT FIR transmission DMA transfer request

1: Request pending
0: No request

This register is used to indicate whether or not there are any DMA transfer requests.

286

CHAPTER 12

DCU (DMA CONTROL UNIT)

12.3.6 TDREG (0x0BOO 004A)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved FIR
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O when writing. O is returned after a read.

DI[O0] FIR Transfer direction of DMA channel for FIR transmission
1: 1/0 > MEM
0: MEM — I/O

This register is used to set the transfer direction of DMA channel for FIR transmission.

287

[MEMO]

288

CHAPTER 13 CMU (CLOCK MASK UNIT)

This chapter describes the CMU register’'s operations and settings.

13.1 GENERAL

As various input clocks (ctclock, i_seclk, firclock) are supplied from the CPU to each unit, a masking method
enables power consumption to be curtailed in units that are not used.

The units for which this masking method are used are the KIU, PIU, AlU, SIU, DSIU, FIR, and HSP (software
modem interface) units.

The basic functions are described below.
1. Control of TClock supplied to PIU, AlU, SIU, KIU, DSIU, and FIR

2. Control of internal clock (18.432 MHz) supplied to SIU and HSP
3. Control of internal clock (48 MHz) supplied to FIR

The initial value is “0”, which specifies masking. No clock is supplied unless the CPU writes “1” to CMUCLKMSK
register.

Figure 13-1. Block Diagram of CMU and Peripheral Blocks

cscmub | cmuout(15:0)
BCU pugd(3:0) ik siu
piastbb
|tk kiu_
ok piu
tclk_aiu
rst_gab =
PMU = CMU | tokdsiu
i_tclk
ctclock telk_fir
———————
i_seclk
seclk_siu
firclock | felk
T | seclk hsp

13.2 REGISTER SET

The CMU register is listed below.

Table 13-1. CMU Register

Address R/W Register symbol Function
0x0B00 R/W CMUCLKMSK | CMU Clock Mask Register
0060

This register is described in detail below.

289

CHAPTER 13 CMU (CLOCK MASK UNIT)

13.2.1 CMUCLKMSK (0x0B00 0060)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved MSKFFIR MSKSHSP MSKSSIU
R/IW R R R R R R/IW R/IW R/IW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved MSKDSIU MSKFIR MSKKIU MSKAIU MSKSIU MSKPIU
R/IW R R R/IW R/IW R/W R/IW R/IW R/IW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:11] Reserved Write 0 when writing. 0 is returned after a read.

D[10] MSKFFIR Supply/mask 48-MHz clock to FIR unit
1: Supply
0: Mask
D[9] MSKSHSP Supply/mask 18.432-MHz clock to HSP unit
1: Supply
0: Mask
DI[8] MSKSSIU Supply/mask 18.432-MHz clock to SIU unit
1: Supply
0: Mask
D[7:6] Reserved Write 0 when writing. 0 is returned after a read.
D[5] MSKDSIU Supply/mask TClock to DSIU unit
1: Supply
0: Mask
D[4] MSKFIR Supply/mask TClock to FIR unit
1: Supply
0: Mask
D[3] MSKKIU Supply/mask TClock to KIU unit
1: Supply
0: Mask
D[2] MSKAIU Supply/mask TClock to AlU unit
1: Supply
0: Mask
D[1] MSKSIU Supply/mask TClock to SIU unit
1: Supply
0: Mask
D[0] MSKPIU Supply/mask TClock to PIU unit
1: Supply
0: Mask

This register is used to mask the clocks that are supplied to the KIU, PIU, AlU, SIU, DSIU, FIR, and HSP units.

290

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

This chapter describes the ICU register’s operations and settings.
14.1 GENERAL

The ICU collects interrupt signals from the various on-chip peripheral units and transfers these interrupt signals
(Int0, Intl, Int2, Int3, and NMI) to the CPU core.
The functions of the ICU’s internal blocks are briefly described below.

« ADDECICU ... Decodes read/write addresses from the CPU that are used for ICU registers.

« REGICU ... This includes a register for interrupt masking. The initial value is “0”, which specifies masking.
No interrupt signal is supplied to CPU core unless the CPU writes “1” to this register.

« OUTICU ... This is the general ICU output that follows masking of interrupts (all output is at the rising edge
of I_mclkin). It also controls the interrupt masking signal (doze_mskint) used for settings
during Suspend mode, assertion of the general interrupt source signal (int_all), and the
memdrv assertion timing signal (doze_memdrv) that is used when resetting from Suspend
mode.

The signals used to notice interrupt request to the CPU are as below.

NMI : battint_intr only
Switching between NMI and Int0 is enabled according to this register’s settings.
Because NMI's interrupt masking cannot be controlled by means of software, switch
to Int0 to mask battint_Intr.

Int3 : hsp_intr only

Int2 : rtc_long2_intr only

Intl : rtc_longl_intr only
The IT (interval timer) and HSP interrupts require more responsiveness than do other

interrupt sources.

Int0 : All other interrupts
For details of the interrupt sources, see the register set.

291

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

How an interrupt request is notified to the CPU core is shown below.

If an interrupt request occurs in the peripheral units, the corresponding bit in the interrupt indication register of
Level 2 (xxxINTREG) is set to 1. The interrupt indication register is ANDed bit-wise with the corresponding interrupt
mask register of Level 2 (MxxxXINTREG). If the occurred interrupt request is enabled (set to 1) in the mask register,
the interrupt request is notified to the interrupt indication register of Level 1 (SYSINTREG) and the corresponding bit
is setto 1. At this time, the interrupt requests from the same register of Level 2 are notified to the SYSINTREG as a
single interrupt request.

Interrupt requests from some units directly set their corresponding bits in the SYSINTREG.

The SYSINTREG is ANDed bit-wise with the interrupt mask register of Level 1 (MSYSINTREG). If the interrupt
request is enabled by MSYSINTREG (set to 1), a corresponding interrupt request signal is output from the ICU to the
CPU core. battint is connected to the NMI or IntO signal of the CPU core (selected by setting of NMIREG). rtc_long
signals are connected to the Int3 signal of the CPU core. The other interrupt requests are connected to the Int0
signal of the CPU core as a one interrupt request.

The following figure shows an outline of interrupt control in the ICU.

292

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

Figure 14-1. Interrupt Control Outline

Level 2 Level 1
siuint >
hspint >
ledint >
dozepiuint -
buserrint -
| SOFTINTREG I >
O s,
FIRINTREG i 7
P ——— v 5 i AND/OR » SYSINTLREG
i MFIRINTREG i—/- SYSINT2REG
—— 4
SSIUINTREG : gy
................. 4 iAND/ORi—#
| MDSIUINTREG }— /-t E ——-NMI
Lemmommemememe i 1 - (battint"**)
GIUINTLREG |—/wi :
P errrr——— 7 16 iAND/ORi—$ 5
i MGIUINTLREG i—/p- : —p-Int3
et e 1 L : :
16 = 6 17 : i
GIUINTHREG » /> . (hspint)
................. 16 {AND/ORI™?
iMGIUINTHREG —/-»i { ANDIOR | o
[T p——— 1 3 : H .
KlUlNTREG él (rtClOﬂgZInt)
VKIGINTREG | twi T OR f
| MKIUINTREG # S , - Intl
AIUINTREG : : P70 (tclong1int)
................. , 7 iAND/OR:i-¢ : i :
MAIUINTREG i—/» : i : :
bememememmememe i 5 b : i - INtO0
PIUINTREG : : (all interrupts except
s rrrp—— - 6 EAND/OR E_‘ i ; Hiiasssmasaesmnanan fOI’ battintNOte and
i MPIUINTREG i—/: : : i rtclongint)
[Ty ———— 1 Sasssssssssmmssaat H 1
i MSYSINT1REG |
i MSYSINT2REG |
etimerint i :
) ! i Interrupt indication registers
rtclonglint ; i
i : I' _.!
rtclong2int : i : : Interrupt mask registers
1 L e p—
i 1 I FRCLLELEELEEEET] "
powerint { ANDJ/OR logic
. LR (Checking masks bit by bit
battint and summarizing interrupt
) requests from the registers)
telkint

Note

Which of NMI or IntO is used for battint is selected by setting of NMIREG.

293

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2 REGISTER SET

The ICU registers are listed below.

Table 14-1. ICU Registers

Address R/W Register symbols Function
0x0B00 0080 R SYSINT1REG Level 1 System interrupt register 1
0x0B00 0082 R PIUINTREG Level 2 PIU interrupt register
0x0B00 0084 R AIUINTREG Level 2 AlU interrupt register
0x0B00 0086 R KIUINTREG Level 2 KIU interrupt register
0x0B00 0088 R GIUINTLREG Level 2 GIU interrupt register Low
0x0B00 008A R DSIUINTREG Level 2 DSIU interrupt register
0x0B00 008C R/W MSYSINT1REG Level 1 mask system interrupt register 1
0x0B00 008E R/W MPIUINTREG Level 2 mask PIU interrupt register
0x0B00 0090 R/W MAIUINTREG Level 2 mask AlU interrupt register
0x0B00 0092 R/W MKIUINTREG Level 2 mask KIU interrupt register
0x0B00 0094 R/W MGIUINTLREG Level 2 mask GIU interrupt register Low
0x0B00 0096 R/W MDSIUINTREG Level 2 mask DSIU interrupt register
0x0B00 0098 R/W NMIREG NMI register
0x0B00 009A R/W SOFTINTREG Software interrupt register
0x0B00 0200 R SYSINT2REG Level 1 System interrupt register 2
0x0B00 0202 R GIUINTHREG Level 2 GIU interrupt register High
0x0B00 0204 R FIRINTREG Level 2 FIR interrupt register
0x0B00 0206 R/W MSYSINT2REG Level 1 mask system interrupt register 2
0x0B00 0208 R/W MGIUINTHREG Level 2 mask GIU interrupt register High
0x0B00 020A R/W MFIRINTREG Level 2 mask FIR interrupt register

These registers are described in detail below.

294

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.1 SYSINT1REG (0x0B0O 0080)

(1/2)
Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved DOZE Reserved SOFTINTR WRBER SIUINTR GIUINTR
PIUINTR RINTR
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name KIUINTR AIUINTR PIUINTR Reserved ETIMER RTCL1INTR POWER BATINTR
INTR INTR
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15..14] Reserved Write 0 when writing. O is returned after a read.
D[13] DOZEPIUINTR PIU interrupt during Suspend mode
1: Occurred
0: Normal
D[12] Reserved Write 0 when writing. O is returned after a read.
D[11] SOFTINTR Software interrupt (occurs by setting the SOFTINTREG)
1: Occurred
0: Normal
D[10] WRBERRINTR Bus error interrupt
1: Occurred
0: Normal
D[9] SIUINTR SIU interrupt
1: Occurred
0: Normal
D[8] GIUINTR GIU interrupt
1: Occurred
0: Normal
D[7] KIUINTR KIU interrupt
1: Occurred
0: Normal
D[6] AIUINTR AlU interrupt

1: Occurred
0: Normal

295

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

2/2)

Bit Name Function

D[5] PIUINTR PIU interrupt
1: Occurred
0: Normal

D[4] Reserved Write 0 when writing. O is returned after a read.

D[3] ETIMERINTR ETIMER interrupt
1: Occurred
0: Normal

D[2] RTCL1INTR RTCLong1l interrupt
1: Occurred
0: Normal

D[1] POWERINTR PowerSW interrupt
1: Occurred
0: Normal

D[0] BATINTR Battery interrupt
1: Occurred
0: Normal

This register indicates when various interrupts occur in the VR4102 system.

296

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.2 PIUINTREG (0x0BOO 0082)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved PADCMD PADADP PADPAGE1 | PADPAGEO| PADDLOST| Reserved PENCHG

INTR INTR INTR INTR INTR INTR
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..7] Reserved Write O when writing. 0 is returned after a read.

D[6] PADCMDINTR PIU command scan interrupt. This interrupt occurs when command scan found valid
data.
1: Occurred
0: Normal

D[5] PADADPINTR PIU AD port scan interrupt. This interrupt occurs when AD port scan found a set of
valid data.
1: Occurred
0: Normal

D[4] PADPAGE1LINTR PIU data buffer page 1 interrupt. This interrupt occurs when a set of valid data is
stored in page 1 of data buffer.
1: Occurred
0: Normal

D[3] PADPAGEOINTR PIU data buffer page 0 interrupt. This interrupt occurs when a set of valid data is
stored in page O of data buffer.
1: Occurred
0: Normal

D[2] PADDLOSTINTR A/D data timeout interrupt. This interrupt occurs when a set of data did not found
within specified time.
1: Occurred
0: Normal

D[1] Reserved Write O when writing. 0 is returned after a read.

D[0] PENCHGINTR Touch panel contact status change interrupt

1: Change has occurred
0: No change

This register indicates when various PlU-related interrupts occur.

297

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.3 AIUINTREG (0x0B0OO 0084)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved INTMEND INTM INTMIDLE INTMST
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved INTSEND INTS INTSIDLE Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:12] Reserved Write 0 when writing. 0 is returned after a read.

D[11] INTMEND Audio input (MIC) DMA buffer 2 page interrupt
1: Occurred
0: Normal
D[10] INTM Audio input (MIC) DMA buffer 1 page interrupt
1: Occurred
0: Normal
D[9] INTMIDLE Audio input (MIC) idle interrupt (received data is lost). This interrupt occurs if valid
data exists in MIDATREG when data was received from A/D converter.
1: Occurred
0: Normal
D[8] INTMST Audio input (MIC) receive completion interrupt. This interrupt occurs when 10-bit
converted data was received from the A/D converter.
1: Occurred
0: Normal
D[7:4] Reserved Write O when writing. 0 is returned after a read
D[3] INTSEND Audio output (speaker) DMA buffer 2 page interrupt
1: Occurred
0: Normal
D[2] INTS Audio output (speaker) DMA buffer 1 page interrupt
1: Occurred
0: Normal
D[1] INTSIDLE Audio output (speaker) idle interrupt (mute). This interrupt occurs if there is no valid
data in SODATREG when data was transferred to D/A.
1: Occurred
0: Normal
D[0] Reserved Write O when writing. 0 is returned after a read

This register indicates when various AlU-related interrupts occur.

298

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.4 KIUINTREG (0x0B0OO 0086)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved | KDATLOST | KDATRDY SCANINT
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..3] Reserved Write O when writing. 0 is returned after a read.

D[2] KDATLOST Key scan data lost interrupt
1: Occurred
0: Normal
D[1] KDATRDY Key scan data complete interrupt
1: Occurred
0: Normal
D[0] SCANINT Key input detect interrupt

1: Occurred
0: Normal

This register indicates when various KlU-related interrupts occur.

299

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)
14.2.5 GIUINTLREG (0x0B00 0088)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTS[15] INTS[14] INTS[13] INTS[12] INTS[11] INTS[10] INTS[9] INTS[8]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTS[7] INTS[6] INTS[5] INTS[4] INTS[3] INTS[2] INTS[1] INTS[O]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTS[15..0] Interrupt to GPIO[15..0] pin

1: Occurred
0: Normal

This register indicates when various GlU-related interrupts occur.

300

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.6 DSIUINTREG (0x0OB0O 008A)

Bit D15 D14 D13 D12 D11 D9 D8
Name Reserved Reserved Reserved Reserved INTDCTS INTSERO INTSRO INTSTO
R/IW R R R R R R R
RTCRST 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R
RTCRST 0 0 0 0 0 0 1
Other resets 0 0 0 0 0 0 1

Bit Name Function
D[15..12] Reserved Write O when writing. 0 is returned after a read.

D[11] INTDCTS DCTS# change interrupt
1: Occurred
0: Normal
D[10] INTSERO Debug serial receive error interrupt
1: Occurred
0: Normal
D[9] INTSRO Debug serial receive complete interrupt
1: Occurred
0: Normal
D[8] INTSTO Debug serial transmit complete interrupt
1: Occurred
0: Normal
D[7..1] Reserved Write 0 when writing. O is returned after a read.
D[0] Reserved Write 1 when writing. 1 is returned after a read.

This register indicates when various DSIU-related interrupts occur.

301

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.7 MSYSINT1REG (0x0B0O 008C)

(1/2)
Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved DOZE Reserved SOFTINTR WRBERR SIUINTR GIUINTR
PIUINTR INTR
R/W R R R/W R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name KIUINTR AIUINTR PIUINTR Reserved ETIMER RTCL1INTR POWER BATINTR
INTR INTR
R/W R/W R/W R/W R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15..14] Reserved Write 0 when writing. O is returned after a read.
D[13] DOZEPIUINTR PIU interrupt enable during suspend mode
1: Enable
0 : Prohibit
D[12] Reserved Write 0 when writing. O is returned after a read.
D[11] SOFTINTR Software interrupt (occurs by setting the SOFTINTREG) enable
1: Enable
0 : Prohibit
D[10] WRBERRINTR Bus error interrupt enable
1: Enable
0 : Prohibit
D[9] SIUINTR SIU interrupt enable
1: Enable
0 : Prohibit
D[8] GIUINTR GIU interrupt enable
1: Enable
0 : Prohibit
D[7] KIUINTR KIU interrupt enable
1: Enable
0 : Prohibit
D[6] AIUINTR AlU interrupt enable
1: Enable
0 : Prohibit

302

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

2/2)

Bit Name Function

D[5] PIUINTR PIU interrupt enable
1: Enable
0 : Prohibit

D[4] Reserved Write 0 when writing. O is returned after a read.

D[3] ETIMERINTR ETIMER interrupt enable
1: Enable
0 : Prohibit

D[2] RTCL1INTR RTCLong1 timer interrupt enable
1: Enable
0: Prohibit

D[1] POWERINTR PowerSW interrupt enable
1: Enable
0: Prohibit

D[0] BATINTR Battery interrupt enable
1: Enable
0 : Prohibit

This register is used to mask various interrupts that occur in the VR4102 system.

303

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.8 MPIUINTREG (0x0B0O 008E)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved PADCMD PADADP PADPAGE1| PADPAGEO| PADDLOST| Reserved PENCHG

INTR INTR INTR INTR INTR INTR
R/IW R R/W R/IW R/IW R/W R/IW R RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..7] Reserved Write O when writing. 0 is returned after a read.

D[6] PADCMDINTR PIU command scan interrupt enable
1: Enable
0: Prohibit
D[5] PADADPINTR PIU A/D port scan interrupt enable
1: Enable
0 : Prohibit
D[4] PADPAGELINTR PIU data buffer page 1 interrupt enable
1: Enable
0: Prohibit
D[3] PADPAGEOINTR PIU data buffer page 0 interrupt enable
1: Enable
0 : Prohibit
D[2] PADDLOSTINTR A/D data timeout interrupt enable
1: Enable
0: Prohibit
D[1] Reserved Write O when writing. 0 is returned after a read.
D[0] PENCHGINTR Touch panel contact status change interrupt enable
1: Enable
0: Prohibit

This register is used to mask various PIU-related interrupts.

304

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.9 MAIUINTREG (0x0B0O 0090)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved INTMEND INTM INTMIDLE INTMST
R/IW R R R R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved INTSEND INTS INTSIDLE Reserved
RIW R R R R R/W R/W R/W R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:12] Reserved Write 0 when writing. 0 is returned after a read.

D[11] INTMEND Audio input (MIC) DMA buffer 2 page interrupt enable
1: Enable
0: Prohibit
D[10] INTM Audio input (MIC) DMA buffer 1 page interrupt enable
1: Enable
0 : Prohibit
D[9] INTMIDLE Audio input (MIC) idle interrupt (received data is lost) enable
1: Enable
0: Prohibit
D[8] INTMST Audio input (MIC) receive complete interrupt
1: Enable
0 : Prohibit
D[7:4] Reserved Write O when writing. 0 is returned after a read.
D[3] INTSEND Audio output (speaker) DMA buffer 2 page interrupt enable
1: Enable
0 : Prohibit
D[2] INTS Audio output (speaker) DMA buffer 1 page interrupt enable
1: Enable
0: Prohibit
D[1] INTSIDLE Audio output (speaker) idle interrupt (mute) enable
1: Enable
0 : Prohibit
D[0] Reserved Write O when writing. 0 is returned after a read.

This register is used to mask various AlU-related interrupts.

305

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.10 MKIUINTREG (0x0B0O 0092)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved KDATLOST | KDATRDY SCANINT
R/W R R R R R R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..3] Reserved Write O when writing. 0 is returned after a read.

D[2] KDATLOST Key data scan lost interrupt enable
1: Enable
0 : Prohibit
D[1] KDATRDY Key scan data complete interrupt enable
1: Enable
0 : Prohibit
D[0] SCANINT Key input detect interrupt enable
1: Enable
0 : Prohibit

This register is used to mask various KlU-related interrupts.

306

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)
14.2.11 MGIUINTLREG (0x0B0O 0094)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTS[15] INTS[14] INTS[13] INTS[12] INTS[11] INTS[10] INTS[9] INTS[8]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTS[7] INTS[6] INTS[5] INTS[4] INTS[3] INTS[2] INTS[1] INTS[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTS[15..0] GPIO[15..0] pin interrupt enable

1: Enable
0 : Prohibit

This register is used to mask various GlU-related interrupts.

307

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.12 MDSIUINTREG (0x0B0O 0096)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved INTDCTS INTSERO INTSRO INTSTO
R/IW R R R R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..12] Reserved Write 0 when writing. 0 is returned after a read.

D[11] INTDCTS DCTS# change interrupt enable
1: Enable
0: Prohibit
D[10] INTSERO Debug serial data receive error interrupt enable
1: Enable
0 : Prohibit
D[9] INTSRO Debug serial data receive complete interrupt enable
1: Enable
0: Prohibit
D[8] INTSTO Debug serial data transmit complete interrupt enable
1: Enable
0 : Prohibit
D[7..0] Reserved Write 0 when writing. O is returned after a read.

This register is used to mask various DSIU-related interrupts.

308

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.13 NMIREG (0x0B00 0098)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved NMIORINT
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O when writing. 0 is returned after a read.

D[0] NMIORINT Low battery detect interrupt type setting
1: Int0
0: NMI

This register is used to set the type of interrupt used to notify the VR4100 CPU core when a low battery detect
interrupt has occurred.

309

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)
14.2.14 SOFTINTREG (0x0B0O 009A)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved | SOFTINTR[3] | SOFTINTR[2] | SOFTINTR[1] | SOFTINTR[0]
R/W R R R R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..4] Reserved Write O when writing. 0 is returned after a read.

D[3..0] SOFTINTRJ[3..0] Set/clear software interrupt

1: Set
0: Clear

This register is used to set software interrupts.

interrupts.

310

Each bit can be set separately, and can cause four types of

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.15 SYSINT2REG (0x0B00 0200)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved DSIUINTR FIRINTR TCLKINTR HSPINTR LEDINTR | RTCL2INTR
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..6] Reserved Write O when writing. 0 is returned after a read.

D[5] DSIUINTR DSIU interrupt
1: Occurred
0: Normal
D[4] FIRINTR FIR interrupt
1: Occurred
0: Normal
D[3] TCLKINTR TClock counter interrupt
1: Occurred
0: Normal
D[2] HSPINTR HSP interrupt
1: Occurred
0: Normal
D[1] LEDINTR LED interrupt
1: Occurred
0: Normal
D[0] RTCL2INTR RTCLong?2 timer interrupt

1: Occurred
0: Normal

This register indicates when various interrupts occur in the VR4102 system.

311

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.16 GIUINTHREG (0x0B00 0202)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTS[31] INTS[30] INTS[29] INTS[28] INTS[27] INTS[26] INTS[25] INTS[24]
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTS[23] INTS[22] INTS[21] INTS[20] INTS[19] INTS[18] INTS[17] INTS[16]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTS[31..16] GPIO[31..16] pin interrupt

1: Occurred
0: Normal

This register indicates when various GlU-related interrupts occur.

312

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.17 FIRINTREG (0x0B0O 0204)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved FIRINT FDPINT[4] | FDPINT[3] FDPINT[2] | FDPINT[1]
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..5] Reserved Write O when writing. 0 is returned after a read.

D[4] FIRINT Interrupt from FIR unit
1: Occurred
0: Normal

D[3] FDPINTI[4] FIR DMA buffer (receive side) 2 page interrupt
1: Occurred
0: Normal

D[2] FDPINTI[3] FIR DMA buffer (transmit side) 2 page interrupt
1: Occurred
0: Normal

D[1] FDPINTI[2] FIR DMA buffer (receive side) 1 page interrupt
1: Occurred
0: Normal

D[0] FDPINTI[1] FIR DMA buffer (transmit side) 1 page interrupt
1: Occurred
0: Normal

This register indicates when various FIR-related interrupts occur.

When FDPINT[4] or FDPINT[3] is set to 1, the VR4102 stops the DMA requests. When FDPINT[2] or FDPINT[1]
is set to 1 during the FDPCNT bit of the DPCNTR register (0OxOC00 004C) is set to 1 (DMA buffer 1 page interrupt is
enabled), the VR4102 stops the DMA requests.

313

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.18 MSYSINT2REG (0x0B0O 0206)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved DSIUINTR FIRINTR TCLKINTR HSPINTR LEDINTR | RTCL2INTR
R/W R R R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..6] Reserved Write O when writing. 0 is returned after a read.

D[5] DSIUINTR DSIU interrupt enable
1: Enable
0 : Prohibit
D[4] FIRINTR FIR interrupt enable
1: Enable
0 : Prohibit
D[3] TCLKINTR TClock counter interrupt enable
1: Enable
0 : Prohibit
D[2] HSPINTR HSP interrupt enable
1: Enable
0 : Prohibit
D[1] LEDINTR LED interrupt enable
1: Enable
0 : Prohibit
D[0] RTCL2INTR RTCLong?2 timer interrupt enable
1: Enable
0 : Prohibit

This register is used to mask various interrupts in the VR4102 system.

314

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.19 MGIUINTHREG (0x0B00 0208)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTS[31] INTS[30] INTS[29] INTS[28] INTS[27] INTS[26] INTS[25] INTS[24]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTS[23] INTS[22] INTS[21] INTS[20] INTS[19] INTS[18] INTS[17] INTS[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTS[31..16] Enable GPIO[31..16] pin interrupt

1: Enable

0 : Prohibit

This register is used to mask various GlU-related interrupts.

315

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.20 MFIRINTREG (0x0B00 020A)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved FIRINT FDPINT[4] | FDPINT[3] FDPINT[2] | FDPINT[1]
R/IW R R R R/W RIW R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..5] Reserved Write O when writing. 0 is returned after a read.

D4 FIRINT FIR unit interrupt enable
1: Enable
0: Prohibit

D[3] FDPINTI[4] FIR DMA buffer 2 page interrupt (receive side) enable
1: Enable
0 : Prohibit

D[2] FDPINTI[3] FIR DMA buffer 2 page interrupt (transmit side) enable
1: Enable
0: Prohibit

D[1] FDPINTI[2] FIR DMA buffer 1 page interrupt (receive side) enable
1: Enable
0 : Prohibit

D[0] FDPINTI[1] FIR DMA buffer 1 page interrupt (transmit side) enable

1: Enable
0 : Prohibit

This register is used to mask various FIR-related interrupts.

316

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.3 NOTES FOR REGISTER SETTING

There is no register setting flow in relation to the ICU.

With regard to the interrupt mask registers, the initial setting is “initial = 0= mask” after start up. Therefore, enough
masks must be cleared to provide sufficient interrupts for the CPU’s start-up processing. This is always necessary
when battint_intr = NMI.

The initial setting for battint_intr is “initial = 0 = NMI”. A “1” must be written to the register to switch this setting to
Int0.

soft_intr is a software interrupt that is output to Int0O by setting 1 to the SOFTINTREG register. Writing a “0” clears
the interrupt.

317

[MEMO]

318

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

This chapter describes the PMU’s operation and register settings.
15.1 GENERAL

The PMU performs power management within the VR4102 and controls the power supply throughout the system
which includes the VR4102.

¢ Reset control

¢ Shutdown control

« Power-on control

« Low-power mode control

The PMU also performs settings to use the GPIO[12:9], GPIOJ[3:0] signals as a start-up factor.
15.1.1 Reset Control
The operations of the RTC, peripheral units, CPU core, and PMUINTREG bit settings during a reset are listed

below.

Table 15-1. Bit Operations during Reset

Reset type RTC Peripheral units CPU core PMUINTREG
RTC reset Reset Reset Cold reset RTCRST=1
RSTSW reset Active Reset Cold reset RSTSW=1

(1) RTC reset

When the RTCRST# signal is asserted, the PMU resets all peripheral units including the RTC unit. It also asserts
the ccoldresetb and creset signals (internal) and resets the CPU core.

In addition, the RTCRST bit in PMUINTREG is set (to “1"). After the CPU is restarted, the RTCRST bit must be
checked and cleared (to “0”) by software.

(2) RSTSW reset

When the RSTSW# signal is asserted, the PMU resets all peripheral units except for RTC and PMU. Next, it
asserts the ccoldresetb and creset signals (internal) and resets the CPU core.

In addition, the RSTSW bit in PMUINTREG is set (to “1"). After the CPU is restarted, the RSTSW bit must be
checked and cleared (to “0”) by software.

319

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

15.1.2 Shutdown Control
The operations of the RTC, peripheral units, CPU core, and PMUINTREG bit settings during a reset are listed
below.

Table 15-2. Bit Operations during Shutdown

Shutdown type RTC Peripheral units CPU core PMUINTREG
HAL timer shutdown Active Reset Cold reset HALTIMERRST=1
Deadman’s SW shutdown Active Reset Cold reset TIMOUTRST=1
Software shutdown Active Reset Cold reset -
Battery low shutdown Active Reset Cold reset BATTINH=1
Battery lock cancel shutdown Active Reset Cold reset -

(1) HAL Timer Shutdown

After the CPU is activated (following the mode change from Shutdown or Hibernate mode to Fullspeed mode),
the software must write “1” to PMUCNTREG’s HALTIMERRST bit within about four seconds to clear the HAL
timer.

If the HAL timer is not reset within about four seconds after the CPU is activated, the PMU resets all peripheral
units except for RTC and PMU. Next, it asserts the ccoldresetb and creset signals (internal) and resets the CPU
core.

In addition, the TIMOUTRST bit in PMUINTREG is set (to “1"). After the CPU is restarted, the TIMOUTRST bit
must be checked and cleared (to “0”) by software.

(2) Deadman’s SW Shutdown
When the Deadman’s SW function is enabled, the software must write “1” to DSUCLRREG’s DSWCLR bit each
time a Deadman’s SW setting is made, to clear the Deadman’s SW counter (for details, see Chapter 17).
If the Deadman’s SW counter is not cleared during a Deadman’s SW setting, the PMU resets all peripheral units
except for RTC and PMU. Next, it asserts the ccoldresetb and creset signals (internal) and resets the CPU core.
In addition, the DMSRST bit in PMUINTREG is set (to “1"). After the CPU is restarted, the DMSRST bit must be
checked and cleared (to “0”) by software.

(3) Software Shutdown
When the HIBERNATE instruction is executed, the PMU checks for currently pending interrupts. If there are no
pending interrupts, it stops the CPU clock. It then resets all peripheral units except for RTC and PMU.
The PMU register contents do not change.

320

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

15.1.3 Power-on Control

The causes of CPU activation (mode change from shutdown mode or Hibernate mode to Fullspeed mode) are
called power-on factors. There are twelve power-on factors: a power switch interrupt (POWER), eight types of
GPIO activation interrupts (GPIO[12:9], GPIO[3..0]), a DCD interrupt (DCD#), a touch panel interrupt, and an alarm
interrupt.

Battery low detection is a factor that prevents CPU activation.

(1) Activation via Power Switch Interrupt

When the POWER signal is asserted, the PMU asserts the POWERON signal and provides external notification
that the CPU is being activated. After asserting the POWERON signal, the PMU checks the BATTINH signal and
then de-asserts the POWERON signal.

If the BATTINH/BATTINT# signal is high (“1”), the PMU cancels peripheral unit reset, then starts the Cold Reset
sequence to activate the CPU core.

If the BATTINH/BATTINT# signal is low (“0"), the PMU sets “1” to PMUINTREG’s BATTINH bit and then performs
another shutdown. After the CPU is restarted, the BATTINH bit must be checked and cleared (to “0”) by software.

Figure 15-1. Activation via Power Switch Interrupt (BATTINH/BATTINT# = 1)

f
RTC(InternaI)||||||||||||||||||||

POWER()

POWERON(0)

MPOWER(0)

BATTINH/ /F
BATTINT# (i) H

Figure 15-2. Activation via Power Switch Interrupt (BATTINH/BATTINT# = 0)

RTC(InternaI)ll|||||||/|||||||||||

/L
7

POWER(i)

/L
17

POWERON(0)

MPOWER(0) L

/L
7

BATTINH/ L
BATTINT# (i)

/L
17

321

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

(2) Activation via GPIO Activation Interrupt

When the GPIO[12:9], GPIO[3..0] signal is asserted, the PMU checks the GPIO[12:9], GPIO[3..0]'s activation
interrupt enable bit. If GPIO[12:9], GPIO[3..0] activation interrupts are enabled, the PMU asserts the POWERON
signal and provides external notification that the CPU is being activated (since the GPIO[12:9], GPIO[2..0] activation
enable interrupt bit is cleared after an RTC is reset, the GPIO[12:9], GPIO[2..0] signal cannot be used for activation
immediately after an RTC reset. However, activation can occur at the falling edge of the GPIO[3] signal immediately
after an RTC reset for GPIO[3] only). The PMU asserts the POWERON signal, then checks the BATTINH/
BATTINT# signal and de-asserts the POWERON signal.

When the BATTINH/BATTINT# signal is high (“1”), the PMU cancels peripheral unit reset, then starts the Cold
Reset sequence to activate the CPU core.

When the BATTINH/BATTINT# signal is low (“0"), the PMU sets “1” to PMUINTREG’s BATTINH bit and then
performs another shutdown. After the CPU is restarted, the BATTINH bit must be checked and cleared (to “0") by
software.

The CPU sets “1” to the corresponding GPIOINTR bit in the PMUINTREG regardless of whether activation
succeeds or fails.

Figure 15-3. Activation via GPIO Activation Interrupt (BATTINH/BATTINT# = 1)

RTC(InternaI)lllIlIlIl|||||||||||

GPIO[12:9)/
GPIO[3..0](i/o)

POWERON(0)

MPOWER(0) ‘

BATTINH/ H 7
BATTINT#(i)

Figure 15-4. Activation via GPIO Activation Interrupt (BATTINH/BATTINT# = 0)

f
RTC(InternaI)ll||||||||||||||||||

(L

GPIO[12:9]/ i
GPIO[3..0](i/0) =

(L
77

POWERON(0)

MPOWER(0) L

(L
)

BATTINH/
BATTINTH() s

322

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

(3) Activation via DCD Interrupt

When the DCD# signal is asserted, the PMU asserts the POWERON signal and provides external notification that
the CPU is being activated. After asserting the POWERON signal, the PMU checks the BATTINH/BATTINT# signal
and then de-asserts the POWERON signal.

If the BATTINH/BATTINT# signal is high (“1”), the PMU cancels peripheral unit reset, then starts the Cold Reset

sequence to activate the CPU core.

If the BATTINH/BATTINT# signal is low (“0"), the PMU sets “1” to PMUINTREG’s BATTINH bit and then performs
another shutdown. After the CPU is restarted, the BATTINH bit must be checked and cleared (to “0”) by software.
The PMUINTREG’s DCDST bit does not indicate whether a DCD interrupt has occurred but instead reflects the

current status of the DCD# pin.

Caution While POWERON is active, the PMU cannot recognize changes in the DCD# signal. If the
DCD# state when POWERON is active is different from the DCD# state when POWERON is
inactive, the change in the DCD# signal is detected only after POWERON is inactive.
However, if the DCD# state when POWERON is active is the same as the DCD# state when
POWERON is inactive, any changes in the DCD# signal that occur while POWERON is active

are not detected.

Figure 15-5. Activation via DCD Interrupt (BATTINH/BATTINT# = 1)

f
RTC(InternaI)ll|||||||/|||||||||||

DCD#(i)

(L

POWERON(0)

MPOWER(0)

77

/L

_

BATTINH/
BATTINTH()

77

Figure 15-6. Activation via DCD Interrupt (BATTINH/BATTINT# = 0)

RTC(Internal) | |

UL

DCD#())

UL

UL

POWERON(0)

MPOWER(0) L

/L

BATTINH/ |
BATTINTH#(i)

7

/L

17

323

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

(4) Activation via Alarm Interrupt

When the alarm interrupt (alarm_intr) signal is asserted, the PMU asserts the POWERON signal and provides
external notification that the CPU is being activated. After asserting the POWERON signal, the PMU checks the
BATTINH/BATTINT# signal and then de-asserts the POWERON signal.

If the BATTINH/BATTINT# signal is high (“1”), the PMU cancels peripheral unit reset, then starts the Cold Reset
sequence to activate the CPU core.

If the BATTINH/BATTINT# signal is low (“0"), the PMU sets “1” to PMUINTREG’s BATTINH bit and then performs
another shutdown. After the CPU is restarted, the BATTINH bit must be checked and cleared (to “0”) by software.

Figure 15-7. Activation via Alarm Interrupt (BATTINH/BATTINT# = 1)

e [LU LU
A —

77

(L
alarm_intr(Internal)

/L
77

POWERON(0)

MPOWER(0)

BATTINH/ H
BATTINT#()

Figure 15-8. Activation via Alarm Interrupt (BATTINH/BATTINT# = 0)

RTC(Internal)ll||||||||||||||||||

(L
77

alarm_intr(Internal)

(L
17

POWERON(0)

MPOWER(0) L

(L
77

BATTINH/ L
BATTINT#()

15.1.4 Power Mode
The VR4102 supports the following four power modes.

< Fullspeed mode
< Standby mode
< Suspend mode

<> Hibernate mode

Figure 15-9 illustrates the transition between the different power modes.

324

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

To set Standby, Suspend, or Hibernate mode from Fullspeed mode, execute a STANDBY, SUSPEND, or
HIBERNATE instruction respectively. To set Fullspeed mode from Standby, Suspend, or Hibernate mode, generate
an interrupt or perform any reset.

Table 15-3 outlines the power modes.

Figure 15-9. Power Mode State Transition

Standby
mode

Suspend
mode

1
@ Fullspeed

mode

Hibernate
mode

) @) @) (4) () (6)

STANDBY All interrupts SUSPEND BatteryInt HIBERNATE POWERON
instruction & instruction & POWERON instruction & Alarm
pipeline flash pipeline flash RTCRST pipeline flash DCD#
& SysAD idle & SysAD idle & SysAD idle
& PClock high & PClock high | A2 & PClock high | CP'OB-0l
& TClock high KeyTouch & TClock high GPIO[12:9]
& DRAM self PenTouch & MasterOut
refresh GPIOJ[3..0] high
GPIO[14..9] & DRAM self
DCD# refresh
RTCLong

325

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

Table 15-3. Power Mode

Mode Internal peripheral unit CPU core
RTC ICU DCU others
Fullspeed On On On Selectable " On
Standby On On Oon Selectable " Off
Suspend On On Off Off Off
Hibernate On Off Off Off Off
Off Off Off Off Off Off

Note See Chapter 13 for details.

(1) Fullspeed Mode
In Fullspeed mode, all internal clocks and the bus clock operate. In this mode, all the functions of the VR4102
can be executed.

(2) Standby Mode

In Standby mode, all internal clocks, other than those provided to the internal peripheral units and the internal
timer/interrupt unit of the CPU core, are fixed to high level.

To switch to Standby mode from Fullspeed mode, first execute the STANDBY instruction. The VR4102 waits until
the SysAD bus (internal) enters idle status after the completion of the WB stage of the STANDBY instruction. Then,
the internal clock is shut down, and the pipeline stops. PLL, timer/interrupt clock, internal bus clocks (TClock,
MasterOut), and RTC continue to operate.

In Standby mode, the processor returns to Fullspeed mode when an interrupt occurs. At this time, the contents of
bits indicating the states of pins in the peripheral unit's registers are undefined. The contents of other fields are
retained.

(3) Suspend Mode

In Suspend mode, all internal clocks (including TClock) other than those supplied to the RTC/ICU/PMU internal
peripheral units and the internal timer/interrupt unit of the CPU core are fixed to high level.

To switch to Suspend mode from Fullspeed mode, first execute the SUSPEND instruction. The VR4102 waits
until the SysAD bus (internal) enters idle status after the completion of the WB stage of the SUSPEND instruction,
DRAM has entered self-refresh mode, and the MPOWER pin has been made inactive. Then, the internal clocks
(including TClock) are shut down, and the pipeline stops. PLL, timer interrupt clock, MasterOut, and RTC continue
to operate.

If the SUSPEND instruction is executed during DMA transfer, the DRAM transfer is suspended, and operation is
undefined.

In Suspend mode, the processor returns to Fullspeed mode when an interrupt request from the peripheral units or
any resets occur. At this time, the contents of bits indicating the states of pins in the peripheral unit's registers are
undefined. The contents of other fields are retained.

326

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

(4) Hibernate Mode

In Hibernate mode, all the clocks supplied to internal peripheral units other than RTC/ICU/PMU and to the CPU

core are fixed to high level.

To switch to Hibernate mode from Fullspeed mode, first execute the HIBERNATE instruction. The VR4102 waits
until the SysAD bus (internal) enters idle status after the completion of the WB stage of the HIBERNATE instruction,
DRAM has entered self-refresh mode, and the MPOWER pin has been made inactive. Then, the internal clocks

(including TClock and MasterOut) are shut down, and the pipeline stops.

operate.

PLL also stops, but RTC continue to

In Hibernate mode, the processor returns to Fullspeed mode when it is alarmed from the RTC, the power-on
switch is pressed, or DCD# pin is asserted. At this time, the contents of bits indicating the states of pins in the

peripheral unit’s registers and caches in the CPU core are undefined. The contents of other fields are retained.

15.2 REGISTER SET

The PMU registers are listed below.

Table 15-4. PMU Registers
Address R/W Register symbols Function
0x0B00 00A0 R/W PMUINTREG PMU Interrupt/Status Register
0x0B0O 00A2 R/W PMUCNTREG PMU Control Register
0x0B00 00A4 R/W PMUINT2REG PMU Interrupt Register 2
0x0B0O 00A6 R/W PMUCNT2REG PMU Control Register 2

Each register is described in detail below.

327

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

15.2.1 PMUINTREG (0x0B0O 00AO0)

(1/2)
Bit D15 D14 D13 D12 D11 D10 D9 D8
Name GPIO3INTR | GPIO2INTR | GPIO1INTR | GPIOOINTR Reserved DCDST RTCINTR BATTINH
R/W R/W R/W R/W R/W R R R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name BATTLOCK | CARDLOCK | TIMOUTRST RTCRST RSTSW DMSRST BATTINTR | POWERSW
INTR
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 1 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15] GPIO3INTR GPIO[3] activation interrupt detection. Cleared to 0 when 1 is written.
1: Detected
0 : Not detected
D[14] GPIO2INTR GPIOJ[2] activation interrupt detection. Cleared to 0 when 1 is written.
1: Detected
0 : Not detected
D[13] GPIO1INTR GPIO[1] activation interrupt detection. Cleared to 0 when 1 is written.
1: Detected
0 : Not detected
D[12] GPIOOINTR GPIOJ[0] activation interrupt detection. Cleared to 0 when 1 is written.
1: Detected
0 : Not detected
D[11] Reserved Write 0 when writing. O is returned after a read.
D[10] DCDST DCD# pin state.
1: High
0: Low
D[9] RTCINTR RTC alarm interrupt detection. Cleared to 0 when 1 is written.
1: Detected
0 : Not detected
D[8] BATTINH Battery low detection during activation. Cleared to 0 when 1 is written.

1: Detected
0 : Not detected

328

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

(2/2)
Bit Name Function
D[7] BATTLOCK Battery lock interrupt detection "
1: Detected
0 : Not detected
D[6] CARDLOCK PCMCIA card lock interrupt detection "™
1: Detected

0 : Not detected

D[5] TIMOUTRST HAL timer reset detection. Cleared to 0 when 1 is written.
1: Detected
0: Not detected

D[4] RTCRST RTC reset detection. Cleared to 0 when 1 is written.
1: Detected
0 : Not detected

D[3] RSTSW RESET switch interrupt detection. Cleared to 0 when 1 is written.
1: Detected
0: Not detected

D[2] DMSRST Deadman’s switch interrupt detection. Cleared to 0 when 1 is written.
1: Detected
0 : Not detected

D[1] BATTINTR Battery low detection during normal operation. Cleared to 0 when 1 is written.
1: Detected
0: Not detected

D[0] POWERSWINTR POWER switch interrupt detection. Cleared to 0 when 1 is written.
1: Detected
0 : Not detected

Note These bits are used by software. These are never set by hardware, and their settings never affect
hardware.

This register is used to set whether the CPU detects a power-on factor and reset.
It also indicates the status of the DCD# pin.

329

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

15.2.2 PMUCNTREG (0x0B0O 00A2)

(1/2)
Bit D15 D14 D13 D12 D11 D10 D9 D8
Name GPIO3MSK | GPIO2MSK | GPIO1IMSK [GPIOOMSK | GPIO3TRG | GPIO2TRG | GPIO1TRG | GPIOOTRG
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 1 0 0 0 1 0 0 0
Other resets Note Note Note Note Note Note Note Note
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name STANDBY Reserved Reserved Reserved Reserved HALTIMER Reserved Reserved
RST
R/W R/W R R R R R/W R R
RTCRST 0 0 0 0
Other resets 0 0 0 0 0 0 1 0
Bit Name Function
D[15] GPIO3MSK GPIOJ[3] activation enable
1: Enable
0 : Prohibit
D[14] GPIO2MSK GPIO[2] activation enable
1: Enable
0 : Prohibit
D[13] GPIO1IMSK GPIO[1] activation enable
1: Enable
0 : Prohibit
D[12] GPIOOMSK GPIOI[0] activation enable
1: Enable
0 : Prohibit
D[11] GPIO3TRG GPIO[3] activation interrupt type
1: Falling edge detection
0 : Rising edge detection
D[10] GPIO2TRG GPIO[2] activation interrupt type
1: Falling edge detection
0 : Rising edge detection
D[9] GPIO1TRG GPIO[1] activation interrupt type
1: Falling edge detection
0 : Rising edge detection
D[8] GPIOOTRG GPIQOI[0] activation interrupt type
1: Falling edge detection
0 : Rising edge detection
D[7] STANDBY Standby mode setting. This setting is performed only for software, and does not
affect hardware in any way.
1: Standby mode
0: Normal mode
Note Holds the value before reset

330

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

(2/2)
Bit Name Function

D[6..3] Reserved Write 0 when writing. O is returned after a read.
D[2] HALTIMERRST HAL timer reset

1: Reset

0: Set
D[1] Reserved Write 1 when writing. 1 is returned after a read.
D[0] Reserved Write 0 when writing. O is returned after a read.

This register is used to set CPU shutdown and overall system management operations.

The HALTIMERRST bit must be reset within about four seconds of activation. Resetting of the HALTIMERRST
bit indicates that the VR4102 itself has been activated normally. If the HALTIMERRST bit is not reset within about
four seconds of activation, program execution is regarded as abnormal (possibly due to a runaway) and an
automatic shutdown is performed.

The GPIO[3..0]MSK bits are used to set enable/prohibit for activation from Hibernate mode when the
corresponding interrupt (GPIO[3..0]) occurs. The GPIO3MSK bit is set to 1 by RTCRST, and the other bits are
cleared to “0” (prohibit). Accordingly, the GPIO[2..0] cannot be used for activation immediately after an RTCRST
reset. The GPIO activation interrupt is valid only when the CPU’s operation mode is Hibernate mode.

331

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

15.2.3 PMUINT2REG (0x0B0O 00A4)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name GPIO12INTR |GPIO11INTR |GPIO10INTR | GPIO9INTR | Reserved Reserved Reserved Reserved
R/IW R/W R/W R/IW R/IW R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15] GPIO12INTR GPIO[12] activation interrupt request detection. Cleared to O when 1 is written.
1: Detected
0: Not detected

D[14] GPIO11INTR GPIO[11] activation interrupt request detection. Cleared to 0 when 1 is written.
1: Detected
0: Not detected

D[13] GPIO10INTR GPIO[10] activation interrupt request detection. Cleared to 0 when 1 is written.
1: Detected
0: Not detected

D[12] GPIO9INTR GPIO[9] activation interrupt request detection. Cleared to 0 when 1 is written.
1: Detected
0: Not detected

D[11:0] Reserved Write O when writing. 0 is returned after a read.

This register is used to specify whether the GPIO[12:9] interrupt is detected as a power-on factor.

332

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

15.2.4 PMUCNT2REG (0x0BOO 00AG6)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name GPIO12MSK | GPIO11MSK | GPIO10MSK [GPIO9MSK | GPIO12TRG | GPIO11TRG | GPIO10TRG | GPIO9TRG
R/IW R/W R/W R/IW R/IW R/W R/IW R/IW R/IW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15] GPIO12MSK GPIO[12] activation enable

1: Enable
0 : Prohibit
D[14] GPIO11MSK GPIO[11] activation enable
1: Enable
0: Prohibit
D[13] GPIO10MSK GPIO[10] activation enable
1: Enable
0 : Prohibit
D[12] GPIO9MSK GPIO[9] activation enable
1: Enable
0: Prohibit
D[11] GPIO12TRG GPIO[12] activation interrupt type
1: Falling edge detection
0 : Rising edge detection
D[10] GPIO11TRG GPIO[11] activation interrupt type
1: Falling edge detection
0 : Rising edge detection
D[9] GPIO10TRG GPIO[11] activation interrupt type
1: Falling edge detection
0: Rising edge detection
D[8] GPIO9TRG GPIQ[9] activation interrupt type
1: Falling edge detection
0 : Rising edge detection
D[7:0] Reserved Write 0 when writing. 0 is returned after a read.

This register is used to specify the settings for activation via GPIO [12:9] interrupts.

The GPIO activation interrupt is valid only when the CPU’s operation mode is Hibernate mode.

333

[MEMO]

334

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

This chapter describes the RTC unit's operations and register settings.
16.1 GENERAL
The RTC unit has a total of four timers, including the following three types.

¢ RTCLong ... This is a 24-bit programmable counter that counts down using 32.768-kHz cycles. Cycle
interrupts occur for up to 512 seconds. The RTC unit includes two RTCLong timers.

¢ TClockCount ... This is a 25-bit programmable counter that counts down using TClock cycles. Cycle
interrupts occur for up to 1 to 2 seconds. This counter is used for performance evaluation.

« ElapsedTime ... This is a 48-bit up counter that counts up using 32.768-kHz cycles. It counts up to 272
years before returning to zero. It includes 48-bit comparators (ECMPHREG, ECMPLREG,
and ECMPMREG) and 48-bit alarm time registers (ETIMELREG, ETIMEMREG, and
ETIMEHREG) to enable interrupts to occur at specified times.

335

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2 REGISTER SET

The RTC registers are listed below.

Table 16-1. RTC Registers

Address R/W Register Symbols Function
0x0B00 00CO R/W ETIMELREG Elapsed Time L Register
0x0B00 00C2 R/W ETIMEMREG Elapsed Time M Register
0x0B00 00C4 R/W ETIMEHREG Elapsed Time H Register
0x0B00 00C8 R/W ECMPLREG Elapsed Compare L Register
0x0B00 00CA R/W ECMPMREG Elapsed Compare M Register
0X0BO00 00CC R/W ECMPHREG Elapsed Compare H Register
0x0B0O 00DO R/W RTCL1LREG RTC Long 1 L Register
0x0B00 00D2 R/W RTCL1HREG RTC Long 1 H Register
0x0B0O 00D4 R RTCL1CNTLREG RTC Long 1 Count L Register
0x0B00 00D6 R RTCL1CNTHREG RTC Long 1 Count H Register
0x0B00 00D8 R/W RTCL2LREG RTC Long 2 L Register
0x0B00 00DA R/W RTCL2HREG RTC Long 2 H Register
0x0B00 00DC R RTCL2CNTLREG RTC Long 2 Count L Register
0x0B00 00DE R RTCL2CNTHREG RTC Long 2 Count H Register
0x0B00 01CO R/W TCLKLREG TCLK L Register
0x0B00 01C2 R/W TCLKHREG TCLK H Register
0x0B00 01C4 R TCLKCNTLREG TCLK Count L Register
0x0B00 01C6 R TCLKCNTHREG TCLK Count H Register
0x0B00 01DE R/W RTCINTREG RTC Interrupt Register

Each register is described in detail below.

336

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2.1 Elapsed Time Registers

(1) ETIMELREG (0x0B0O 00CO0)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name ETIME[15] ETIME[14] ETIME[13] ETIME[12] ETIME[11] ETIME[10] ETIME[9] ETIME[8]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name ETIME[7] ETIME[6] ETIME[5] ETIME[4] ETIME[3] ETIME[2] ETIME[1] ETIME[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:0] ETIME[15:0] ElapsedTime bit [15:0]

Note Continues counting
(2) ETIMEMREG (0x0B00 00C2)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name ETIME[31] ETIME[30] ETIME[29] ETIME[28] ETIME[27] ETIME[26] ETIME[25] ETIME[24]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name ETIME[23] ETIME[22] ETIME[21] ETIME[20] ETIME[19] ETIME[18] ETIME[17] ETIME[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:0] ETIME[31:16] ElapsedTime bit [31:16]

Note Continues counting

337

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

(3) ETIMEHREG (0x0B00 00C4)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name ETIME[47] | ETIME[46] | ETIME[45] | ETIME[44] | ETIME[43] | ETIME[42] | ETIME[41] | ETIME[40]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name ETIME[39] | ETIME[38] | ETIME[37] | ETIME[36] | ETIME[35] | ETIME[34] | ETIME[33] | ETIME[32]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:0] ETIME[47:32] ElapsedTime bit [47:32]

Note Continues counting

These registers indicate the elapsed timer’'s value. They count up using a 32.768-kHz cycle and when a match
occurs with the elapsed compare registers, an alarm (elapsed time interrupt) occurs (and the count-up continues). A
write operation is valid once values have been written to all registers (ETIMELREG, ETIMEMREG, and
ETIMEHREG).

338

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2.2 Elapsed Time Compare Registers

(1) ECMPLREG (0x0OB0O 00CS8)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name ECMPJ[15] ECMP[14] ECMP[13] ECMP[12] ECMP[11] ECMP[10] ECMPI[9] ECMPI[8]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name ECMP[7] ECMP[6] ECMPI[5] ECMP[4] ECMP[3] ECMP[2] ECMP[1] ECMPI[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:0] ECMP[15:0] Value to be compared with ElapsedTime bit [15:0]

Note Previous value is retained
(2) ECMPMREG (0x0B00 00CA)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name ECMP[31] ECMPJ[30] ECMP[29] ECMP[28] ECMP[27] ECMP[26] ECMP[25] ECMP[24]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name ECMP[23] ECMP[22] ECMP[21] ECMP[20] ECMP[19] ECMP[18] ECMP[17] ECMP[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:0] ECMP[31:16] Value to be compared with ElapsedTime bit [31:16]

Note Previous value is retained

339

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

(3) ECMPHREG (0x0B0O 00CC)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name ECMP[47] | ECMP[46] | ECMP[45] | ECMP[44] | ECMP[43] | ECMP[42] | ECMP[41] | ECMP[40]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name ECMP[39] ECMP[38] ECMP[37] ECMP[36] ECMP[35] ECMP[34] ECMP[33] ECMP[32]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:0] ECMP[47:32] Value to be compared with ElapsedTime bit [47:32]

Note Previous value is retained

Use these registers to set the values to be compared with values in the elapsed time registers.

340

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2.3 RTC Long 1 Registers

(1) RTCL1LREG (0x0B0OO 00DO)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name RTCL1P[15] | RTCL1P[14] | RTCL1P[13] [RTCL1P[12] | RTCL1P[11] | RTCL1P[10] | RTCL1P[9] | RTCL1P[8]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RTCL1P[7] | RTCL1P[6] | RTCL1P[5] | RTCL1P[4] | RTCL1P[3] | RTCL1P[2] | RTCL1P[1] | RTCL1P[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:0] RTCL1P[15:0] [15:0] for RTCLong1 counter cycle

Note Previous value is retained

341

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

(2) RTCL1IHREG (0x0B00 00D2)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RTCL1P[23] | RTCL1P[22] | RTCL1P[21] [RTCL1P[20] [RTCL1P[19] | RTCL1P[18] | RTCL1P[17] | RTCL1P[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7:0] RTCL1P[23:16] [23:16] for RTCLong1 counter cycle
Note Previous value is retained

Use these registers to set the RTCLongl counter cycle. The RTCLongl counter begins its countdown at the

value written to these registers.
A write operation is valid once values have been written to both registers (RTCL1LREG and RTCL1HREG).

Cautions 1. The RTC unit is stopped when all zeros are written.
2. Any combined setting of “RTCL1IHREG = 0x0000" and
0x0003, 0x0004” is prohibited.

342

“RTCL1LREG = 0x0001, 0x0002,

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2.4 RTC Long 1 Count Registers

(1) RTCLICNTLREG (0x0B0O 00D4)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name RTCL1C[15] | RTCL1C[14] [RTCL1C[13] | RTCL1C[12] | RTCL1C[11] [RTCL1C[10] | RTCL1C[9] | RTCL1C[8]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RTCL1C[7] | RTCLAC[6] | RTCL1C[5] | RTCL1C[4] | RTCL1C[3] | RTCL1C[2] | RTCL1C[1] | RTCL1C|[O]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:0] RTCL1C[15:0] RTCLong1 counter bit [15:0]

Note Continues counting

343

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

(2) RTCLICNTHREG (0x0B0O 00D6)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RTCL1CJ[23] | RTCL1C[22] [RTCL1C[21] | RTCL1C[20] | RTCL1C[19] | RTCL1C[18] | RTCL1C[17] | RTCL1CJ[16]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7:0] RTCL1C[23:16] RTCLong1 counter bit [23:16]
Note Continues counting

These registers indicate the RTCLong1 counter’s values. The countdown uses a 32.768-kHz cycle and begins at

the value set to the RTCLongl registers. An RTCLongl interrupt occurs when the counter reaches 0x00 0001 (at

which point the counter returns to the start value and continues counting).

344

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2.5 RTC Long 2 Registers

(1) RTCL2LREG (0x0B0O 00DS)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name RTCL2P[15] | RTCL2P[14] | RTCL2P[13] | RTCL2P[12] | RTCL2P[11] | RTCL2P[10] | RTCL2P[9] | RTCL2P[8]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RTCL2P[7] | RTCL2P[6] | RTCL2P[5] | RTCL2P[4] | RTCL2P[3] | RTCL2P[2] | RTCL2P[1] | RTCL2P[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:0] RTCL2P[15:0] [15:0] for RTCLong2 counter cycle

Note Previous value is retained

345

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

(2) RTCL2HREG (0x0B00 00DA)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RTCL2P[23] | RTCL2P[22] | RTCL2P[21] | RTCL2P[20] | RTCL2P[19] | RTCL2P[18] | RTCL2P[17] | RTCL2P[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7:0] RTCL2P[23:16] [23:16] for RTCLong2 counter cycle
Note Previous value is retained

Use these registers to set the RTCLong2 counter cycle. The RTCLong2 counter begins its countdown at the

value written to these registers.
A write operation is valid once values have been written to both registers (RTCL2LREG and RTCL2HREG).

Cautions 1. The RTC unit is stopped when all zeros are written.
2. Any combined setting of “RTCL2HREG = 0x0000" and
0x0003, 0x0004” is prohibited.

346

“RTCL2LREG = 0x0001, 0x0002,

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2.6 RTC Long 2 Count Registers

(1) RTCL2CNTLREG (0x0B00 00DC)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name RTCL2C[15] | RTCL2C[14] | RTCL2C[13] | RTCL2C[12] | RTCL2C[11] [RTCL2C[10] | RTCL2C[9] | RTCL2C[8]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RTCL2C[7] | RTCL2C[6] | RTCL2C[5] | RTCL2C[4] | RTCL2C[3] | RTCL2C[2] | RTCL2C[1] | RTCL2C|[O]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:0] RTCL2C[15:0] RTCLong2 counter bit [15:0]

Note Continues counting

347

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

(2) RTCL2CNTHREG (0x0B0O 00DE)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RTCL2CJ[23] | RTCL2C[22] [RTCL2C[21] | RTCL2C[20] | RTCL2C[19] | RTCL2C[18] | RTCL2C[17] | RTCL2CJ[16]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets Note Note Note Note Note Note Note Note

Bit Name Function
D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7:0] RTCL2C[23:16] RTCLong2 counter bit [23:16]
Note Continues counting

These registers indicate the RTCLong2 counter’s values. The countdown uses a 32.768-kHz cycle and begins at

the value set to the RTCLong?2 registers. An RTCLong2 interrupt occurs when the counter reaches 0x00 0001 (at

which point the counter returns to the start value and continues counting).

348

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2.7 TClock Counter Registers

(1) TCLKLREG (0x0B00 01C0)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name TCLKP[15] | TCLKP[14] | TCLKP[13] | TCLKP[12] | TCLKP[11] | TCLKP[10] | TCLKP[9] | TCLKP[8]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TCLKP[7] TCLKP[6] TCLKP[5] TCLKP[4] TCLKP[3] TCLKP[2] TCLKP[1] TCLKPI[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:0] TCLKP[15:0] [15:0] for TClock counter cycle

349

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

(2) TCLKHREG (0x0B00 01C2)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved TCLKP[24]
RIW R R R R R R R RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TCLKP[23] | TCLKP[22] | TCLKP[21] | TCLKP[20] | TCLKP[19] | TCLKP[18] | TCLKP[17] | TCLKP[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:9] Reserved Write 0 when writing. 0 is returned after a read.

D[8:0] TCLKP[24:16] [24:16] for TClock counter cycle

Use these registers to set the TCLK counter cycle. The TCLK counter begins its countdown at the value written

to these registers.
A write operation is valid once values have been written to both registers (TCLKLREG and TCLKHREG).

Caution

350

The TCLK unit is stopped when all zeros are written.

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2.8 TClock Counter Count Registers

(1) TCLKCNTLREG (0x0BO00 01C4)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name TCLKC[15] | TCLKC[14] | TCLKC[13] | TCLKC[12] | TCLKC[11] | TCLKC[10] | TCLKC[9] | TCLKC[8]
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TCLKC[7] TCLKC[6] TCLKC[5] TCLKC[4] TCLKC[3] TCLKC[2] TCLKCI[1] TCLKC[0]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:0] TCLKCJ[15:0] TClock counter [15:0]

351

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

(2) TCLKCNTHREG (0x0B00 01C6)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved TCLKC[24]
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TCLKC[23] | TCLKC[22] | TCLKC[21] [TCLKC[20] [TCLKC[19] | TCLKC[18] | TCLKC[17] | TCLKCI[16]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:9] Reserved Write 0 when writing. 0 is returned after a read.

D[8:0] TCLKC[24:16] TClock counter [24:16]

Use these registers to set the TCLK counter value. The TCLKCNT counter begins its countdown at the value
written to the TCLK counter registers. A TCLK counter interrupt occurs when the counter reaches 0x000 0001 (at

which point the counter returns to the start value and continues counting).

352

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2.9 RTC Interrupt Register

(1) RTCINTREG (0x0B00 01DE)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved RTCINTR3 | RTCINTR2 [RTCINTR1 | RTCINTRO
R/W R R R R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 Note Note Note

Bit Name Function
D[15:4] Reserved Write O when writing. 0 is returned after a read.

D[3] RTCINTR3 TClock counter interrupt. Cleared to 0 when 1 is written.
1: Occurred
0: Normal
D[2] RTCINTR2 RTCLong2 interrupt. Cleared to 0 when 1 is written.
1: Occurred
0: Normal
D[1] RTCINTR1 RTCLongl interrupt. Cleared to 0 when 1 is written.
1: Occurred
0: Normal
D[0] RTCINTRO Status bit for elapsed time interrupt. Cleared to 0 when 1 is written.

1: Occurred

0: Normal

Note Previous value is retained

This register is used to monitor interrupts.

353

[MEMO]

354

This chapter describes the DSU (Deadman’s Switch Unit)’s operations and register settings.

17.1 GENERAL

CHAPTER 17 DSU (DEADMAN'S SWITCH UNIT)

The DSU detects when the VR4102 is in runaway (endless loop) state and resets the VR4102 to minimize
runaway time. The use of the DSU to minimize runaway time effectively minimizes data loss that can occur due to

software-related runaway states.

17.2 REGISTER SET

The DSU registers are listed below.

Table 17-1. DSU Registers

Address R/W Symbol Function
0x0B0O 0OEO R/W | DSUCNTREG | DSU Control Register
0xOBOO O0E2 | R/W |[DSUSETREG |DSU Dead Time Set Register
0x0B0O 00E4 w DSUCLRREG | DSU Clear Register
0x0B00 00E6 | R/W [DSUTIMREG DSU Elapsed Time Register

Each register is described in detail below.

355

CHAPTER 17 DSU (DEADMAN’'S SWITCH UNIT)

17.2.1 DSUCNTREG (0x0B0O 00EO)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DSWEN
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O when writing. 0 is returned after a read.

D[0] DSWEN Deadman’s Switch function enable

1: Enable
0 : Prohibit

This register is used to enable use of the Deadman’s Switch functions.

356

CHAPTER 17 DSU (DEADMAN’'S SWITCH UNIT)

17.2.2 DSUSETREG (0x0BOO 00EZ2)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved | DEDTIME[3] | DEDTIME[2] | DEDTIME[1] | DEDTIME[O]
RIW R R R R R/W R/IW R/IW R/IW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..4] Reserved Write 0 when writing. O is returned after a read.

D[3..0] DEDTIMEJ3..0] Deadman’s Switch cycle setting
1111 15 sec
1110 14 sec
0010 2 sec
0001 1sec
0000 RFU

This register sets the cycle for Deadman’s Switch functions.

The Deadman’s Switch cycle can be set in 1-second increments in a range from 1 to 15 seconds. However, the
VR4102's operation is undefined when 0x0 has been set to DEDTIME[3..0]. The DSUCLRREG’s DSWCLR bit must
be set by software within the specified cycle time.

357

CHAPTER 17 DSU (DEADMAN’'S SWITCH UNIT)

17.2.3 DSUCLRREG (0x0BO0OO 00E4)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DSWCLR
R/W R R R R R R R W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O when writing. 0 is returned after a read.

D[0] DSWCLR Deadman’s Switch counter clear. Cleared to O when 1 is written.

1: Clear
0: Don't clear

This register clears the Deadman’s Switch counter.
The VR4102 automatically shuts down if 1 is not written to this register within the period set in DSUSETREG.

358

CHAPTER 17 DSU (DEADMAN’'S SWITCH UNIT)

17.2.4 DSUTIMREG (0x0B0O OOEG6)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved | CRTTIME[3] | CRTTIME[2] [CRTTIME[1] | CRTTIME[O]
R/W R R R R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..4] Reserved Write O when writing. 0 is returned after a read.

D[3..0] CRTTIME[3..0] Current Deadman’s Switch timer value (elapsed time)

1111 15 sec
1110 14 sec
0010 2 sec
0001 1 sec
0000 RFU

This register indicates the elapsed time for the current Deadman’s Switch timer.

359

CHAPTER 17 DSU (DEADMAN’'S SWITCH UNIT)

17.3 REGISTER SETTING FLOW
The DSU register setting flow is described below.
1. Setthe DSU’s count-up value (From 1 to 15 seconds).
The CPU will be reset if it does not clear (1 is not written to DSUCLRREG) the timer within this time period.

DSUDTMREG address : 0xOB0OO 0O0E2 data : 0x000x

2. Enable the DSU.
DSUCNTREG address : 0x0OB0O 00EO data : 0x0001

3. Clear the timer within the time period mentioned in step 1 above.
DSUCLRREG address : 0x0B0O O0OE4 data : 0x0001

For normal use, repeat step 3. To obtain the current elapsed time:
DSITIMREG address : 0xOB0O 00E6 read (4 bits)

4. Disable the DSU for Suspend mode or a shutdown.
DSUCNTREG address : 0x0OBOO O0EO data : 0x0000

360

CHAPTER 18 GIU (GENERAL PURPOSE /O UNIT)

This chapter describes the GIU’s operations and register settings.

18.1 GENERAL

The GIU controls GPIO and DCD# pins. GPIO pins are ports that support output functions and input functions
(including three types of interrupt trigger detection functions). The interrupts occur in response to an input signal
change (rising edge or falling edge of signal), low level, or high level.

The clocks and input buffer types used for interrupt detection at a GPIO pin are listed below.

When not used for an interrupt, the registers corresponding to these pins can be written to output a low-level or
high-level signal.

Each register can be read to check the state of the signal currently being input to the corresponding pin.

Table 18-1. GPIO Pin Functions

Pin Interrupt detection clock Input buffer type Output clock
(internal) (internal)

GPIO[49..32] - - TClock
GPIO[31..16] TClock Normal TClock
GPIO[15](DCD#) MasterOut Normal -
GPIO[14..9] MasterOut Normal MasterOut
GPIO[8..5] TClock Normal MasterOut
GPIO[4] TClock Schmitt TClock
GPIOI[3..0] RTC Schmitt RTC

Cautions The function of GPIO[15] is fixed as DCD# input signal. This pin cannot
be used as a general-purpose input/output pin.

361

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2 REGISTER SET

The GIU registers are listed below.

362

Table 18-2. GIU Registers

Address R/W Register Symbols Function
0x0B00 0100 R/W | GIUIOSELL GPIO Input/Output Select Register L
0x0B00 0102 R/W | GIUIOSELH GPIO Input/Output Select Register H
0x0B00 0104 R/W | GIUPIODL GPIO Port Input/Output Data Register L
0x0B00 0106 R/W | GIUPIODH GPIO Port Input/Output Data Register H
0x0B00 0108 R/W [GIUINTSTATL GPIO Interrupt Status Register L
0x0B00 010A R/W | GIUINTSTATH GPIO Interrupt Status Register H
0x0B00 010C R/W | GIUINTENL GPIO Interrupt Enable Register L
0x0B00 010E R/W | GIUINTENH GPIO Interrupt Enable Register H
0x0B00 0110 R/W [GIUINTTYPL GPIO Interrupt Type (Edge or Level) Select Register L
0x0B00 0112 R/W | GIUINTTYPH GPIO Interrupt Type (Edge or Level) Select Register H
0x0B00 0114 R/W GIUINTALSELL GPIO Interrupt Active Level Select Register L
0x0B00 0116 R/W | GIUINTALSELH GPIO Interrupt Active Level Select Register H
0x0B00 0118 R/W | GIUINTHTSELL GPIO Interrupt Hold/Through Select Register L
0x0B0O0 011A R/W | GIUINTHTSELH GPIO Interrupt Hold/Through Select Register H
0x0B00 011C R/W | GIUPODATL GPIO Port Output Data Register L
0x0B00 011E R/W | GIUPODATH GPIO Port Output Data Register H

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.1 GIUIOSELL (0x0B0O0 0100)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name 10S[15] 10S[14] 10S[13] 10S[12] 10S[11] 10S[10] 10S[9] 10S[8]
RIW R R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name 10S[7] 10S[6] 10S[5] 10S[4] 10S[3] 10S[2] 10S[1] 10S[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] 10S[15..0] GPIO pin input/output select

1: Output
0: Input

This register is used to set input/output values for GPIO[15..0] pins.
When the 10S bit is set to “1”, the corresponding GPIO pin is set for output and the value that has been written to

the corresponding PIOD bit in the GIUPIODL (GPIO Port Input/Output Data Register) is output.

When this bit is set to “0”, the corresponding GPIO pin is set for input.

Caution

Since 10S[15] (GPIO[15] (DCD#)) is fixed as input, it cannot be set for output.

363

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.2 GIUIOSELH (0x0B00 0102)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name 10S[31] 10S[30] 10S[29] 10S[28] 10S[27] 10S[26] 10S[25] 10S[24]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name 10S[23] 10S[22] 10S[21] 10S[20] 10S[19] 10S[18] 10S[17] 10S[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] 10S[31..16] GPIO pin input/output select

1: Output
0: Input

This register is used to set input/output settings for GPIO[31..16] pins.
When the 10S bit is set to “1”, the corresponding GPIO pin is set for output and the value that has been written to
the corresponding PIOD bit in the GIUPIODH (GPIO Port Input/Output Data Register) is output.
When this bit is set to “0”, the corresponding GPIO pin is set for input.

364

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.3 GIUPIODL (0x0B0OO 0104)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name PIOD[15] PIOD[14] PIOD[13] PIOD[12] PIOD[11] PIOD[10] PIOD[9] PIOD[8]
RIW R R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name PIOD[7] PI1ODI[6] PIOD[5] PIOD[4] PIOD[3] PIOD[2] PIOD[1] P1ODI[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] PIODJ[15..0] GPIO pin output data specification

1: High
0: Low

This register is used to read GPIO pins and write data. The PIOD[15..0] bits correspond to the GPIO[15..0] pins.

When “1” is set to the corresponding IOS bit in the GIUIOSELL register (GPIO Input/Output Select Register), the
data written to the PIOD bit is output via the corresponding GPIO pin.

When the value of the corresponding I0S bit in the GIUIOSELL register (GPIO Input/Output Select Register) is

“0”, writing a value to the PIOD bit does not affect the GPIO pin (the write data is ignored).

When the value of the 10S bit in the GIUIOSELL register (GPIO Input/Output Select Register) is “0”, reading the

PIOD bit enables the corresponding GPIO pin’s state to be read.

Caution

Since PIOD[15] (GPIO[15] (DCD#)) is fixed as input, write data cannot be output via this pin.

365

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.4 GIUPIODH (0x0B00O 0106)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name PIOD[31] PIOD[30] PIOD[29] PIOD[28] PIOD[27] PIOD[26] PIOD[25] PIOD[24]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name PIOD[23] PIOD[22] PIOD[21] PIOD[20] PIOD[19] PIOD[18] PIOD[17] PIOD[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] PIODI[31..16] GPIO pin output data specification

1: High
0: Low

This register is used to read GPIO pins and write data. The PIOD[31..16] bits correspond to the GPIO[31..16]
pins.

When “1" is set to the corresponding 10S bit in the GIUIOSELH register (GPIO Input/Output Select Register), the
data written to the PIOD bit is output via the corresponding GPIO pin.

When the value of the corresponding IOS bit in the GIUIOSELH register (GPIO Input/Output Select Register) is
“0”, writing a value to the PIOD bit does not affect the GPIO pin (the write data is ignored).

When the value of the 10S bit in the GIUIOSELH register (GPIO Input/Output Select Register) is “0”, reading the
PIOD bit enables the corresponding GPIO pin’s state to be read.

366

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.5 GIUINTSTATL (0x0B0O 0108)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTS[15] INTS[14] INTS[13] INTS[12] INTS[11] INTS[10] INTS[9] INTS[8]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTS[7] INTS[6] INTS[5] INTS[4] INTS[3] INTS[2] INTS[1] INTS[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTS[15..0] Interrupt to GPIO pin. Cleared to 0 when 1 is written.

1: Interrupt occurred

0: No interrupt

This register indicates the interrupt status of GPIO pins. The INTS[15..0] bits correspond to the GPIO[15..0] pins.
“1” is set to the corresponding INTS bit when “1” is set to the corresponding INTE bit in the GIUINTENL register
(GPIO Interrupt Enable Register) and when the signal input to an interrupt-enabled GPIO pin meets the conditions
set via the GIUNTTYPL register (GPIO Interrupt Type (Edge or Level) Select Register) and the GIUINTALSELL

register (GPIO Interrupt Active Level Select Register).

Caution The function of GPIO[15] is fixed as DCD# signal input.

367

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.6 GIUINTSTATH (0x0OB0O 010A)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTS[31] INTS[30] INTS[29] INTS[28] INTS[27] INTS[26] INTS[25] INTS[24]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTS[23] INTS[22] INTS[21] INTS[20] INTS[19] INTS[18] INTS[17] INTS[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTS[31..16] Interrupt to GPIO pin. Cleared to 0 when 1 is written.

1: Interrupt occurred
0: No interrupt

This register indicates the interrupt status of GPIO pins. The INTS[31..16] bits correspond to the GPIO[31..16]
pins.

“1” is set to the corresponding INTS bit when “1” is set to the corresponding INTE bit in the GIUINTENH register
(GPIO Interrupt Enable Register) and when the signal input to an interrupt-enabled GPIO pin meets the conditions
set via the GIUINTTYPH register (GPIO Interrupt Type (Edge or Level) Select Register) and the GIUINTALSELH
register (GPIO Interrupt Active Level Select Register).

368

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.7 GIUINTENL (0x0B00 010C)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTE[15] INTE[14] INTE[13] INTE[12] INTE[11] INTE[10] INTE[9] INTE[8]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTE[7] INTE[6] INTE[5] INTE[4] INTE[3] INTE[2] INTE[1] INTE[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTE[15..0] Interrupt enable to GPIO pin

1: Interrupt enable
0 : Interrupt prohibit

This register is used to set interrupt enable status for GPIO pins.

GPIO[15..0] pins.

When “1” is set to the corresponding INTE bit, interrupts are enabled for the corresponding GPIO pins.

Caution The function of GPIO[15] is fixed as DCD# signal input.

The INTE[15..0] bits correspond to the

369

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.8 GIUINTENH (0x0B0O 010E)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTE[31] INTE[30] INTE[29] INTE[28] INTE[27] INTE[26] INTE[25] INTE[24]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTE[23] INTE[22] INTE[21] INTE[20] INTE[19] INTE[18] INTE[17] INTE[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTE[31..16] Interrupt enable to GPIO pin

1: Interrupt enable
0 : Interrupt prohibit

This register is used to set interrupt enable status for GPIO pins.

GPIO[31..16] pins.

When “1” is set to the corresponding INTE bit, interrupts are enabled for the corresponding GPIO pins.

370

The INTE[31..16] bits correspond to the

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.9 GIUINTTYPL (0x0B00 0110)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTT[15] INTT[14] INTT[13] INTT[12] INTT[11] INTT[10] INTT[9] INTT[8]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTTI[7] INTTI[6] INTT[5] INTT[4] INTTI[3] INTT[2] INTT[1] INTT[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTT[15..0] Interrupt detection method

1: Edge
0: Leve

This register is used to set the detection method (trigger) for interrupts to GPIO pins.

correspond to the GPIO[15..0] pins.
When “1” is set to the corresponding INTT bit, the edge detection method is used for the interrupt signal at the
corresponding GPIO pin (an interrupt is triggered when the signal state changes from low to high or from high to

low).

The INTT[15..0] bits

The level detection method is used when “0” is set, in which case the level set to corresponding bit in the
GIUINTALSELL register (GPIO Interrupt Active Level Select Register) is detected.

Caution The function of GPIO[15] is fixed as DCD# signal input.

371

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.10 GIUINTTYPH (0x0B00 0112)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTT[31] INTT[30] INTT[29] INTT[28] INTT[27] INTT[26] INTT[25] INTT[24]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTT[23] INTT[22] INTT[21] INTT[20] INTT[19] INTT[18] INTT[17] INTT[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTT[31..16] Interrupt detection method

1: Edge
0: Leve

This register is used to set the detection method for interrupts to GPIO pins. The INTT[31..16] bits correspond to

the GPIO[31..16] pins.

When “1” is set to the corresponding INTT bit, the edge detection method is used for the interrupt signal at the
corresponding GPIO pin (an interrupt is triggered when the signal state changes from low to high or from high to

low).

The level detection method is used when “0” is set, in which case the level set to corresponding bit in the

GIUINTALSELH register (GPIO Interrupt Active Level Select Register) is detected.

372

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.11 GIUINTALSELL (0x0B0O0 0114)

1: High active
0: Low active

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTL[15] INTL[14] INTL[13] INTL[12] INTL[11] INTL[10] INTL[9] INTL[8]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTL[7] INTL[6] INTL[5] INTL[4] INTL[3] INTL[2] INTL[1] INTL[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTL[15..0] Interrupt setting during level detection method

This register is used to set the active level when using the level detection method for interrupts to GPIO pins. The

INTL[15..0] bits correspond to the GPIO[15..0] pins.

When “1" is set to the corresponding INTL bit, the high-active level detection method is used for interrupts at the
corresponding GPIO pin. The low-active level detection method is used when “0” is set to this bit.
The contents of this register are not reflected when the edge detection method is selected via the GIUINTTYPL
register (GPIO Interrupt Type (Edge or Level) Select Register). When using this register, be sure to set the level

detection method via the GIUINTTYPL register (GPIO Interrupt Type (Edge or Level) Select Register).

Caution The function of GPIO[15] is fixed as DCD# signal input.

373

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.12 GIUINTALSELH (0x0BO0O 0116)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTL[31] INTL[30] INTL[29] INTL[28] INTL[27] INTL[26] INTL[25] INTL[24]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTL[23] INTL[22] INTL[21] INTL[20] INTL[19] INTL[18] INTL[17] INTL[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTL[31..16] Interrupt setting during level detection method

1: High active
0: Low active

This register is used to set the active level when using the level detection method for interrupts to GPIO pins. The
INTL[31..16] bits correspond to the GPIO[31..16] pins.

When “1" is set to the corresponding INTL bit, the high-active level detection method is used for interrupts at the
corresponding GPIO pin. The low-active level detection method is used when “0” is set to this bit.

The contents of this register are not reflected when the edge detection method is selected via the GIUINTTYPH
register (GPIO Interrupt Type (Edge or Level) Select Register). When using this register, be sure to set the level
detection method via the GIUINTTYPH register (GPIO Interrupt Type (Edge or Level) Select Register).

374

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.13 GIUINTHTSELL (0x0B00 0118)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTH[15] INTH[14] INTH[13] INTH[12] INTH[11] INTH[10] INTH[9] INTH[8]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTH[7] INTH[6] INTHI5] INTH[4] INTH[3] INTHI[2] INTHI[1] INTHIO]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTH[15..0] GPIO pin interrupt signal hold/through

1: Hold

0: Through

This register is used to set whether or not interrupt signals to the GPIO pins should be held. The INTH[15..0] bits
correspond to the GPIO[15..0] pins.
When “1” is set to the corresponding INTH bit, any interrupt signal input to the corresponding GPIO pin is held.

When “0” is set to this bit, any interrupt signal input to the corresponding GPIO pin is not held and is instead

allowed to pass through.
Any held interrupt signal is cleared when “1” is set to the corresponding bit in the GIUINTSTATL register (GPIO
Interrupt Status Register).
INTH[15..0] are not affected by GIUINTENL (interrupt enable register).
If “1” (hold) is set to the INTH bit while the interrupt enable bit is set to prohibit interrupts, any change in the pin
state is retained as change data. Therefore, an interrupt still occurs when the interrupt enable bit is again set to

enable interrupts.

Caution The function of GPIO[15] is fixed as DCD# signal input.

375

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.14 GIUINTHTSELH (0x0BOO 011A)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name INTH[31] INTH[30] INTH[29] INTH[28] INTH[27] INTH[26] INTH[25] INTH[24]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name INTH[23] INTH[22] INTH[21] INTH[20] INTH[19] INTH[18] INTH[17] INTH[16]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..0] INTH[31..16] GPIO pin interrupt signal hold/through

1: Hold

0: Through

This register is used to set whether or not interrupt signals to the GPIO pins should be held. The INTH[31..16]
bits correspond to the GPIO[31..16] pins.
When “1” is set to the corresponding INTH bit, any interrupt signal input to the corresponding GPIO pin is held.
When “0” is set to this bit, any interrupt signal input to the corresponding GPIO pin is not held and is instead
allowed to pass through.
Any held interrupt signal is cleared when “1” is set to the corresponding bit in the GIUINTSTATH register (GPIO
Interrupt Status Register).
INTH[31..16] are not affected by GIUINTENH (interrupt enable register).
If “1” (hold) is set to the INTH bit while the interrupt enable bit is set to prohibit interrupts, any change in the pin

state is retained as change data. Therefore, an interrupt still occurs when the interrupt enable bit is again set to

enable interrupts.

376

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

The relationship between settings of GPIO interrupts enable/prohibit and hold/through is as below.

Interrupt Setting of GIUINTHSEL Setting of GIUINTEN Hold in GIU Notation to ICU
trigger
Level Hold Masked Held Not noticed
Not masked Held Noticed
Masked — canceled Held Noticed
Through Masked Through Not noticed
Not masked Through Noticed
Masked — canceled Through Not noticed
Edge Hold Masked Held Not noticed
Not masked Held Noticed
Masked — canceled Held Noticed
Through Masked Through Not noticed
Not masked Prohibited Prohibited
Masked — canceled Through Not noticed

377

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.15 GIUPODATL (0x0B00 011C)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name PIOD[47] PIOD[46] PIOD[45] PIOD[44] PIOD[43] PIOD[42] PIOD[41] PIOD[40]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 1 1 1 1 1 1 1 1
Other resets 1 1 1 1 1 1 1 1

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name PIOD[39] P1OD[38] PIOD[37] PIOD[36] PIOD[35] PIOD[34] PIOD[33] PIOD[32]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 1 1 1 1 1 1 1 1
Other resets 1 1 1 1 1 1 1 1

Bit Name Function
D[15..0] PI1ODI[47..32] GPIO pin output data specification

1: High
0: Low

This register is used to set the output level for GPIO pins. The PIOD[47..32] bits correspond to the GPIO[47..32]
pins.

The data written to the PIOD bit is output via the corresponding GPIO pin. The set value can be read by reading
the PIOD bit.

Pins set by this register are output-only. Pins set by this register are used exclusively from other function pins.
Therefore, when using this register, set the enable bit to prohibit in the corresponding unit.

The correspondences between PIOD bits and function pins are listed in the table on the next page.

378

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

Table 18-3. Table of Correspondences between GPIO[47..32] and Function Pins

PI1OD Bit GPIO pin Function pin
PIOD[47] GPIO[47] DCTS#
PIOD[46] GPIO[46] DRTS#
PIOD[45] GPIO[45] DDIN
PIOD[44] GPIO[44] DDOUT
PIOD[43] GPIO[43] KSCAN[11]
PIOD[42] GPIO[42] KSCAN[10]
PIOD[41] GPIO[41] KSCAN[9]
PIOD[40] GPIO[40] KSCANI8]
PIOD[39] GPIO[39] KSCAN[7]
PIOD[38] GPIO[38] KSCANI6]
PIOD[37] GPIO[37] KSCAN[5]
PIOD[36] GPIO[36] KSCAN[4]
PIOD[35] GPIO[35] KSCAN[3]
PIOD[34] GPIO[34] KSCANI2]
PIOD[33] GPIO[33] KSCAN[1]
PIOD[32] GPIO[32] KSCANIO]

379

CHAPTER 18 GIU (GENERAL PURPOSE 1/O UNIT)

18.2.16 GIUPODATH (0x0B00 011E)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved PIOENT[1] PIOENIO]
R/IW R R R R R R R/IW R/IW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved PIOD[49] PIOD[48]
R/IW R R R R R R R/IW R/IW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15..0] Reserved Reserved
D[9] PIOEN[1] GPIO[49] pin output control
1: Enable
0: Disable

D[8] PIOENIJO] GPIO[48]/DBUS32 pin output control
1: Enable
0 : Disable

D[7..2] Reserved Reserved

D[1..0] P10ODI[49..48] GPIO pin output data specification
1: High
0: Low

This register is used to set the output level for GPIO pins. The PIOEN[1..0] bits or the PIOD[49..48] bits
correspond to the GPI10O[49..48].

The data written to the PIOD bit is output via the corresponding GPIO pin. The set value can be read by reading
the PIOD bit.

Pins set by this register are output-only. Pins set by this register are used exclusively from other function pins.
Therefore, when using this register, set the enable bit to prohibit in the corresponding unit.

The correspondence between PIOD bit and function pin is listed below.

Table 18-4. Table of Correspondence between GPIO[48] and Function Pin

PI1OD Bit GPIO pin Function pin

PIOD[48] GPIO[48] DBUS32

380

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

This chapter describes the PIU’s operations and register settings.
19.1 GENERAL

The PIU uses an on-chip A/D converter and detects the X and Y coordinates of pen contact locations on the
touch panel and scans the general-purpose A/D input port. Since the touch panel control circuit and the A/D
converter (conversion precision: 10 bits) are both on-chip, the touch panel is connected directly to the VrR4102.

The PIU’s function, namely the detection of X and Y coordinates, is performed partly by hardware and partly by
software.

Hardware tasks: * Touch panel applied voltage control
« Reception of coordinate data

Software task : ¢ Processing of coordinate data based on data sampled by hardware
Features of the PIU’s hardware tasks are described below.

« Can be directly connected to touch panel with four-pin resistance layers (on-chip touch panel driver)

¢ Interface for on-chip A/D converter

« Voltage detection at three general-purpose AD ports and one audio input port

¢ Operation of A/D converter based on various settings and control of voltage applied to touch panel

« Sampling of X-coordinate and Y-coordinate data

« Variable coordinate data sampling interval

« Interrupt is triggered if pen touch occurs regardless of CPU operation mode (interrupts do not occur when in
CPU hibernate mode)

« Four dedicated buffers for up to two pages each of coordinate data

« Four buffers for A/D port scan

« Auto/manual options for coordinate data sampling start/stop control

381

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.1.1 Block Diagrams

Figure 19-1. PIU Peripheral Block Diagram

VR4102
AUDIOIN 4y
Battery, etc. .
ADIN2 110 e
_Ij i ADC AlU
ADIN1 buffer [7}
—T—T— n
ADINO
Touch panel
TPY1 -
TPYO 1/0
PIU
TPX1 buffer
TPXO0

e Touch panel

A set of four pins are located at the edges of the X-axis and Y-axis resistance layers, and the two layers have
high resistance when there is no pen contact and low resistance when there is pen contact. The resistance
between the two edges of the resistance layers is about 1 kQQ. When a voltage is applied to both edges of the
Y-axis resistance layer, the voltage (Vy1 and Vv2 in the figure below) is measures at the X-axis resistance
layer’s pins to determine the Y coordinate. Similarly, when a voltage is applied to both edges of the X-axis
resistance layer, the voltage (Vx1 and Vx2 in the figure below) is measures at the Y-axis resistance layer's
pins to determine the X coordinate. For greater precision, voltage applied to individual resistance-layer pins
can be measured to obtain X and Y coordinate data based on four voltage measurements. The obtained
coordinate data are stored to PIUPBnmREG register (n =0, 1, m =0 to 3).

Figure 19-2. Equivalent Circuit of Coordinate Detection

(a) Y-coordinate detection

TPY1: 3V TPY1: OV
Vy2
<O TPX0 TPXO0
Vy1
A
TPYO: OV TPYO: 3V

(b) X-coordinate detection
TPYO T%YO

43&»‘ <%

TPX0:3v O TPX1: OV TPXO0: OV O—/\/\/\/—O TPX1: 3V

382

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

Figure 19-3. Internal Block Diagram of PIU

Inside the VR4102 Internal bus

PIU A A

Internal bus

e m— controller

Scan sequencer

A

Touch panel

vt

TP
interface
controller

p| PIU registers

A

A/D converter

General purpose
A/D ports and
Audio input port

The PIU includes three blocks: an internal bus controller, a scan sequencer, and a TP interface controller.
* Internal bus controller
The internal bus controller controls the internal bus, DMA, the PIU registers, and interrupts and performs

serial/parallel conversion of data from the A/D converter.

¢ Scan sequencer
The scan sequencer is used for PIU state management.

e TP interface controller
The TP interface controller is used to control the touch panel.

383

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.2 SCAN SEQUENCER STATE TRANSITION

Figure 19-4. Scan Sequencer State Transition Diagram

Disable <4— Reset=1

A

PIUPWR=0 PIUPWR=1 PIUSeqEN=0

ADPortScan

Release &
AutoStop=1

ADPSStart=

PIUSeqEN=1 Interval

&

auto| | TimeOut

Touch
WaitPenTouch DataScan

PIUSeqENn=1
& ScanStart=1
Release
ScanStart=1

PIUSqun:(T PIUSeqEN=0 or ScanStop=1

PIUSeqENn=0

PIUSeqENn=
1

PIUSeqEN=1
& PIUmode=0]

« Disable state
In this state, the A/D converter is in standby mode, the output pins are in touch detection mode (no PIU
interrupt), and the input pins are in mask mode (to prevent misoperation when an undefined input is applied).

« Standby state
In this state, the unit is in scan idle mode. The touch panel is in low-power mode (0-V voltage is applied to
the touch panel and the A/D converter is in disable mode). Normally, this is the state from which various
mode settings are made.

Caution State transitions occur when the PIUSEQEN bit is active, so the PIUSEQEN bit must be set
as active after each mode setting has been completed.

¢ ADPortScan state
This is the state in which voltage is measured at the three A/D converter’s general-purpose ports and one
audio input port. After the A/D converter is activated and voltage data is obtained, the data is stored in the
PIU’s internal data buffer (PIUABXREG). After the four ports are scanned, a PadCMDIntr interrupt occurs.
After this interrupt occurs, the ADPSSTART bit is automatically set as inactive and the state changes to the
state in which the ADPSSTART bit was active.

384

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

CMDScan state

When in this state, the A/D converter operates using various settings. Voltage data from one port only is
fetched based on a combination of the touch panel pin setting (TPX[1:0], TPY[1:0]) and the selection of an
input port (TPX[1:0], TPY[1:0], AUDIOIN, ADIN[2:0]) to the A/D converter. Use PIUCMDREG to make the
touch panel pin setting and to select the input port.

WaitPenTouch state

This is the standby state that waits for a touch panel “touch” state. When the PIU detects a touch panel
“touch” state, PenChglntr (an internal interrupt in the PIU) occurs. At this point, if the PADAUTOSCAN bit is
active, the state changes to the PenDataScan state. During the WaitPenTouch state, it is possible to change
to Suspend mode because the panel state can be detected even when TClock has been stopped.

PenDataScan state
This is the state in which touch panel coordinates are detected. The A/D converter is activated and the four
sets of data for each coordinate are sampled.

Caution If one complete pair of coordinates is not obtained during the interval between one pair of
coordinates and the next coordinate data, a PadDatalLostIntr interrupt occurs.

IntervalNextScan state

This is the standby state that waits for the next coordinate sampling period or a touch panel “release” state.
After the touch panel state is detected, the time period specified via PIUSIVLREG elapses before the
transition to the PenDataScan state. If the PIU detects a “release” state within the specified time period,
PenChglntr (an internal interrupt in the PIU) occurs. At this point, the state changes to the WaitPenTouch
state if the PADATSTOP bit is active. If the PADATSTOP bit is inactive, it changes to the PenDataScan state
after the specified time period has elapsed.

385

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.3 REGISTER SET

The PIU registers are listed below.

Table 19-1. PIU Registers

Address R/W Register symbols | Function

0x0B00 0122 | R/W PIUCNTREG PIU Control register

0x0B00 0124 | R/W PIUINTREG PIU Interrupt cause register
0x0B00 0126 | R/W PIUSIVLREG PIU Data sampling interval register
0x0B00 0128 | R/W PIUSTBLREG PIU A/D converter start delay register
0x0B00 012A | R/W PIUCMDREG PIU A/D command register
0x0B00 0130 | R/W PIUASCNREG PIU A/D port scan register
0x0B00 0132 | R/W PIUAMSKREG PIU A/D scan mask register
0x0B00 013E R PIUCIVLREG PIU Check interval register
0x0B00 02A0 | R/W PIUPBOOREG PIU Page 0 Buffer O register
0x0B00 02A2 | R/W PIUPBO1REG PIU Page 0 Buffer 1 register
0x0B00 02A4 | R/W PIUPBO2REG PIU Page 0 Buffer 2 register
0x0B00 02A6 | R/W PIUPBO3REG PIU Page 0 Buffer 3 register
0x0B00 02A8 | R/W PIUPB10REG PIU Page 1 Buffer O register
0x0B00 02AA | R/W PIUPB11REG PIU Page 1 Buffer 1 register
0x0B00 02AC | RIW PIUPB12REG PIU Page 1 Buffer 2 register
0x0B00 02AE | R/W PIUPB13REG PIU Page 1 Buffer 3 register
0x0B00 02BO | R/W PIUABOREG PIU A/D scan Buffer 0 register
0x0B00 02B2 | R/W PIUAB1REG PIU A/D scan Buffer 1 register
0x0B00 02B4 | R/W PIUAB2REG PIU A/D scan Buffer 2 register
0x0B00 02B6 | R/W PIUAB3REG PIU A/D scan Buffer 3 register
0x0B00 02BC | R/W PIUPBO4REG PIU Page 0 Buffer 4 register
0x0B00 02BE | R/W PIUPB14REG PIU Page 1 Buffer 4 register

These registers are described in detail below.

386

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.3.1 PIUCNTREG (0x0B00 0122)

(1/2)
Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved PENSTP PENSTC | PADSTATE[2] | PADSTATE[1] | PADSTATE[0] | PADATSTOP | PADATSTART
R/W R R/W R R R R R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name PADSCAN PADSCAN | PADSCAN PIUMODE([1] [PIUMODEJ0] | PIUSEQEN PIUPWR PADRST
STOP START TYPE
R/W R/W R/W R/W R/W R/W R/W R/W W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15] Reserved Write 0 when writing. O is returned after a read.
D[14] PENSTP Previous touch panel contact state
1: Touch
0: Release
D[13] PENSTC Current touch panel contact state
1: Touch
0: Release
D[12..10] PADSTATE[2:0] Scan sequencer status
111: CmdScan
110 : IntervalNextScan
101 : PenDataScan
100 : WaitPenTouch
011: RFU
010 : ADPortScan
001 : Standby
000 : Disable
D[9] PADATSTOP Sequencer auto stop setting during touch panel release state
1: Auto stop after sampling data for one set of coordinates during release state
0 : No auto stop (even during release state)
D[8] PADATSTART Sequencer auto start setting during touch panel touch state
1: Auto start during touch state
0 : No auto start during touch state
D[7] PADSCANSTOP Forced stop setting for touch panel sequencer

1: Forced stop after sampling data for one set of coordinates
0 : Do not stop

387

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

2/12)

Bit Name Function

D[6] PADSCANSTART Start setting for touch panel sequencer
1: Forced start
0: Do not start

D[5] PADSCANTYPE Touch pressure sampling enable
1: Enable
0: Prohibit

D[4..3] PIUMODE[1..0] PIU mode setting

11: RFU

10: RFU

01 : Operate A/D converter using any command
00 : Sample coordinate data

D[2] PIUSEQEN Scan sequencer operation enable
1: Enable
0 : Prohibit

D[1] PIUPWR PIU power mode setting

1: Set PIU output as active and change to standby mode
0 : Set panel to touch detection state and set PIU operation stop enabled mode

D[0] PADRST PIU reset. Once the PADRST bit is set to “1”, it is automatically cleared to 0 after four
TClock cycles.

1: Reset

0: Normal

This register is used to make various settings for the PIU.
Some bits in this register cannot be set in a specific state of scan sequencer. The combination of the setting of
this register and the sequencer state is as follows.

388

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

Table 19-2. PIUCNTREG Bit Manipulation and States

PIUCNTREG bit manipulation Scan sequencer’s state
Disable Standby WaitPenTouch PenData Scan
PADRST "** 0->1 - Disable Disable Disable
PIUPWR 0->1 Standby ? X X
150 ? Disable X x
PIUSEQEN 0->1 X WaitPenTouch ? ?
1-50 ? ? Standby Standby
PADATSTART 051 x - PenDataScan x
1-0 X - - X
PADATSTOP 0->1 X - X X
1-0 X - X X
PADSCANSTART | 01 x PenDataScan x x
1-0 X - X X
PADSCANSTOP [01 x - x Standby
1-0 X - X -
PIUCNTREG bit manipulation Scan sequencer’s state
IntervalNextScan ADPortScan CmdScan
PADRST "** 0->1 Disable Disable Disable
PIUPWR 0->1 ? ? ?
1-0 X X X
PIUSEQEN 0->1 ? ? ?
1-50 Standby Standby Standby
PADATSTART 0->1 X X X
1-0 X X X
PADATSTOP 0->1 X X X
1-0 X X X
PADSCANSTART 0->1 X X X
1-0 X X X
PADSCANSTOP | 01 Standby Standby Standby
150 ? - -
Notes 1. After “1” is written, the bit is automatically cleared to 0 after four TClock cycles.

2. State transition occurs during touch state
3. State transition occurs when PIUSEQEN = 1

4. State transition occurs after one set of data is sampled. This bit is cleared to O after the state
transition occurs.

Remarks —: The bit change is retained but there is no state transition.
x . Setting prohibited (operation not guaranteed)

? . Combination of state and bit status before setting does not exist

389

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.3.2 PIUINTREG (0x0B00 0124)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name OoVvP Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R/W R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved PADCMD PADADP | PADPAGE1l | PADPAGEO | PADDLOST | Reserved PENCHG

INTR INTR INTR INTR INTR INTR
R/IW R R/W R/IW R/IW R/W R/IW R RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15] OovP Valid page ID bit (older valid page)
1: Valid data older than page 1 buffer data is retained
0: Valid data older than page 0 buffer data is retained
D[14..7] Reserved Write 0 when writing. O is returned after a read.
D[6] PADCMDINTR PIU command scan interrupt. Cleared to 0 when 1 is written.
1: Indicates that command scan found valid data
0 : Indicates that command scan did not find valid data in buffer
D[5] PADADPINTR PIU A/D port scan interrupt . Cleared to 0 when 1 is written.
1: Indicates that A/D port scan found valid data with “1” value in buffer
0 : Indicates that A/D port scan did not find valid data with “1” value in buffer
D[4] PADPAGELINTR PIU data buffer page 1 interrupt. Cleared to 0 when 1 is written.
1: Valid data with “1” value is stored in page 1 of data buffer
0: No valid data with “1” value in page 1 of data buffer
D[3] PADPAGEOINTR PIU data buffer page 0 interrupt. Cleared to 0 when 1 is written.
1: Valid data with “1” value is stored in page 0 of data buffer
0 : No valid data with “1” value in page O of data buffer
D[2] PADDLOSTINTR A/D data timeout. Cleared to 0 when 1 is written.
1: Not data with “1” value found within specified time
0: No timeout
D[1] Reserved Write O when writing. 0 is returned after a read.
D[0] PENCHGINTR Change in touch panel contact state. Cleared to 0 when 1 is written.

1: Change has occurred
0: No change

This register is used to set or indicate an occurrence of PIU’s various interrupt requests.

390

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.3.3 PIUSIVLREG (0x0B00 0126)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved SCANINT SCANINT SCANINT
VAL[10] VAL[9] VAL[8]
RIW R R R R R RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name SCANINT SCANINT SCANINT SCANINT SCANINT SCANINT SCANINT SCANINT
VAL[7] VAL[6] VAL[5] VAL[4] VAL[3] VAL[2] VAL[1] VAL[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 1 1 1
Other resets 0 0 0 0 0 1 1 1
Bit Name Function
D[15..11] Reserved Write 0 when writing. 0 is returned after a read.
D[10..0] SCANINTVALJ10..0] Coordinate data scan sampling interval setting

Interval = SCANINTVAL[10..0] x 30 us

This register sets the sampling interval for coordinate data sampling.
The sampling interval for one pair of coordinate data is the value set via SCANINTVAL[10..0] multiplied by 30 us.
Accordingly, the logical range of sampling intervals that can be set in 30-us units is from 0 us to 60,810 us (about 60

ms). Actually, if the sampling interval setting is shorter than the time required for obtaining a pair of coordinate data

or ADPortScan data, a PIULostIntr interrupt will occur. If PIULostIntr interrupts occur frequently, set a longer interval

time.

Figure 19-5. Interval Times and States

State DataScan | Interval |ADPortScan| Interval DataScan |
Operation SASASASA| ST |AAAA | T SASASASA|
Interval time

Remarks S : Voltage stabilization standby time (STABLE(5:0) in PIUSTBLREG)
A : A/D converter’s conversion time (about 10us)
T : Touch/release detection

391

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.3.4 PIUSTBLREG (0x0B0O 0128)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved | STABLE[5] | STABLE[4] | STABLE[3] | STABLE[2] | STABLE[1] | STABLE[0]
R/W R R R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 1 1 1
Other resets 0 0 0 0 0 1 1 1

Bit Name Function
D[15..6] Reserved Write O when writing. 0 is returned after a read.

D[5..0] STABLE[5..0] Panel applied voltage stabilization standby time

Standby time = STABLEJ[5..0] x 30 us
During A/D scan, this can be used as a timeout counter.

The voltage stabilization standby time for the voltage applied to the touch panel can be set via STABLE[5..0] in

30-us units between 0 us and 1,890 us.

The setting of this register is also used as a timeout period during A/D scan.

392

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)
19.3.5 PIUCMDREG (0x0B0O0 012A)
(1/2)
Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved STABLEON TPYEN1 TPYENO TPXEN1 TPXENO
R/W R R R R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TPYD1 TPYDO TPXD1 TPXDO ADCMD[3] | ADCMD[2] | ADCMD[1] | ADCMDIO0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 1 1 1 1
Other resets 0 0 0 0 1 1 1 1
Bit Name Function
D[15..13] Reserved Write 0 when writing. O is returned after a read.
D[12] STABLEON Touch panel applied voltage stabilization time set (STABLE[5..0] of PIUSTBLREG)
enable
1: Retain panel voltage stabilization time
0: Ignore panel voltage stabilization time (voltage stabilization standby time = 0)
D[11..10] TPYEN[1..0] TPY port input/output switching during command scan
00: TPY1 input, TPYO input
01: TPY1 input, TPYO output
10: TPY1 output, TPYO input
11: TPY1 output, TPYO output
D[9..8] TPXEN[1..0] TPX port input/output switching during command scan
00 : TPX1 input, TPXO0 input
01: TPX1 input, TPXO0 output
10 : TPX1 output, TPXO input
11 : TPX1 output, TPXO0 output
D[7..6] TPYDI[1..0] TPY output level during command scan
00: TPY1="L", TPYO ="L"
01: TPY1="L", TPYO ="H"
10: TPY1="H", TPYO ="L"
11: TPY1="H", TPYO ="H"
TPYD value is ignored when TPYEN is set for input.
D[5..4] TPXDI[1..0] TPX output level during command scan

00: TPX1="L", TPX0 ="“L"
01: TPX1="“L", TPX0 =“H"
10: TPX1 ="“H", TPX0 =“L"
11: TPX1 ="“H", TPX0 = “H"
TPXD value is ignored when TPXEN is set for input.

393

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

2/12)

Bit

Name

Function

D[3..0]

ADCMDI3..0]

1111:
1110:

1000 :
0111:
0110 :
0101 :
0100 :
0011 :
0010 :
0001 :
0000 :

A/D converter input port selection for command scan

A/D converter standby mode request
RFU

RFU
AUDIOIN port
ADIN2 port
ADIN1 port
ADINO port
TPY1 port
TPYO port
TPX1 port
TPXO port

This register sets the switching or output level of ports during command scan operation.

394

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.3.6 PIUASCNREG (0x0B00 0130)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved TPPSCAN ADPS

START
R/W R R R R R R R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function

D[15..2] Reserved Write O when writing. 0 is returned after a read.
D[1] TPPSCAN Port selection for ADPortScan
1: Select TPX[1:0], TPY[1:0] (for touch panel) as A/D port
0: Select ADIN[3:0] (general-purpose) as A/D port
D[0] ADPSSTART ADPorScan start
1: Start ADPortScan
0 : Do not perform ADPortScan

The ADPortScan begins when the ADPSSTART bit is set. After the ADPortScan is completed, the state returns
to the state when ADPortScan was started. Automatically ADPSSTART bit is reset (to “0”) after ADPortScan is
completed.

If the ADPortScan is not completed within the time period set via PIUSTBLREG's STABLE bits, a PIULostIntr
interrupt occurs as a timeout interrupt.

Some bits in this register cannot be set in a specific state of scan sequencer. The combination of the setting of
this register and the sequencer state is as follows.

395

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

Table 19-3. PIUASCNREG Bit Manipulation and States

PIUASCNREG bit

Scan sequencer’s state

Note After ADPortScan is completed, the bit is automatically cleared to 0.

Remarks -—: The bit change is retained but there is no state transition.

x : Setting prohibited (operation not guaranteed)
? . Combination of state and bit status before setting does not exist

396

manipulation
Disable Standby WaitPenTouch PenData Scan

ADDSTART 051 x ADPortScan x x

150 X Disable X x
TPPSCAN 0->1 - - - -

1-50 - - - -
PIUCNTREG bit manipulation Scan sequencer’s state

IntervalNextScan ADPortScan CmdScan

ADDSTART 051 x ADPortScan x

1-50 X Disable x
TPPSCAN 0->1 x WaitPenTouch ?

150 ? ? Standby

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)
19.3.7 PIUAMSKREG (0x0B00 0132)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name ADINM3 ADINM2 ADINM1 ADINMO TPYM1 TPYMO TPXM1 TPXMO
R/IW R/W R/W RIW RIW R/W R/IW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..8] Reserved Write O when writing. 0 is returned after a read.

D[7] ADINM[3] Audio input port mask
Valid only during A/D scan. If masked, A/D conversions are not performed for the
corresponding port.
D[6..4] ADINM[2..0] General-purpose A/D port mask
Valid only during A/D scan. If masked, A/D conversions are not performed for the
corresponding port.
1: Mask
0: Normal
D[3..2] TPYM[1..0] Touch panel A/D port TPY mask
Valid only during A/D scan. If masked, A/D conversions are not performed for the
corresponding port.
1: Mask
0: Normal
D[1..0] TPXMI[1..0] Touch panel A/D port TPX mask

Valid only during A/D scan. If masked, A/D conversions are not performed for the
corresponding port.

1: Mask

0: Normal

This register is used to set masking of each A/D port. lIts setting is valid only during A/D Port scanning operation.

397

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.3.8 PIUCIVLREG (0x0B0O0 013E)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved CHECKIN CHECKIN CHECKIN
TVAL[10] TVAL[9] TVAL[8]
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name CHECKIN CHECKIN CHECKIN CHECKIN CHECKIN CHECKIN CHECKIN CHECKIN
TVAL[7] TVAL[6] TVAL[5] TVAL[4] TVAL[3] TVAL[2] TVAL[1] TVAL[0]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15..11] Reserved Write 0 when writing. 0 is returned after a read.
D[10..0] CHKINTVAL[10..0] Interval count value

This register is used for real-time reading of internal register values being counted down based on the
PIUSIVLREG setting.

398

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.3.9 PIUPBNmREG (0x0B0O 02A0 to 0xO0B0O 02AE, 0xOB0O0O 02BC to 0xOB0O 02BE)

Remark n=0,1, m=0to4

PIUPBOOREG (0xOB0O 02A0) PIUPBO4REG (0xOB0O 02BC) PIUPB13REG (0xOB0O 02AE)
PIUPBO1REG (0xOB00 02A2) PIUPB10REG (0x0BO0O 02A8) PIUPB14REG (0x0BOO 02BE)
PIUPBO2REG (0x0OB0O 02A4) PIUPB11REG (0xOB0O 02AA)

PIUPBO3REG (0x0OB0OO 02A6) PIUPB12REG (0x0BO0O 02AC)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name VALID Reserved Reserved Reserved Reserved Reserved | PADDATA[9] | PADDATA[8]
R/W R/W R R R R R R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name PADDATA[7] | PADDATA[6] | PADDATA[5] | PADDATA[4] | PADDATA[3] | PADDATA[2] | PADDATA[1] | PADDATA[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15] VALID Indicates validity of data in PADDATA

1: Valid

0: Invalid
D[14..10] Reserved Write 0 when writing. O is returned after a read.
D[9..0] PADDATA[9..0] A/D converter's sampling data

This register is used to store coordinate data and touch pressure data. There are four coordinate data buffers
and one pair of touch pressure data buffer, each of which holds two pages of coordinate data or pressure data, and

the addresses (register addresses) where the coordinate data or the pressure data is stored are fixed.

coordinate data from the corresponding register in a valid page.
The VALID bit, which indicates when the data is valid, is automatically rendered invalid when the page buffer
interrupt cause (PIUPAGEOINTR or PIUPAGELINTR in PIUINTREG) is cleared.

Table 19-4. Detected Coordinates and Page Buffers

Detected data

Page0 Buffer

Pagel Buffer

X+ PIUPBOOREG PIUPB10OREG
X- PIUPBO1REG PIUPB11REG
Y+ PIUPBO2REG PIUPB12REG
Y- PIUPBO3REG PIUPB13REG
Z (Touch pressure) PIUPBO4REG PIUPB14REG

Read

399

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.3.10 PIUABNREG (0x0B00 02BO0 to 0x0B0O 02B6)

Remark n=0to3
PIUABOREG (0x0B00O 02B0)
PIUAB1REG (0x0B0OO0 02B2)
PIUAB2REG (0x0BOO 02B4)
PIUAB3REG (0x0B0OO 02B6)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name VALID Reserved Reserved Reserved Reserved Reserved PADDATA[9] | PADDATA[8]
R/W R/W R R R R R R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name PADDATA[7] | PADDATA[6] | PADDATA[5] | PADDATA[4] | PADDATA[3] | PADDATA[2] | PADDATA[1] | PADDATA[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15] VALID Indicates validity of data in PADDATA

1: Valid

0: Invalid
D[14..10] Reserved Write 0 when writing. O is returned after a read.
D[9..0] PADDATA[9..0] A/D converter's sampling data

This register is used to store general-purpose A/D port sampling data, audio input port sampling data, and
command scan data. There are four data buffers and the addresses (register address) where the data is stored are
fixed.

The VALID bit, which indicates when the data is valid, is automatically rendered invalid when the page buffer
interrupt cause (PIUADPINTR in PIUINTREG) is cleared.

Table 19-5. A/D Ports and Data Buffers

400

Register During ADPortScan During CMDScan
TPPScan =0 TPPScan=1
PIUABOREG ADINO TPX0 CMDScanDATA
PIUAB1REG ADIN1 TPX1 -
PIUAB2REG ADIN2 TPYO -
PIUAB3REG AUDIOIN TPY1 -

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.4 REGISTER SETTING FLOW
Be sure to reset the PIU before operating the scan sequencer. Setting initial values via a reset sets particular
values for the sequence interval, etc., that are required.

The registers for which these initial settings are necessary are listed below.

PIUSITVLREG Scanlntval [10:0]
PIUSTBLREG Stable [3:0]

Interrupt mask cancellation settings are required for registers other than the PIU registers.

Setting Unit Register Bit Value
Interrupt mask clear ICU MSYSINTREG PIUINTR 1
ICU MPIUINTREG bit 6:0 OX7F
Clock mask clear CMU CMUCLKMSK MSKPIU 1

(1) Register setting flow for voltage detection at A/D general-purpose ports and audio input port
Standby, WaitPenTouch, or Interval state

<1>PIUAMSKREG AD port and audio input port mask setting
<2>PIUASCNREG ADPSSTART =1
\A
ADPortScan state
<3>PIUASCNREG ADPSSTART =0
\’

Standby, WaitPenTouch, or Interval state

(2) Register setting flow for auto scan coordinate detection

Standby state
<1>PIUCNTREG PIUMode [1:0] = 00
PADATSCAN =1
PADATSTOP =1
<2>PIUCNTREG PIUSEQEN =1
4

WaitPenTouch state

401

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

(3) Register setting flow for manual scan coordinate detection
Disable state

<1>PIUCNTREG PIUPWR =1
4
Standby state
<2>PIUCNTREG PIUMODEJ1:0] = 00
PADSCANSTART =1
<3>PIUCNTREG PIUSEQEN =1
2

PenDataScan state

(4) Register setting flow during Suspend mode transition
Standby, WaitPenTouch, or Interval state

<1>PIUCNTREG PIUSEQEN =0
\’

Standby state

<2>PIUCNTREG PIUPWR =1
\A

Disable state

(5) Register setting flow when returning from Suspend mode transition
Disable state

<1>PIUCNTREG PIUPWR =1
\
Standby state
<2>PIUCNTREG PIUMODE [1:0] = 00

PADATSCAN =1
PADATSTOP =1
<3>PIUCNTREG PIUSEQEN =1
\A
WaitPenTouch state
Touch detected
\’

PenDataScan state

(6) Register setting flow for command scan
Disable state

<1>PIUCNTREG PIUPOWER =1

\’
Standby state
<2>PIUCNTREG PIUMODE [1:0] =01
<3>PIUCNTREG Set touch panel pins, select input port
<4>PIUCNTREG PIUSEQEN =1

\A

CMDScan state

402

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.5 RELATIONSHIPS AMONG TPX, TPY, AND ADIN PINS AND STATES

State PadState[2:0] TPX[1:0] TPY[1:0] ADIN[2:0]

AUDIOIN

Power off (pen status detection) Disable HH D- -————
Low-power standby Standby 00 00 -
Pen status detection WaitPenTouch/Interval HH D- -———-
Voltage detection at general-purpose ADO port ADPortScan 00 00 ———1
Voltage detection at general-purpose AD1 port ADPortScan 00 00 el
Voltage detection at general-purpose AD2 port ADPortScan 00 00 o
Voltage detection at audio input port ADPortScan 00 00 l——=—
TPY1=H, TPYO =L, TPX0 = samp (X+) PadDataScan - HL ———=
TPY1 =L, TPYO = H, TPX0 = samp (X-) PadDataScan - LH -———-
TPX1=H, TPX0 =L, TPYO =samp (Y+) PadDataScan HL - -
TPX1 =L, TPX0 =H, TPYO =samp (Y-) PadDataScan LH - -———
Touch pressure detection (Z) PadDataScan HH d- -

Remarks : Low level input
: High level input

: Low level output

. A/D converter input

: Touch interrupt input (via pull-down resistor)

0
1
L
H : High level output
I
D
d

: No touch interrupt input (via pull-down resistor)

— . Don't care

403

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.6 TIMING

19.6.1 Touch/Release Detection Timing

Touch/release detection does not use the A/D converter but instead uses the voltage level of the TPY1 pin to
determine the panel’s touch/release state. The following figure shows a touch/release detection timing diagram.

Figure 19-6. Touch/Release Detection Timing

State Standby X WaitPenTouch X DataScan X Interval

(PADSCANT-l\—(E\I(E{P(ﬁ LowPower X Touch detected X X-, X+, Y-, Y+ X Release detected

(PADSCANTI(?I(EZPS LowPower X Touch detected Xz, X-, X+, Y-, Y+ X Release detected
(TPY1) L 0 1 1 0
(Release) (Touch) (Touch) (Release)

19.6.2 A/D Port Scan Timing

The A/D port scan function sequentially scans the A/D converter’s four input channel port pins and stores the data
in the data buffer used for A/D port scanning.

The following figure shows an A/D port scan timing diagram.

Figure 19-7. A/D Port Scan Timing

State XXX X ADPortScan X XXX

AUDIOIN, ADIN[2:0] X AUDIOIN, ADIN2, ADIN1, ADINO X

ADPSSTART bit ’ L

(PIUASCNREG)

XXX state: Standby, WaitPenTouch, or Interval

404

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.7 DATA LOSS INTERRUPT CONDITIONS

The PIU issues a PIUDatalLostIntr interrupt when any of the following four conditions exist.

Once a PlUDataLostIntr interrupt occurs, the sequencer is forcibly changed to the Standby state.

P wn PR

@

Data for one coordinate has not been obtained within the interval period

The A/D port scan has not been completed within the time set via PIUSTBLREG

Transfer of the next coordinate data has begun while valid data for both pages remains in the buffer
The next data transfer starts while there is valid data in the ADPortScan buffer

When data for one coordinate has not been obtained within the interval period

Cause

This condition occurs when the AIU has exclusive use of the A/D converter and the PIU is therefore
unable to use the A/D converter.

If this data loss condition occurs frequently, implement a countermeasure that temporarily prohibits the
AlU’s use of the A/D converter.

Response

After clearing the cause of the PlUDatalostIntr interrupt, set PIUCIUCNTREG’s PADATSTART bit or
PADSCANSTART bit to restart the coordinate detection operation. Once the PlUDatalLostIntr interrupt is
cleared, the page in which the loss occurred becomes invalid. If the valid data prior to the data loss is
needed, be sure to save the data that is being stored in the page buffer before clearing the
PlUDataLostIntr interrupt.

When the A/D port scan has not been completed within the time set via PIUSTBLREG

Cause

Same as cause of condition 1

Response

After clearing the cause of the PIUDataLostIntr interrupt, set PIUASCNREG’s ADPSSTART bit to restart
the A/D port scan operation. Once the PlUDataLostIntr interrupt is cleared, the page in which the loss
occurred becomes invalid. If the valid data prior to the data loss is needed, be sure to save the data that
is being stored in the page buffer before clearing the PIUDatalLostIntr interrupt.

(3) When transfer of the next coordinate data has begun while valid data for both pages remains in the

buffer

Cause

This condition is caused when the data buffer contains two pages of valid data (both the PIUPAGELINTR
and PIUPAGEOINTR interrupts have occurred) but the valid data has not been processed. If the A/D
converter is used frequently, this may shorten the time that would normally be required from when both
pages become full until when the data loss occurs.

405

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

Response

In condition 3, valid data contained in the pages when the PlUDatalostIntr interrupt occurs is never
overwritten.

After two pages of valid data are processed, clear the causes of the three interrupts (PIUDatalLostlIntr,
PIUPAGE1INTR, and PIUPAGEOINTR).

After clearing these interrupt causes, set the PADATSTART bit or PADSCANSTART bit of PIUCNTREG
to restart the coordinate detection operation.

(4) When the next data transfer starts while there is valid data in the ADPortScan buffer

406

Cause

This condition is caused when valid data is not processed even while the ADPortScan buffer holds valid
data (PADADPINTR interrupt occurrence).

Response

In condition 4, valid data contained in the buffer when the PIUDatalLostIntr interrupt occurs is never

overwritten.

After valid data in the buffer is processed, clear the causes of the two interrupts (PIUDatalLostintr,
PADADPINTR).

After clearing these interrupt causes, set the ADPSSTART bit of PIUASCNREG to restart the general-
purpose A/D port scan.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.8 COMPARISON OF Vr4102 AND VRr4101™

Table 19-6. Comparison of PIUs of V. R4102 and VR4101

Item

VR4102

VR4101

A/D converter

On-chip (10 bits)

External (10/12 bits)

Data transfer

Transfer to buffer in PIU

DMA transfer

Data buffers

Four buffers (two pages each) for
coordinate data only
Four buffers for A/D scan

One buffer

Scan types

Coordinate data scan
Command scan
A/D scan

Coordinate data scan
Command scan

Main battery scan
Sub battery scan

A/D port scan activation states

Standby, WaitPen Touch, Interval

Standby

Panel applied voltage stabilization
standby time counter

6 bits

4 bits

Panel applied voltage during low-
voltage mode

All four touch panel pins are at low level

All four touch panel pins are at Hi-Z

Panel state during disable state

Touch detection state
(Interrupts do not occur when CPU is in
Hibernate mode.)

All four touch panel pins are at Hi-Z

Handling of valid data when data loss
occurs

Valid data is always retained

Valid data is overwritten

Data interrupt

Three types of special-purpose interrupts
(two coordinate data interrupts, A/D scan
interrupt, and command scan interrupt)

Two types of page boundary interrupts

PlUDataRdylIntr

No

Yes

407

[MEMO]

408

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

This chapter describes the AlU’s operations and register settings.
20.1 GENERAL

The AIU supports speaker output and MIC input operations. It is also used to set the A/D and D/A converter
operations.

20.2 REGISTER SET
The AIU registers are listed below.

Table 20-1. AlU Registers

Address R/W Register Symbols Function
0x0B00 0160 R/W MDMADATREG Mike DMA Data Register
0x0B00 0162 R/W SDMADATREG Speaker DMA Data Register
0x0B00 0166 R/W SODATREG Speaker Output Data Register
0x0B00 0168 R/W SCNTREG Speaker Output Control Register
0x0B00 016A R/W SCNVRREG Speaker Conversion Rate Register
0x0B00 0170 R/W MIDATREG Mike Input Data Register
0x0B00 0172 R/W MCNTREG Mike Input Control Register
0x0B00 0174 R/W MCNVRREG Mike Conversion Rate Register
0x0B00 0178 R/W DVALIDREG Data Valid Register
0x0B00 017A R/W SEQREG Sequential Register
0x0B00 017C R/W INTREG Interrupt Register

These registers are described in detail below.

409

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.2.1 MDMADATREG (0x0B00 0160)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved MDMA[9] MDMA[8]
R/W R R R R R R R/W R/W
RTCRST 0 0 0 0 0 0 1 0
Other resets 0 0 0 0 0 0 1 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name MDMA[7] MDMA[6] MDMA[5] MDMA[4] MDMA[3] MDMA[2] MDMA[1] MDMA[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:10] Reserved Write 0 when writing. O is returned after a read.

D[9:0] MDMA[9:0] MIC input DMA data (from MIDATREG to buffer)

This register is used prior to DMA transfer to store 10-bit data that has been converted by the A/D converter and
stored in MIDATREG. Write is used for debugging and is enabled when AIUMEN bit of SEQREG is set to 1. This
register is cleared (0x0200) by resetting AIUMEN bit of SEQREG to 0.

410

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.2.2 SDMADATREG (0x0B00 0162)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved SDMA[9] SDMA[8]
R/W R R R R R R R/W R/W
RTCRST 0 0 0 0 0 0 1 0
Other resets 0 0 0 0 0 0 1 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name SDMA[7] SDMA[6] SDMA[5] SDMA[4] SDMA[3] SDMA[2] SDMA[1] SDMA[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:10] Reserved Write 0 when writing. O is returned after a read.

D[9:0] SDMA[9:0] Speaker output DMA data (from buffer to SODATREG)

This register is used to store 10-bit DMA data for speaker output.

When SODATREG is empty, the data is

transferred to SODATREG. Write is used for debugging and is enabled when AIUSEN bit of SEQREG is set to 1.
This register is cleared (0x0200) by resetting AIUSEN bit of SEQREG to O.

411

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.2.3 SODATREG (0x0B00 0166)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved SODAT[9] SODAT[8]
RIW R R R R R R RIW RIW
RTCRST 0 0 0 0 0 0 1 0
Other resets 0 0 0 0 0 0 1 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name SODATI[7] SODATI[6] SODATI[5] SODATI[4] SODATI[3] SODATI[2] SODATI[1] SODATIO]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:10] Reserved Write 0 when writing. 0 is returned after a read.

D[9:0] SODAT[9:0] Speaker output data (from SDMADATREG to D/A converter)

This register is used to store 10-bit DMA data for speaker output.

Data is sent from the D/A converter to

SDMADATREG. Write is used for debugging and is enabled when AIUSEN bit of SEQREG is set to 1. This register
is cleared (0x0200) by resetting AIUSEN bit of SEQREG to 0.

412

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.2.4 SCNTREG (0x0B00 0168)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name DAENAIU Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R/W R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved SSTATE Reserved SSTOPEN Reserved
R/IW R R R R R R R/IW R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15] DAENAIU This is the speaker D/A enable bit. It controls the ON/OFF status of the Vref input to

the D/A converter’s ladder resistors.
1: Vref ON
0: Vref OFF
D[14:4] Reserved Write 0 when writing. O is returned after a read.
D[3] SSTATE Indicates speaker operation state
1: In operation
0: Stopped
D[2] Reserved Write O when writing. 0 is returned after a read.
D[1] SSTOPEN Speaker output DMA transfer 1-page boundary interrupt stop
1: Stop DMA request at 1-page boundary
0: Stop DMA request at 2-page boundary
D[0] Reserved Write O when writing. 0 is returned after a read.

This register is used to control the AlU’s speaker block.

DAENAIU bit controls the connection of DVDD and Vref input to ladder type resistors in the D/A converter. Setting
this bit to 0 (OFF) allows low power consumption when not using the D/A converter. When using D/A converter, this
bit must be set following the sequence described in 20.3.

The contents of SSTATE bit is valid only when AIUSEN bit of SEQREG is set to 1.

413

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.2.5 SCNVRREG (0x0B00 016A)

111: RFU

101: RFU

100 : 8 ksps

011: RFU

010: 44.1 ksps

001: 22.05 ksps
000 : 11.025 ksps

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved SCNVR[2] SCNVRI[1] SCNVRI[0]
R/W R R R R R R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:3] Reserved Write O when writing. 0 is returned after a read.

D[2:0] SCNVR[2:0] D/A Conversion Rate

This register is used to select a conversion rate for the D/A converter.

414

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.2.6 MIDATREG (0x0B00 0170)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved MIDATI[9] MIDATI8]
RIW R R R R R R RIW RIW
RTCRST 0 0 0 0 0 0 1 0
Other resets 0 0 0 0 0 0 1 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name MIDAT[7] MIDAT[6] MIDAT[5] MIDAT[4] MIDAT[3] MIDAT[2] MIDAT[1] MIDAT[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:10] Reserved Write 0 when writing. 0 is returned after a read.

D[9:0] MIDAT[9:0] MIC input data (from A/D to MDMADATREG)
This register is used to store 10-bit speaker input data that has been converted by the A/D converter. Data is

sent to MDMADATREG and is received from the A/D converter. Write is used for debugging and is enabled when
AIUMEN bit of SEQREG is set to 1. This register is cleared (0x0200) by resetting AIUMEN bit of SEQREG to 0.

415

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.2.7 MCNTREG (0x0B00 0172)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name ADENAIU Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R/W R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved MSTATE Reserved MSTOPEN | ADREQAIU
R/IW R R R R R R R/IW R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15] ADENAIU This is the MIC A/D enable bit. It controls the ON/OFF status of the Vref input to the

D/A converter's ladder resistors in the A/D converter.
1: Vref ON
0: Vref OFF
D[14:4] Reserved Write 0 when writing. O is returned after a read.
D[3] MSTATE Indicates MIC operation state (= AIUMEN)
1: In operation
0: Stopped
D[2] Reserved Write O when writing. 0 is returned after a read.
D[1] MSTOPEN MIC input DMA transfer 1-page boundary interrupt stop
1: Stop DMA request at 1-page boundary
0: Stop DMA request at 2-page boundary
D[0] ADREQAIU A/D use request bit

1: Request
0: Normal

This register is used to control the AlU’s MIC block.

ADENAIU bit controls the connection of AVDbp and Vref input to ladder type resistors in the A/D converter. Setting
this bit to 0 (OFF) allows low power consumption when not using the A/D converter. When using A/D converter, this
bit must be set following the sequence described in 20.3.

The contents of MSTATE bit is valid only when AIUMEN bit of SEQREG is set to 1.

This unit has priority when a conflict occurs with the PIU in relation to A/D requests.

416

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.2.8 MCNVRREG (0x0B00 0174)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved MCNVR[2] [MCNVR[1] [MCNVRI[O0]
R/W R R R R R R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:3] Reserved Write O when writing. 0 is returned after a read.

D[2:0] MCNVR[2:0] A/D Conversion Rate

111: RFU

101: RFU

100 : 8 ksps

011: RFU

010: 44.1 ksps

001 : 22.05 ksps
000 : 11.025 ksps

This register is used to select a conversion rate for the A/D converter.

417

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.2.9 DVALIDREG (0x0B00 0178)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved SODATV SDMAV MIDATV MDMAV
R/W R R R R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D[15:4] Reserved Write 0 when writing. 0 is returned after a read
D[3] SODATV This indicates when valid data has been stored in SODATREG.
1: Valid data exists
0: No valid data

D[2] SDMAV This indicates when valid data has been stored in SDMADATREG.
1: Valid data exists
0: No valid data

D[1] MIDATV This indicates when valid data has been stored in MIDATREG.
1: Valid data exists
0: No valid data

D[0] MDMAV This indicates when valid data has been stored in MDMAREG.
1: Valid data exists
0: No valid data

This register indicates when valid data has been stored in SODATREG, SDMADATREG, MIDATREG, or
MDMAREG.

If data has been written directly to SODATREG, SDMADATREG, MIDATREG, or MDMAREG via software, the
bits in this register are not active, so write “1” via software.

Write is used for debugging and is enabled when AIUSEN or AIUMEN bit of SEQREG is set to 1.

If AIUSEN = 0 or AIUMEN = 0 in SEQREG, then SODATV = SDMAV = 0 or MIDATV = MDMAYV = 0.

418

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.2.10 SEQREG (0x0B00 017A)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name AIURST Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R/IW R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved AIUMEN Reserved Reserved Reserved AIUSEN
R/W R R R R/W R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15] AIURST AlU reset via software

1: Reset

0: Normal
D[14:5] Reserved Write 0 when writing. O is returned after a read.
D[4] AIUMEN MIC block operation enable, DMA enable

1: Enable operation

0 : Disable operation
D[3:1] Reserved Write O when writing. 0 is returned after a read.
D[0] AIUSEN Speaker block operation enable, DMA enable

1: Enable operation
0 : Disable operation

This register is used to enable/disable the AIU’s operation.

419

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.2.11 INTREG (0x0B00 017C)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved | MENDINTR MINTR MIDLEINTR | MSTINTR
R/W R R R R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved | SENDINTR SINTR SIDLEINTR | Reserved
R/W R R R R R/W R/W R/W R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:12] Reserved Write 0 when writing. O is returned after a read.

D[11] MENDINTR MIC DMA 2 page interrupt. Cleared to 0 when 1 is written.
1: Occurred
0: Normal

D[10] MINTR MIC DMA 1 page interrupt. Cleared to 0 when 1 is written.
1: Occurred
0: Normal

D[9] MIDLEINTR MIC idle interrupt (receive data loss). Cleared to 0 when 1 is written.
1: Occurred
0: Normal

D[8] MSTINTR MIC receive complete interrupt. Cleared to 0 when 1 is written.
1: Occurred
0: Normal

D[7:4] Reserved Write O when writing. 0 is returned after a read.

D[3] SENDINTR SPEAKER DMA 2 page interrupt. Cleared to O when 1 is written.
1: Occurred
0: Normal

D[2] SINTR SPEAKER DMA 1 page interrupt. Cleared to O when 1 is written.
1: Occurred
0: Normal

D[1] SIDLEINTR SPEAKER idle interrupt (mute). Cleared to 0 when 1 is written.
1: Occurred
0: Normal

D[0] Reserved Write O when writing. 0 is returned after a read.

This register indicates the AIU’s interrupt status.
When data is received from the A/D converter, MIDLEINTR is set if valid data still exists in MIDATREG (MIDATV

=1). In this case, MIDATREG is overwritten. MSTINTR is set when data is received in MDMADATREG.

When data is passed to the D/A converter, SIDLEINTR is set if there is no valid data in SODATREG (SODATV =
0). However, this interrupt is valid only after AIUSEN = 1, after which SODATV = 1.

420

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.3 OPERATION SEQUENCE

20.3.1 Output (Speaker)
Set conversion rate (0xOB0O 016A: SCNVR = arbitrary)
Set output data area to DMAAU
DMA enable in DCU
Set D/A converter’'s Vref to ON (OxOB0O 0168: DAENAIU = 1)
Wait for Vref resistor stabilization time (about 5 us) (use the RTC counter)
Even if speaker power is set to ON without waiting for Vref resistor stabilization time and speaker

a rwdhe

operation is enabled, speaker output starts after the period calculated with the formula below.
5 + 1/conversion rate (44.1, 22.05, 11.025, or 8) (us)
6. Set speaker power ON via GPIO.
7. Speaker operation enable (0x0B0O 017A: AIUSEN = 1)
DMA request
Receive acknowledge and DMA data from DMA
0x0B00 0178: SDMAV = SODATV =1
Output 10-bit data (OxOB0O0 0166: SODAT) to D/A converter
SODATV =0, SDMAV =1
Send SDMADATREG data to SODATREG
SODATV =1, SDMAV =0
Output DMA request and store the second data to SDMADATREG
SODATV =1, SDMAV =1
Refresh data at each conversion timing interval (becomes SIDLEINTR = 1 when DMA is slow and
SODATV = 0 during conversion timing interval, and (mute) interrupt occurs)
DMA page boundary interrupt occurs at page boundary
Page interrupt is cleared when output continues
8. Speaker operation to disable (0xOB0OO 017A: AIUSEN = 0)
9. Set speaker power OFF via GPIO.
10. Set D/A converter’s Vref to OFF (0xOB0O0 0168: DAENAIU = 0)
11. DMA disable in DCU

421

CHAPTER 20 AIU (AUDIO INTERFACE UNIT)

20.3.2 Input (MIC)

422

Set conversion rate (0x0B00 0174: MCNVR = arbitrary)

Set input data area in DMAAU

DMA enable in DCU

Set A/D converter’s Vref to ON (0x0B00 0172: ADENAIU = 1)
MIC power can be set ON and MIC operation can be enabled without waiting for Vref resistor
stabilization time (about 5 us). However, in such a case, sampling starts after the period calculated

P wDd PR

with the formula below.
5 + 1/conversion rate (44.1, 22.05, 11.025, or 8) (us)
5. Set MIC power ON via GPIO.
6. MIC operation enable (0xOB0O 017A: AIUMEN = 1)
Output A/D request (ADREQAIU) to A/D converter
Return acknowledge (aiuadack) and 10-bit conversion data from A/D converter
Store data in MIDATREG
0x0B00 0178: MDMAYV =0, MIDATV =1
Transfer data from MIDATREG to MDMADATREG
MDMAV = 1, MIDATV =0
The INTMST value becomes “1” and an interrupt (receive complete) occurs
Issue DMA request and store MIDMADATREG data to memory.
MDMAV = 0, MIDATV =0
An A/D request is issued once per conversion timing interval and 10-bit data is received (becomes
MIDLEINTR = 1 when DMA is slow and MIDATV = 1 during conversion timing interval, and (data loss)
interrupt occurs)
DMA page boundary interrupt occurs at page boundary
(Page interrupt is cleared when output continues)
7. MIC operation to disable (0x0B00 017A: AIUMEN = 0)
8. Set MIC power OFF via GPIO
9. Set A/D converter’s Vref to OFF (OxOB00 0172: AIUADEN = 0)
10. DMA disable in DCU

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

21.1 GENERAL

21.2 REGISTER SET

The KIU registers are listed below.

This chapter describes the KIU’s operations and register settings.

The register can be set to enable the 12 scan lines to be used as a general-purpose output port.

Table 21-1. KIU Registers

Address R/W Register Symbols Function
0x0B00 0180 R/W KIUDATO KIU DataO Register
0x0B00 0182 R/W KIUDAT1 KIU Datal Register
0x0B00 0184 R/W KIUDAT2 KIU Data2 Register
0x0B00 0186 RIW KIUDAT3 KIU Data3 Register
0x0B00 0188 R/W KIUDAT4 KIU Data4 Register
0x0B0O 018A R/W KIUDATS KIU Data5 Register
0x0B00 0190 R/W KIUSCANREP KIU Scan/Repeat Register
0x0B00 0192 R KIUSCANS KIU Scan Status Register
0x0B00 0194 R/W KIUWKS KIU Wait Keyscan Stable Register
0x0B00 0196 R/W KIUWKI KIU Wait Keyscan Interval Register
0x0B00 0198 R/W KIUINT KIU Interrupt Register
0x0B00 019A W KIURST KIU Reset Register
0x0B00 019C R/W KIUGPEN KIU General Purpose Output Enable
0x0B00 019E R/W SCANLINE KIU Scan Line Register

The KIU includes 12 scan lines and 8 detection lines. The number of key inputs to be detected can be selected
from 96/80/64, by switching the number of scan lines from 12/10/8.

423

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

21.2.1 KIUDATnN (0x0B0O0 0180 to 0x0B0O 018A)

Remark n=0to5
KIUDATO (0x0B0O 0180)
KIUDAT1 (0x0B00 0182)
KIUDAT2 (0x0B0OO 0184)
KIUDAT3 (0x0B00 0186)
KIUDAT4 (0x0B0OO 0188)
KIUDATS5 (0x0B00 018A)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name KEYDATI[15] | KEYDAT[14] | KEYDAT[13] | KEYDAT[12] | KEYDAT[11] | KEYDAT[10] | KEYDATI[9] | KEYDAT[8]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name KEYDAT[7] | KEYDAT[6] | KEYDAT[5] | KEYDAT[4] | KEYDATI[3] | KEYDAT[2] | KEYDAT[1] | KEYDAT[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..8] KEYDAT[15..8] Scan data from odd-numbered scans
D[7..0] KEYDATI[7..0] Scan data from even-numbered scans

These registers are used to hold key scan data.
Each KIU data register is able to hold the data from one scan operation.
How scan data is input to the registers is as below.

424

Bit KEYDATI[15..8] KEYDATI[7..0]

Register

KIUDATO Scan[1] Scan[0]
KIUDAT1 Scan[3] Scan[2]
KIUDAT2 Scan[5] Scan[4]
KIUDAT3 Scan[7] Scan[6]
KIUDAT4 Scan[9] Scan[8]
KIUDAT5 Scan[11] Scan[10]

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

21.2.2 KIUSCANREP (0x0B00 0190)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name KEYEN Reserved Reserved Reserved Reserved Reserved STPREP[5] | STPREP[4]
R/IW R/W R R R R R R/IW R/IW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name STPREP[3] | STPREP[2] | STPREP[1] | STPREP[0] | SCANSTP | SCANSTART ATSTP ATSCAN
R/IW R/W R/W RIW RIW R/W R/IW RIW RIW
RTCRST 0 0 0 0 0 0 0 1
Other resets 0 0 0 0 0 0 0 1

Bit Name Function
D[15] KEYEN Key scan

1: Enable
0 : Prohibit
D[14..10] Reserved Write O when writing. 0 is returned after a read.
D[9..4] STPREP[5..0] Key scan sequencer stop count setting
111111 : 63 times
000001 : 1time
000000 : 64 times
D[3] SCANSTP Key scan stop
1: Stop
0 : Operate
D[2] SCANSTART Key scan start
1: Start
0: Stop
D[1] ATSTP Key auto stop setting
1: Auto stop
0 : Not auto stop
D[0] ATSCAN Key auto scan setting

1: Auto scan
0 : Not auto scan

This register is used to enable operation of the key scan unit and to make settings for key scan and the key scan

sequencer.

» Key scan sequencer stop count setting

This sets the number of key scan sequencer stops when no keys are being pressed.

425

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

426

Key scan stop
When the SCANSTP bit is set to “1”, the key scan sequencer stops. However, if this bit is set to “1” during a
key scan operation, the key scan sequencer stops after the current set of key data is received.

Key scan start
When the SCANSTART bit is set to “1”, the key scan sequencer starts regardless of key contact detection.

Key scan auto stop setting
When the ATSTOP bit is set to “1”, the key scan sequencer stops automatically when the data remains all
zeros for the number of key scan times specified by STOPREP.

Key auto scan setting
When the ATSCAN bit is set to “1”, the key scan operation automatically starts after key contact is detected.

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

21.2.3 KIUSCANS (0x0B0O 0192)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved SSTAT[1] SSTAT[O]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..2] Reserved Write O when writing. 0 is returned after a read.

D[1..0] SSTAT[1..0] KIU sequencer status

11 : Scanning

10 : Interval Next Scan
01: WaitKeyln

00 : Stopped

This register indicates the current KIU sequencer status.

427

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

Details of the status of the KIU sequencer are described below.
e Scanning: This is the state where the scan sequencer performs key scan to load key data.
« Interval next scan: This is the state where the scan of a set of key data™ has completed and waiting for
the start of the next key scan. The interval after the completion of the scan of a set of

key data until the start of the next scan is set on the KIUWKIREG.

Note The number of data bits depends on the number of KSCAN pins used as below.
The number of KSCAN pins is set in SCANLINE register.

KSCAN pins Number of data bits

8 64 bits
10 80 bits
12 96 bits
* Wait Key in: This is the state of waiting for key input in the key auto scan mode. When the scan

sequencer is enabled while ATSCAN bit of KIUSCANREP register is set to 1, the
VR4102 waits for key input in this state. In this case, all outputs of the KSCAN pins™*
are in high level. When shifting the CPU to Suspend mode (or Standby mode with
TClock masked), be sure to set the KIU to the auto scan mode before the shift and
confirm that the sequencer in the Wait key in state.

Note The number of pins is set in LINE[1..0] bits of SCANLINE register as below.

LINE[1..0] Number of KSCAN pins
10 8
01 10
00 12
« Stopped: This is the state where the sequencer is disabled.

428

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

21.2.4 KIUWKS (0x0BOO 0194)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | T3CNT[4] | T3CNT[3] | T3CNT[2] | T3CNT[1] | T3CNT[0] | T2CNT[4] | T2CNT[3]
RIW R R/IW RIW R/IW RIW R/IW R/IW R/W
RTCRST 0 1 1 1 1 1 1 1
Other resets 0 1 1 1 1 1 1 1

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name T2CNT[2] T2CNT[1] T2CNTI[O] TA1CNT[4] T1CNTI[3] T1CNT[2] T1CNT[1] T1CNTI[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 1 1 1 1 1 1 1 1
Other resets 1 1 1 1 1 1 1 1

Bit Name Function
D[15] Reserved Write 0 when writing. 0 is returned after a read.

D[14..10] T3CNT[4..0] Wait time setting ((T3CNT[4..0] + 1) * 30 us)
11111: 960 us
00001 : 60 us
00000: RFU
D[9..5] T2CNT[4..0] Off time setting ((T2CNT[4..0] + 1) * 30 us)
11111 : 960 us
00001 : 60 us
00000: RFU
D[4..0] T1CNT[4..0] Stabilization time setting ((TLCNT[4..0] + 1) * 30 us)

11111 : 960 us

00001: 60 us
00000: RFU

This register is used to set the wait time between when the key scan sequencer sets the KSCAN pin “High” during
a key matrix scan and when the status is read from the KPORT pin.
The T1CNT bit is used to set the stabilization time between when voltage is applied to the KSCAN pin and when
the key scan data is read.
The T2CNT bit is used to set the time between when the key data is read and when voltage applied to the
KSCAN pin is set to “OFF".
The T3CNT bit is used to set the time between when voltage applied to the KSCAN pin is set to “OFF” and when
voltage can be again applied to the KSCAN pin.
The status of output from the KSCAN pins and the timing of KPORT sampling are shown below.

429

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

T1 T2 T3 T1 T2
Hi-Z / \ Hi-Z
KSCAN[] = = = < - A T e
KPORT sampling
i- / \ Hi-
KSCAN[N+1] = = = = = = === ===« - Hg . A =
KPORT sampling
21.2.5 KIUWKI (0x0B0O 0196)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved WINTVL[9] | WINTVL[8]
R/W R R R R R R R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name WINTVL[7] | WINTVL[6] | WINTVL[5] | WINTVL[4] | WINTVL[3] | WINTVL[2] | WINTVL[1] | WINTVL[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..10] Reserved Write 0 when writing. O is returned after a read.

D[9..0] WINTVL[9..0] Key scan interval time setting (WINTVL[9..0]*30 us)

1111111111 : 30690 us

0000000001 : 30 us
0000000000 : No Wait

This register is used to set the interval time between when one set of key data is obtained by the key scan
sequencer and when the next set of key data is obtained.

430

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

21.2.6 KIUINT (0x0BOO 0198)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved | KDATLOST | KDATRDY SCANINT
R/W R R R R R R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..3] Reserved Write O when writing. 0 is returned after a read.

D[2] KDATLOST Key scan data lost interrupt. Cleared to O when 1 is written.
1: Yes
0: No
D[1] KDATRDY Key data scan complete interrupt. Cleared to O when 1 is written.
1: Yes
0: No
D[0] SCANINT Key input detection interrupt. Cleared to O when 1 is written.
1: Yes
0: No

This register indicates the type of interrupt that has occurred in the KIU.

431

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

21.2.7 KIURST (0x0BOO 019A)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved KIURST
R/W R R R R R R R W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O when writing. 0 is returned after a read.

D[0] KIURST KIU reset. Cleared to 0 when 1 is written.
1: Reset
0 : Normal operation

This register is used to forcibly reset the KIU.

432

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

21.2.8 KIUGPEN (0x0B00 019C)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved KGPENJ[11] | KGPEN[10] | KGPENI9] KGPENI8]
RIW R R R R R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name KGPEN[7] KGPEN][6] KGPEN[5] KGPEN[4] KGPEN][3] KGPEN[2] KGPEN[1] KGPEN[O0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..12] Reserved Write O when writing. 0 is returned after a read.

D[11..0] KGPEN[11..0] SCAN pin function

1: Use as output port
0: Use as SCAN pin

This register is used to set whether or not the KSCAN pins will function as a general-purpose output port.
Setting a “1” to each bit in this register enables the KSCAN pin to function as a general-purpose output port.
The output port setting are made via the GIU’s GIUPODATL register (0x0OB0O 011C).

433

CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)

21.2.9 SCANLINE (0x0B0O 019E)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved LINE[1] LINE[O]
R/W R R R R R R R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..2] Reserved Write O when writing. 0 is returned after a read.

D[1..0] LINE[1..0] SCAN pin use/do not use setting
11: Do not use SCAN pins for key scan
The KIU's SCAN pins can be used as an output port.
10: Use eight key scan pins (KSCAN[7..0])
Key scan uses eight key scan pins (supports 64 keys)
The remaining four pins can be used as an output port.
01: Use ten key scan pins (KSCAN[9..0])
Key scan uses ten key scan pins (supports 80 keys)
The remaining two pins can be used as an output port.
00: Use twelve key scan pins (KSCAN[11..0])
Key scan uses twelve key scan pins (supports 96 keys)
No pins can be used as an output port.

This register is used to switch the number of scan lines.

434

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

This chapter describes the DSIU’s operations and register settings.

22.1 GENERAL

The DSIU (debug serial interface unit) supports transfer rates up to 115.2 kbps. In addition to the DDIN and

DDOUT input/output pins, the DSIU supports the DCTS# and DRTS# pins that are used for hardware flow control.
22.2 REGISTER SET
The DSIU registers are listed below.

Table 22-1. DSIU Registers

Address R/W Register Symbols Function
0x0B00 01A0 R/W PORTREG Port Change Register
0x0B00 01A2 R MODEMREG Modem Control Register
0x0B00 01A4 R/W ASIMOOREG Asynchronous Mode 0 Register
0x0B00 01A6 R/W ASIMO1REG Asynchronous Mode 1 Register
0x0B00 01A8 R RXBORREG Receive Buffer Register (Extended)
0x0B00 01AA R RXBOLREG Receive Buffer Register
0x0B00 01AC R/W TXSORREG Transmit Data Register (Extended)
0x0B00 01AE R/W TXSOLREG Transmit Data Register
0x0B00 01BO R ASISOREG Status Register
0x0B00 01B2 R/W INTROREG Debug SIU Interrupt Register
0x0B00 01B6 R/W BPRMOREG Baud rate Generator Prescaler Mode Register
0x0B00 01B8 R/W DSIURESETREG Debug SIU Reset Register

These registers are described in detail below.

435

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.1 PORTREG (0x0B00 01A0)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved CDDIN CDDOUT CDRTS CDCTS
R/IW R R R R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] CDDIN This pin is used to switch the DDIN pin for use as a general-purpose output pin.
1: General-purpose output
0: DDIN

D[2] CDDOUT This pin is used to switch the DDOUT pin for use as a general-purpose output pin.
1: General-purpose output
0: DDOUT

D[1] CDRTS This pin is used to switch the DRTS# pin for use as a general-purpose output pin.
1: General-purpose output
0: DRTS#

D[0] CDCTS This pin is used to switch the DCTS# pin for use as a general-purpose output pin.

1: General-purpose output
0: DCTS#

This register is used to switch the DSIU pin for use as a general-purpose output pin.

Note that the output value should be set in the GIU when the DSIU pins are set to general-purpose outputs.

436

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.2 MODEMREG (0x0B00 01A2)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved DRTS DCTS
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 1 1
Other resets 0 0 0 0 0 0 1 1

Bit Name Function
D[15:2] Reserved Write 0 when writing. 0 is returned after a read.

D[1] DRTS DRTS# pin output
1: High level
0: Low level

D[0] DCTS DCTS# pin input

1: High level
0: Low level

This register is used for flow control and can be used to pass signals between the VR4102 and external agents.
Note that the setting of RXEO bit of ASIMOOREG is reflected on the output from DRTS# pin.

437

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.3 ASIMOOREG (0x0B00 01A4)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved RXEO PSO0[1] PSO0[0] CLO SLO Reserved Reserved
R/IW R R/W R/W R/W RIW R/W R R
RTCRST 1 0 0 0 0 0 0 0
Other resets 1 0 0 0 0 0 0 0

Bit Name Function
D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7] Reserved Write 1 when writing. 1 is returned after a read.
D[6] RXEO Debug serial reception enable

1: Enable

0 : Prohibit
D[5:4] PSO0[1:0] Debug serial parity select

11 : Even parity

10 : Odd parity

01: Zero parity bits during transmit

No parity during receive

00 : No parity. Set to 00 for extended-bit operations
D[3] CLO Debug serial character length setting

1: 8 bits

0: 7 bits
D[2] SLO Debug serial stop bit setting

1: 2bits

0: 1 bit
D[1:0] Reserved Write 0 when writing. 0 is returned after a read.

This register is used to make various serial communication settings for debugging.

The setting of RXEO bit is reflected on the output from DRTS# pin. 0 is output when this bit is set to 1 (reception

enable), and 1 is output when this bit is set to 0 (reception prohibit).
If this register is changed during transmission or reception of serial data for debugging, the DSIU’s operations
cannot be guaranteed.

438

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.4 ASIMO1REG (0x0BOO 01A6)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved EBSO
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:1] Reserved Write 0 when writing. 0 is returned after a read.

D[0] EBSO Extended bit operation enable

1: Enable
0 : Prohibit

This register is used to set extended bit operations for the DSIU.
When “1” is set to the EBSO bit, one bit is added to the 8-bit data length for transmission and reception to enable
operations using 9-bit data. Extended-bit operations are valid only when “00” has been set to ASIMOOREG'’s
If a value other than “00” has been set to ASIMOOREG’s PS0[1:0] bit, the EBSO bit specification is
ignored and extended-bit operations cannot be performed.

PS0[1:0] bit.

439

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.5 RXBORREG (0x0B00 01A8)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved RXBO[8]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RXBO[7] RXBO[6] RXBO[5] RXBO[4] RXBO[3] RXBO[2] RXBO[1] RXBO[0]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:9] Reserved Write 0 when writing. O is returned after a read.

D[8:0] RXBO0[8:0] Receive data [8:0]
This register is used to store debug serial receive data.
The RXBO[8] bit stores the extended bit during extended-bit operations and stores a zero during 7- or 8-bit

character reception. The RXBO[7] bit stores a zero during 7-bit character reception.

440

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.6 RXBOLREG (0x0B0O 01AA)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RXBOL[7] | RXBOL[6] | RXBOL[5] | RXBOL[4] | RXBOL[3] | RXBOL[2] | RXBOL[1] | RXBOL[O]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:8] Reserved Write 0 when writing. O is returned after a read.

D[7:0] RXBOL[7:0] Receive data [7:0]

This register is used to store debug serial receive data.

The RXBOL[7] bit stores a zero during 7-bit character reception.

The only difference between this register and RXBORREG is that this register does not support extended-bit

operations.

441

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.7 TXSORREG (0x0B00 01AC)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved TXS0[8]
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 1
Other resets 0 0 0 0 0 0 0 1

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TXS0[7] TXS0[6] TXS0[5] TXS0[4] TXSO0[3] TXS0[2] TXSO[1] TXS0[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 1 1 1 1 1 1 1 1
Other resets 1 1 1 1 1 1 1 1

Bit Name Function
D[15:9] Reserved Write 0 when writing. O is returned after a read.

D[8:0] TXSO0[8:0] Transmit data [8:0]

This register is used to store debug serial transmit data.
The TXSO0[8] bit is used to transmit the extended bit during extended-bit operations.

442

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.8 TXSOLREG (0x0BOO 01AE)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TXSOL[7] TXSOL[6] TXSOL[5] TXSOL[4] TXSOL[3] TXSOL[2] TXSOL[1] TXSOL[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 1 1 1 1 1 1 1 1
Other resets 1 1 1 1 1 1 1 1

Bit Name Function
D[15:8] Reserved Write 0 when writing. O is returned after a read.

D[7:0] TXSOL[7:0] Transmit data [7:0]

This register is used to store debug serial transmit data.
The only difference between this register and TXSORREG is that this register does not support extended-bit

operations.

443

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.9 ASISOREG (0x0B00 01B0)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name SOTO Reserved Reserved Reserved Reserved PEO FEO OVEO
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7] SOTO Transmit mode status

1: Transmission start
0 : Transmission complete

D[6:3] Reserved Write O when writing. 0 is returned after a read.

D[2] PEO Parity error status
1: Parity error
0: Normal

D[1] FEO Framing error status
1: Framing error
0: Normal

D[0] OVEO Overrun error status
1: Overrun error status
0: Normal

This register indicates the debug serial transmit/receive status.

A write to the TXSORREG or TXSOLREG register sets “1” to the SOTO bit. When the transmission is completed,
“1" is set to the INTROREG register's INTSTO bit and the SOTO bit is cleared to zero. This bit can be used as a
means of determining whether or not it is possible to write to the transmission shift register when transmitting data in
debug serial mode.

If the received data contains a parity error, “1” is set to the PEO bit. If the stop bit is not detected, “1” is set to the
FEO bit.

An overrun error occurs and “1” is set to the OVEO bit if the sequencer completes the next receive processing
before receive data is read from the receive buffer. When an overrun error occurs, the old data in the receive buffer
is overwritten by the newly received data.

444

CHAPTER

22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.10 INTROREG (0x0B00 01B2)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved INTDCD INTSERO INTSRO INTSTO
RIW R R R R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:4] Reserved Write 0 when writing. 0 is returned after a read.

D[3] INTDCD CTS# change interrupt. Cleared to O when 1 is written.
1: CTS change interrupt
0: Normal
D[2] INTSERO Debug serial receive error interrupt. Cleared to 0 when 1 is written.
1: Error interrupt
0: Normal
D[1] INTSRO Debug serial receive complete interrupt. Cleared to 0 when 1 is written.
1: Receive complete
0: Other
D[0] INTSTO Debug serial transmit complete interrupt. Cleared to 0 when 1 is written.

1: Transmit complete

0: Other

This register indicates interrupt events that occur during debug serial transmission.

When debug serial operations are in the reception-enable mode, and either the PEO bit, FEO bit, or OVEO bit in
the ASISOREG has been set, “1” is set to the INTSERO bit.
When debug serial operations are in the reception-enable mode, and receive data is transferred to the receive
buffer, “1” is set to the INTSRO bit. When one frame of transmit data is sent from the transmit register, “1” is set to
the INTSTO bit.
When the CTS# (flow control signal from an external agent) is changed, “1" is set to INTDCD bit.

445

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.11 BPRMOREG (0x0B00 01B6)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name BRCEO Reserved Reserved Reserved Reserved BPRO[2] BPRO[1] BPRO[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:8] Reserved Write 0 when writing. 0 is returned after a read.

D[7] BRCEO Baud rate generator count enable

1: Enable

0: Prohibit
D[6:3] Reserved Write O when writing. 0 is returned after a read.
D[2:0] BPRO[2:0] Debug serial baud rate setting

111 : 115200 bps
110: 57600 bps
101 : 38400 bps
100 : 19200 bps
011 : 9600 bps
010 : 4800 bps
001 : 2400 bps
000 : 1200 bps

This register is used to set the baud rate for debug serial communications.
Debug serial operations are not guaranteed if the baud rate is changed during transmission or reception.

446

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.2.12 DSIURESETREG (0x0B00 01B8)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved DSIURST
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:1] Reserved Write 0 when writing. 0 is returned after a read
D[0] DSIURST Debug serial reset. Cleared to 0 when 1 is written.

1: Reset
0: Normal

This register is used to reset the debug serial mode.

447

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.3 DESCRIPTION OF OPERATIONS

22.3.1 Data Format

Serial data is transmitted and received in full-duplex mode.

The format of the transmit and receive data is shown in the following figure. Each frame includes a start bit,
character bits, parity bit, and stop bit(s). Specification of the character bit length in one data frame, along with the
parity setting, and stop bit length specification are all made via the mode registers (ASIMOOREG and ASIMO1REG).

Figure 22-1. Data Format for Transmission and Reception

1 data frame

A
Y

Character bits —>

A

Start DO D1 D2 D3 D4 D5 D6 D7 | Parity Stop

® Start bit 21 bit

® Character bits (Dn) : 7, 8, or 9 bits (when using extended bit) (n = 0 to 8)
® Parity bit : Even parity, odd parity, zero parity, or no parity

® Stop bit(s) : 1 bit or 2 bits

448

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.3.2 Transmission

After the DCTS# pin value is confirmed as “1”, writing data to a transmission shift register (TXSOREG or
TXSOLREG) activates transmission via the DDOUT pin. Use the transmit complete interrupt (Dsiu_lIntst0) service
routine to write the next data to TXSOREG or TXSOLREG.

Transmission enable status
The DSIU unit is always set to transmission enable status. The DCTS# pin is used when it is necessary to
confirm that the remote side is ready to receive.

Activation of transmit operation
Writing data to a transmission shift register (TXSOREG or TXSOLREG) activates the transmit operation. The
transmit data is sent in LSB-first order, beginning with the start bit. The start bit, parity bit, and stop bit(s) are
added automatically.

Transmit complete interrupt request
Once one frame of data has been sent, a transmit complete interrupt request (Dsiu_Intst0) occurs. If the next
data to be transmitted is then not written to TXSOREG or TXSOLREG, the transmit operation is halted and the
transmission rate is lowered.

Cautions 1. Normally, the transmit complete interrupt request (Dsiu_Intst0) occurs when the TXSOREG
or TXSOLREG register is empty. However, if a reset is input, the transmit complete interrupt
request (Dsiu_lIntst0) will not occur even when the transmission shift register (TXSOREG or
TXSOLREG) is empty.

2. Writing to either TXSOREG or TXSOLREG is prohibited during a transmit operation until
Dsiu_IntstO occurs.

449

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

DDOUT

Dsiu_Intst0

DDOUT

Dsiu_Intst0

450

Figure 22-2. Transmit Complete Interrupt Timing

(a) Stop bit length: 1

Start DO D1 D2 D3 D4 D5 D6 D7 |Parity| Stop
(b) Stop bit length: 2
Start | |

DO D1 D2 D3 D4 D5 D6 D7 |Parity| Stop * Stop

1

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

22.3.3 Reception

Once reception enable has been set, sampling of the DDIN pin begins and, when a start bit is detected, data
reception begins. A receive complete interrupt (Dsiu_Intst0) occurs each time reception of one frame of data is
completed. Normally, this interrupt service is used to transfer receive data from a receive buffer (RXBOREG or
RXBOLREG) to memory.

Reception enable status
Setting the ASIMOOREG's bit[6] sets enable status for the receive operation, and a zero is output to DRTS#.

RXEO = 1: Reception enable status DRTS#=0
RXEO = 0: Reception prohibit status DRTS#=1

The reception hardware is initialized and enters idle mode when reception prohibit status has been set. Once
that happens, receive complete interrupts and receive error interrupts are not issued and the contents of the
receive buffer are retained.

Activation of receive operation
The receive operation is activated when a start bit is detected.
The DDIN pin is sampled at the interval set by the serial clock specified via the ASIMOOREG. Once a signal's
falling edge is detected at the DDIN pin, the DDIN pin is again sampled after an interval of eight serial clocks.
This time, when a low-level state is detected it is recognized as a start bit and control is passed to the receive
operation, after which the DDIN pin continues to be sampled using an interval of 16 serial clocks.
After eight serial clocks have elapsed since a signal’s falling edge was detected at the DDIN pin, when
sampling recognizes a high-level state it does not recognize the signal’s falling edge as a start bit. Instead,
the serial clock counter used for the sampling timing is initialized and the receive operation is halted until the
next edge input.

Receive complete interrupt request

When RXEO = 1 and one frame of data has been received, the receive data in the shift register is transferred
to RXBOREG and a receive complete interrupt request (Dsiu_lIntsrO) is issued. Even when an error has
occurred, the receive data for which the error occurred is still transferred to a receive buffer (RXBOREG or
RXBOLREG) and two interrupts; a receive complete interrupt (Dsiu_IntsrO) and a receive error interrupt
(Dsiu_lIntser0), occur at the same time.

If the RXEO bit is reset (to “0”) during a receive operation, the receive operation is halted immediately. At that
point, the contents of the receive buffer (RXBOREG or RXBOLREG) and ASISOREG are not changed and
neither the receive complete interrupt (Dsiu_IntsrO) nor the receive error interrupt (Dsiu_Intser0) occur.

Figure 22-3. Receive Complete Interrupt Timing

DDIN Start | DO D1 D2 D3 D4 D5 D6 D7 |Parity | Stop

Dsiu_IntsrO ”

451

CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)

Receive error flag

Receive operations can be affected by three types of error flags that are set during the receive operations: a

parity error flag, a

framing error flag, and an overrun error flag.

A receive error interrupt request is issued after these three types of error flags are ORed.
During a receive error interrupt (Dsiu_lIntser0), the contents of the ASISOREG can be read to detect which
kind of error occurred during reception.
The contents of the ASISOREG are reset (to “0”) when the receive buffer (RXBOREG or RXBOLREG) is read
or when the next data is received (another error flag is set if the next data also contains an error).

Table 22-2. Receive Error Causes

Receive error

Cause

Parity error

Parity specified during reception does not match parity of receive data

Framing error

Stop bit is not detected

Overrun error

Reception of the next data is completed before data is read from the receive buffer

Figure 22-4. Receive Error Timing

Start DO D1 D2 D3 D4 D5 D6 D7

Parity

Stop

DDIN
Dsiu_IntsrO
Dsiu_Intser0

452

CHAPTER 23 LED (LED CONTROL UNIT)

This chapter describes LED operations and register settings.
23.1 GENERAL

An LED is switched on and off at a regular interval. The interval can be set as programmable.
This unit can operate during Standby, Suspend, or Hibernate mode.

23.2 REGISTER SET
The LED registers are listed below.

Table 23-1. LED Registers

Address R/W Register Symbols Function
0x0B00 0240 R/W LEDHTSREG LED H Time Set register
0x0B00 0242 R/W LEDLTSREG LED L Time Set register
0x0B00 0248 R/W LEDCNTREG LED Control register
0x0B00 024A R/W LEDASTCREG LED Auto Stop Time Count register
0x0B00 024C R/W LEDINTREG LED Interrupt register

These registers are described in detail below.

453

CHAPTER 23 LED (LED CONTROL UNIT)

23.2.1 LEDHTSREG (0x0B00 0240)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved HTS[4] HTS[3] HTS[2] HTS[1] HTSIO]
R/W R R R R/W R/W R/W R/W R/W
RTCRST 0 0 0 1 0 0 0 0
Other resets 0 0 0 Note Note Note Note Note

Bit Name Function
D[15..5] Reserved Write O when writing. 0 is returned after a read.

D[4..0] HTS[4..0] LED ON time
00000 : Prohibit
00001 : 0.0625 seconds
00010 : 0.125 seconds
00100 : 0.25 seconds
01000 : 0.5 seconds
10000 : 1 second
11111 : 1.9375 seconds

Note Previous value is retained

This register is used to set the LED’s ON time (high-level width of LEDOUT#).

The ON time ranges from 0.0625 to 1.9375 seconds and can be set in 0.0625-second units. The initial value is 1
second.

This register cannot be changed once the LEDENABLE bit of LEDCNTREG has been set as “enable”. Operation
is not guaranteed if a change is made after that point.

454

CHAPTER 23 LED (LED CONTROL UNIT)

23.2.2 LEDLTSREG (0x0B00 0242)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved LTS[6] LTS[5] LTS[4] LTS[3] LTS[2] LTS[1] LTS[0]
R/W R R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 1 0 0 0 0 0
Other resets 0 Note Note Note Note Note Note Note

Bit Name Function
D[15..7] Reserved Write 0 when writing. O is returned after a read.

D[6..0] LTS[6..0] LED OFF time
0000000 : Prohibit
0000001 : 0.0625 seconds
0000010 : 0.125 seconds
0000100 : 0.25 seconds
0001000 : 0.5 seconds
0010000 : 1 second
0100000 : 2 seconds
1000000 : 4 seconds
1111111 : 7.9375 seconds

Note Previous value is retained

This register is used to set the LED’s OFF time (low-level width of LEDOUT#).
The OFF time ranges from 0.0625 to 7.9375 seconds and can be set in 0.0625-second units. The initial value is

2 seconds.

This register cannot be changed once the LEDENABLE bit of LEDCNTREG has been set as “enable”. Operation
is not guaranteed if a change is made after that point.

455

CHAPTER 23 LED (LED CONTROL UNIT)

23.2.3 LEDCNTREG (0x0B00 0248)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved LEDSTOP | LEDENABLE
R/W R R R R R R R/W R/W
RTCRST 0 0 0 0 0 0 1 0
Other resets 0 0 0 0 0 0 Note Note

Bit Name Function
D[15..2] Reserved Write O when writing. 0 is returned after a read.

D[1] LEDSTOP LED ON/OFF auto stop setting
1: ON
0: OFF
D[0] LEDENABLE LED ON/OFF (blink) setting
1: Blink
0: Do not blink
Note Previous value is retained

This register is used to make various LED settings.

Caution

456

When setting up LED activation, make sure that a value other than zero has already been set to
the LEDHTSREG, LEDLTSREG, and LEDASTCREG. The operation is not guaranteed if zero is
set to these registers.

CHAPTER 23 LED (LED CONTROL UNIT)

23.2.4 LEDASTCREG (0x0BO0 024A)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name ASTC[15] | ASTC[14] | ASTC[13] | ASTC[12] | ASTC[11] | ASTC[10] ASTC[9] ASTCI[8]
RIW R/IW R/IW RIW RIW R/IW RIW RIW RIW
RTCRST 0 0 0 0 0 1 0 0
Other resets 0 0 0 0 0 1 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name ASTCI7] ASTCI6] ASTCI5] ASTCI[4] ASTCI3] ASTCI2] ASTCI1] ASTCIO]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 1 0 1 1 0 0 0 0
Other resets 1 0 1 1 0 0 0 0

Bit Name Function
D[15..0] ASTCJ[15..0] LED auto stop time count bit

This register is a 16-bit down counter that sets the number of ON/OFF times prior to automatic stopping of LED
activation. The set value is read during a read.
The pair of operations in which the LED is switched ON once and OFF once is counted as “1” by this counter.

The counter counts down from the set value and an LEDINT interrupt occurs when it reaches zero.
The initial setting is 1,200 times (ON/OFF pairs) in which each time includes one second of ON time and two
seconds of OFF time.

Caution

Setting a zero to this register is prohibited. The operation is not guaranteed if zero is set to this

register.

457

CHAPTER 23 LED (LED CONTROL UNIT)

23.2.5 LEDINTREG (0x0B00 024C)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved LEDINT
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15..1] Reserved Write O when writing. 0 is returned after a read.

D[0] LEDINT Auto stop interrupt. Cleared to 0 when 1 is written.
1: Yes
0: No

This register indicates when an auto stop interrupt has occurred.
An auto stop interrupt occurs if “1” has already been set to bit 1 and bit 0 of the LEDCNTREG when the
LEDASTCREG is cleared to “0”. When this interrupt occurs, bit 1 and bit 0 of the LEDCNTREG are both cleared to

“0".

458

CHAPTER 23 LED (LED CONTROL UNIT)

23.3 OPERATION FLOW

LEDs blink
(Auto Stop)

[Set LEDHTSREG h LED blinking time setting
¢ LEDHTSREG

Sets LED lighting time.
¢ LEDLTSREG
Set LEDLTSREG Sets LED off time.
> ¢ LEDASTCREG
Sets number of LEDs blinking.
Caution Setting these registers to 0 is
Set LEDASTCREG prohibited because it may cause

o Y, undefined operation.
LEDs blinking
start condition LED auto-stop setting
LEDCNTREG SLEDSTOP
LEDSTOP =1 . .
Sets the LED blink auto-stop function to enable.
This setting terminates LED blinking
automatically after blinking time set above has
elapsed.
LEDCNTREG LED blinking start
LEDENABLE =1 * LEDENABLE
\ Starts LED blinking.
LEDs blink

LED blinking
e Supervising the auto-stop counter
LED blinking terminates when the auto-stop
counter reaches 0.
Caution Setting the LEDENABLE or
LEDSTOP bit to 0 during blinking is
Yes prohibited because it may cause
undefined operation.

Auto Stop
Counter = 0?2

LEDENABLE =0 LED blinking termination
LEDSTOP =0 e LEDENABLE =0
Terminates LED blinking.

LED blinking terminate interrupt generation
LEDINT =1 e LEDINT =1

Generates an interrupt request to the ICU.

459

[MEMO]

460

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

This chapter describes the SIU’s operations and register settings.
24.1 GENERAL

The SIU is a serial interface that conforms to the RS-232-C communication standard and is equipped with two
one-channel interfaces, one for transmission and one for reception.

This unit is functionally compatible with the NS16550.
24.2 REGISTER SET

The SIU registers are listed below.

Table 24-1. SIU Registers

Address LCR[7] R/W Register Symbols Function
0x0C00 0000 0 R SIURB Receiver Buffer Register (Read)
W SIUTH Transmitter Holding Register (Write)
1 R/W SIUDLL Divisor Latch (Least Significant Byte)
0x0C00 0001 0 R/W SIUIE Interrupt Enable
1 R/W SIUDLM Divisor Latch (Most Significant Byte)
0x0C00 0002 - R SIUIID Interrupt Identification Register (Read)
w SIUFC FIFO Control Register (Write)
0x0C00 0003 - R/W SIULC Line Control Register
0x0CO00 0004 - R/W SIUMC MODEM Control Register
0x0C00 0005 - R/W SIULS Line Status Register
0x0C00 0006 - R/W SIUMS MODEM Status Register
0x0C00 0007 - R/W SIUSC Scratch Register
0x0C00 0008 - RIW SIUIRSEL SIU/FIR IrDA Selector

Remark LCR][7] is the bit 7 of SIULC register.

461

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.1 SIURB (0X0C00 0000: LCR[7] = 0, Read)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RXD[7] RXD[6] RXD[5] RXD[4] RXD[3] RXD[2] RXD[1] RXD[0]
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[7..0] RXD[7..0] Serial receive data

This register stores receive data used in serial communications.
To access this register, set LCR[7] (bit 7 of SIULC register) to 0.
24.2.2 SIUTH (0x0C00 0000: LCR[7] = 0, Write)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TXD[7] TXD[6] TXD[5] TXD[4] TXD[3] TXD[2] TXD[1] TXD[0]
R/IW w w w w w w w w
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[7..0] TXDI[7..0] Serial transmit data

This register stores transmit data used in serial communications.
To access this register, set LCR[7] (bit 7 of SIULC register) to 0.

462

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.3 SIUDLL (0x0C00 0000: LCR[7] = 1)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name DLL[7] DLL[6] DLL[5] DLL[4] DLL[3] DLL[2] DLL[1] DLL[O]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[7..0] DLL[7..0] Baud rate generator divisor (low-order byte)

This register is used to set the divisor (division rate) for the baud rate generator.

The data in this register and the data in SIUDLM register on the high-order side are together handled as 16-bit
data.

To access this register, set LCR[7] (bit 7 of SIULC register) to 1.

463

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.4 SIUIE (0x0C00 0001: LCR[7] = 0)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved 1E[3] IE[2] IE[1] IE[O]
R/IW R R R R R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[7..4] Reserved Write 0 when writing. O is returned after read.

D[3] 1E[3] Modem status interrupt
1: Interrupt enable
0 : Interrupt prohibit
D[2] 1E[2] Receive status interrupt
1: Interrupt enable
0 : Interrupt prohibit
D[1] 1E[1] Transmitter holding register empty interrupt
1: Interrupt enable
0 : Interrupt prohibit
D[0] 1E[0] Receive data interrupt or timeout interrupt in FIFO mode

1: Interrupt enable
0 : Interrupt prohibit

This register is used to specify interrupt enable/prohibit settings for the five types of interrupt used by the SIU.
These interrupts can be used to make the corresponding interrupt output signal (INTR) active.

Overall use of interrupt functions can be halted by setting bit 0 to bit 3 of the interrupt enable register (IER) to
zero. If one or more of the bits from bit 0 to bit 3 has a value of 1, the corresponding interrupt is enabled.
When interrupts are prohibited, “pending” is not displayed in the IIR[0] bit even when the interrupt condition has

been met and INTR output does not become active.

Other functions in the system are not affected even though interrupts are prohibited and the settings in the line

status register and modem status register are valid.
To access this register, set LCR[7] (bit 7 of SIULC register) to 0.

464

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.5 SIUDLM (0x0C00 0001: LCR[7] = 1)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name DLM[7] DLMI[6] DLM[5] DLM[4] DLMI[3] DLM[2] DLM[1] DLM[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[7..0] DLM[7..0] Baud rate generator divisor (high-order byte)

This register is used to set the divisor (division rate) for the baud rate generator.
The data in this register and the data in SIUDLL register on the low-order side are together handled as 16-bit

data.

To access this register, set LCR[7] (bit 7 of SIULC register) to 1.

465

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

Table 24-2. Correspondence between Baud Rates and Divisors

Baud rate Divisor
50 23040

75 15360

110 10473
134.5 8565
150 7680
300 3840
600 1920
1200 920
1800 640
2000 573
2400 480
3600 320
4800 240
7200 160
9600 120
19200 60
38400 30
56000 21
128000 9
144000 8
192000 6
230400 5
288000 4
384000 3
576000 2
1152000 1

466

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.6 SIUIID (0xOC00 0002: Read)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name 1IR[7] 1IR[6] Reserved Reserved 1IR[3] 1IR[2] 1IR[1] 1IR[0]
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 1
Other resets 0 0 0 0 0 0 0 1

Bit Name Function
D[7..6] IIR[7..6] Becomes 11 when FCRO =1
D[5..4] Reserved Write O when writing. 0 is returned after read.

D[3] IIR[3] Pending character timeout interrupt (in FIFO mode)
1 : Pending interrupt
0 : No pending interrupt

D[2..1] IIR[2..1] Indicates the priority level of pending interrupt.
See the following table.

D[0] IIR[O] Pending interrupts

1: No pending interrupt
0 : Pending interrupt

This register indicates priority levels for interrupts and existence of pending interrupt.

From highest to lowest priority, these interrupts are receive line status, receive data ready, character timeout,

transmit holding register empty, and modem status.
The contents of IIR[3] bit is valid only in FIFO mode, and it is always 0 in 16550 mode.

IIR[2] bit becomes 1 when IIR[3] bit is set to 1.

467

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

Table 24-3. Interrupt Function
SIUIID register Interrupt set/reset function
Bit3"* Bit2 Bitl Priority level | Interrupt type Interrupt source Interrupt reset control

0 1 1 Highest (1st) | Receive line Overrun error, parity error, framing error, [Read line status register
status or break interrupt

0 1 0 2nd Receive data | Receive data exists or has reached the Read the receive buffer
ready trigger level. register or lower trigger

level via FIFO.

1 1 0 2nd Character During the time period for the four most | Read receive buffer
timeout recent characters, not one character has | register

been read from the receive FIFO nor has
a character been input to the receive
FIFO.

During this period, at least one character
has been held in the receive FIFO.

0 0 1 3rd Transmit Transmit register is empty Read IIR (if it is the
holding interrupt source) or write
register empty to transmit holding

register

0 0 0 4th Modem status | CTS#, DSR#, or DCD# Read modem status

register

Note FIFO mode only

468

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.7 SIUFC (0x0CO00 0002: Write)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name FCRI[7] FCRI[6] Reserved Reserved FCRI[3] FCR[2] FCRI[1] FCRI[O0]
R/IW w w R R w W W W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[7..6] FCR[7..6] Receive FIFO trigger level

11: 14 Bytes
10: 08 Bytes
01: 04 Bytes
00 : 00 Byte
D[5..4] Reserved Write O when writing. 0 is returned after read.
D[3] FCRI[3] Switch between 16550 mode and FIFO mode
1: From 16550 mode to FIFO mode
0: From FIFO mode to 16550 mode
D[2] FCRI[2] Transmit FIFO clear/counter clear. Cleared to O when 1 is written.
1: FIFO clear/counter clear
0: Normal
D[1] FCR[1] Receive FIFO clear/counter clear. Cleared to 0 when 1 is written.
1: FIFO clear/counter clear
0: Normal
D[0] FCRIO] Receive/Transmit FIFO enable

1: Enable
0: Disable

This register is used to control the FIFOs.

469

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

470

FIFO interrupt modes
When receive FIFO is enabled and receive interrupts are enabled, receive interrupts can occur as described
below.

1. When the FIFO is reached to the specified trigger level, a receive data ready interrupt occurs to inform the
CPU.
This interrupt is cleared when the FIFO goes below the trigger level.

2. When the FIFO is reached to the specified trigger level, the SIUIID register indicates a receive data ready
interrupt.
As with the interrupt above, this interrupt is cleared when the FIFO goes below the trigger level.

3. Receive line status interrupts are assigned a higher priority level than are receive data ready interrupts.

4. When characters are transferred from the shift register to the receive FIFO, “1” is set to the LSRO bit.
The value of this bit returns to “0” when the FIFO becomes empty.

When receive FIFO is use-enabled and receive interrupts are enabled, receive FIFO timeout interrupts can
occur as described below.

1. The following are conditions under which FIFO timeout interrupts occur.
» Atleast one character is being stored in the FIFO.
« The time required for sending four characters has elapsed since the serial reception of the last character
(includes the time for two stop bits in cases where a stop bit has been specified).
* The time required for sending four characters has elapsed since the CPU last accessed the FIFO.
The time between receiving the last character and issuing a timeout interrupt is a maximum of 160 ms
when operating at 300 baud and receiving 12-bit data.

2. The transfer time for a character is calculated based on the baud rate clock for reception (internal) input as
clock signals (which is why the elapsed time is in proportion to the baud rate).

3. Once a timeout interrupt has occurred, the timeout interrupt is cleared and the timer is reset as soon as the
CPU reads one character from the receive FIFO.

4. If no timeout interrupt has occurred, the timer is reset when a new character is received or when the CPU
reads the receive FIFO.

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

When transmit FIFO is use-enabled and transmit interrupts are enabled, transmit interrupts can occur as
described below.

1. When the transmit FIFO becomes empty, a transmit holding register empty interrupt occurs.
This interrupt is cleared when a character is written to the transmit holding register (from one to 16
characters can be written to the transmit FIFO during servicing of this interrupt), or when the SIUIID
(interrupt ID register) is read.

2. If there are not at least two bytes of character data in the transmit FIFO between one time when LSR[5] = 1
(transmit FIFO is empty) and the next time when LSR[5] = 1, empty transmit FIFO status is reported to the
IIR after a delay period calculated as “the time for one character — the time for the last stop bit(s).”
When transmit interrupts are enabled, the first transmit interrupt that occurs after the FCRO (FIFO enable bit)
is overwritten is indicated immediately.

The priority level of the character timeout interrupt and receive FIFO trigger level interrupt is the same as that of
the receive data ready interrupt.

The priority level of the transmit FIFO empty interrupt is the same as that of the transmit holding register empty
interrupt.

FIFO polling mode

When FCRO = 1 (FIFO is enabled), if the value of any or all of the interrupt enable register (SIUIE) bits 3 to O
becomes “0”, the SIU enters FIFO polling mode. Because the transmit block and receive block are controlled
separately, polling mode can be set for either or both blocks.

When in this mode, the status of the transmit block and/or receive block can be checked by reading the line
status register (SIULS) via a user program.

When in FIFO polling mode, there is no notification when the trigger level is reached or when a timeout occurs,
but the receive FIFO and transmit FIFO can still store characters as they normally do.

471

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.8 SIULC (0x0CO00 0003)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name LCR[7] LCRI[6] LCR[5] LCR[4] LCR[3] LCR[2] LCR[1] LCR[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[7] LCR[7] Divisor latch access bit specification

1: Divisor latch access
0 : Receive buffer, transmit holding register, interrupt enable register

D[6] LCR[6] Break control
1: Set break
0: Clear break

D[5] LCR[5] Parity fixing
1: Fixed parity
0 : Parity not fixed

D[4] LCR[4] Parity setting
1: Set one bit as odd bit
0: Set one bit as even bit

D[3] LCR[3] Parity enable
1: Create parity (during transmission) or check parity (during reception)
0 : No parity (during transmission) or no checking (during reception)

D[2] LCR[2] Stop bit specification
1: 1.5 bits (character length is 5 bits)

2 bits (character length is 6, 7, or 8 bits)
0: 1 bit

D[1..0] LCR[1..0] Specifies the length of one character (number of bits)
11 : 8 Bits
10: 7 Bits
01: 6 Bits
00: 5Bits

This register is used to specify the format for asynchronous data communication and exchange and to set the divisor
latch access bit.

The setting of bit 5 becomes valid according to settings in bits 4 and 3.

Bit 6 is used to send the break status to the receive side’'s UART. When Bit6 = 1, the serial output (TxD) is forcibly
set to the spacing (0) state.

472

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.9 SIUMC (0x0CO00 0004)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved MCR[4] MCRJ[3] MCR[2] MCRI[1] MCRJ[O0]
R/IW R R R R/IW R/IW R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[7..5] Reserved Write 0 when writing. O is returned after read.

D[4] MCRI[4] For diagnostic testing (local loopback)

1: Enable use of local loopback

0 : Disable use of local loopback
D[3] MCR[3] OUT2 signal (internal) specification

1: Output the low-level signal

0 : Output the high-level signal
D[2] MCRI[2] OUTL1 signal (internal) specification

1: Output the low-level signal

0 : Output the high-level signal
D[1] MCR[1] RTS# output control

1: Output the low-level signal

0 : Output the high-level signal
D[0] MCRI[0] DTR# output control

1: Output the low-level signal

0 : Output the high-level signal

This register is used for interface control with a modem or data set (or a peripheral device that emulates a modem).
The settings of bit 3 and bit 2 become valid only when bit 4 is set to 1 (enable use of local loopback).

Local Loopback

The local loopback can be used to test the transmit/receive data path in the SIU.

The following operation is executed when bit 4 value = 1.

The transmit block’s serial output (TxD) enters the marking state (logical 1) and the serial input (RxD) to the
receive block is cut off. The transmit shift register’s output is looped back to the receive shift register’s input.
The four modem control inputs (DSR#, CTS#, RI (internal), and DCD#) are cut off and the four modem control
outputs (DTR#, RTS#, OUT1 (internal), and OUT2 (internal)) are internally connected to the corresponding
modem control inputs.

The modem control output pins are forcibly set as inactive (high level). During this kind of loopback mode,
transmitted data can be immediately and directly received.

This function can be used to check on the transmit/receive data bus within the SIU.

When in loopback mode, both transmission and receive interrupts can be used. The interrupt sources are
external sources in relation to the transmit and receive blocks.

Although modem control interrupts can be used, the low-order four bits of the modem control register can be
used instead of the four modem control inputs as interrupt sources.

As usual, each interrupt is controlled by an interrupt enable register.

473

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.10 SIULS (0x0C00 0005)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name LSRJ[7] LSRI[6] LSR[5] LSR[4] LSRI[3] LSR[2] LSR[1] LSRI[0]
R/IW R/W R/W R/W R/W R/IW R/W R/W R/W
RTCRST 0 1 1 0 0 0 0 0
Other resets 0 1 1 0 0 0 0 0

Bit Name Function
D[7] LSR[7] Indicates error detection (in FIFO mode)

1: Parity error, framing error, or break is detected
0: Normal
D[6] LSR[6] Transmit block empty
1: No data in transmit holding register or transmit shift register
No data in transmit FIFO (during FIFO mode)
0 : Data exists in transmit holding register or transmit shift register
Data exists in transmit FIFO (during FIFO mode)
D[5] LSR[5] Transmit holding register empty
1: Character is transferred to transmit shift register (during 16550 mode)
Transmit FIFO is empty (during FIFO mode)
0 : Character is stored in transmit holding register (during 16550 mode)
Transmit data exists in transmit FIFO (during FIFO mode)
D[4] LSR[4] Break interrupt
1: Break interrupt detected
0: Normal
D[3] LSR[3] Framing error
1: Framing error detected
0: Normal
D[2] LSR[2] Parity error
1: Parity error detected
0: Normal
D[1] LSR[1] Overrun error
1: Overwrite receive data
0: Normal
D[0] LSR[O] Receive data ready

1: Receive data exists in FIFO
0: No receive data in FIFO

The CPU uses this register to get information related to data transfers.
LSR[7] bit is valid only in FIFO mode, and it indicates always 0 in 16550 mode.

474

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

Bit4:

Bit3:

Bit2:

Bitl:

Break interrupt

The value of bit 4 becomes 1 when the spacing mode (logical 0) is held longer than the time required for
transmission of one word of receive data input (start bit + data bits + parity bit + stop bit).

This bit value returns “0” when the CPU reads the contents of the line status register.

When in FIFO mode, if a break interrupt is detected for one character in the FIFO, the character is
regarded as an error character and the CPU is notified of a break interrupt when that character reaches
the highest position in the FIFO.

When a break occurs, one “zero” character is sent to the FIFO. The RxD enters marking mode, and
when the next valid start bit is received, the next character can be transmitted.

Framing error

This indicates that the received character data did not include a correct stop bit.

The value of this becomes 1 when a zero (spacing level) stop bit is detected following the final data bit or
parity bit. This bit value returns to 0 when the CPU reads the contents of the line status register.

When in FIFO mode, if a framing error is detected for one character in the FIFO, the character is
regarded as an error character and the CPU is notified of a framing error when that character reaches the
highest position in the FIFO.

When a framing error occurs, the SIU prepares for further synchronization. The next start bit is assumed
to be the cause of the framing error and further data is not accepted until the next start bit has been
sampled twice.

Parity error

This error indicates that the received character data does not satisfy the even-parity or odd-parity setting
specified by the even parity select bit.

The value of this becomes 1 when a parity error is detected. This bit value returns to 0 when the CPU
reads the contents of the line status register.

When in FIFO mode, if a parity error is detected for one character within the FIFO, the character is
regarded as an error character and the CPU is notified of a parity error when that character reaches the
highest position in the FIFO.

Overrun error (OE)

When the CPU transfers the next character to the receive buffer register before it reads the receive buffer
register, the characters existing in that register are deleted.

The value of this bit becomes 1 when overrun status is detected and returns to “0” when the CPU reads
the contents of the line status register.

When in FIFO mode, if the data exceeds the trigger level as it continues to be transferred to the FIFO,
even after the FIFO becomes full an overrun error will not occur until all characters are stored in the shift
register.

The CPU is notified as soon as an overrun error occurs. The characters in the shift register are
overwritten and are not transferred to the FIFO.

475

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.11 SIUMS (0xOCO00 0006)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name MSR[7] MSRI[6] MSR[5] MSR[4] MSR][3] MSR[2] MSR[1] MSR[0]
R/W R R R R R/W R/W R/W R/W
RTCRST Undefined Undefined Undefined Undefined 0 0 0 0
Other resets | Undefined Undefined Undefined Undefined 0 0 0 0
Bit Name Function
D[7] MSR[7] Complement of DCD# signal
1: High level
0: Low level

D[6] MSR[6] Complement of RI signal (internal)
1: High level
0: Low level

D[5] MSRI[5] Complement of DSR# input
1: High level
0: Low level

D[4] MSR[4] Complement of CTS# input
1: High level
0: Low level

D[3] MSRI[3] DCD# signal change
1: Change in DCD# signal
0: No change

D[2] MSR[2] RI signal (internal) change
1: Change in RI signal (internal)
0: No change

D[1] MSR[1] DSR# signal change
1: Change in DSR# signal
0: No change

D[0] MSR[0] CTS# signal change
1: Change in CTS# signal
0: No change

This register indicates the current status of various control signals that are input to the CPU from a modem or
other peripheral device.
MSR([3..0] bits are cleared to 0 when they are read.

476

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.12 SIUSC (0x0CO00 0007)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name SCR[7] SCR[6] SCR[5] SCR[4] SCR[3] SCR[2] SCR[1] SCR[0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[7..0] SCRJ[7..0] Can be freely applied by user

This register is a readable/writable 8-bit register.
It does not affect control of the SIU.

477

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

24.2.13 SIUIRSEL (0x0C00 0008)

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved | TMICMODE TMICTX IRMSEL[1] | IRMSEL[0] | IRUSESEL SIRSEL
R/IW R R R/IW R/IW R/W R/IW R/IW R/IW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[7..6] Reserved Write 0 when writing. O is returned after read.

D[5] TMICMODE Specifies the mode of the emitter or receptor module.
D[4] TMICTX Specifies the communication rate.
1: Communication at 4 Mbps
0 : Communication at 1.15 Mbps or less
D[3..2] IRMSEL[1..0] Sets the type of emitter/receptor module to be used
11: RFU
10 : HP model (HSDL-1100 is assumed)
01: TEMIC model (TFDS6000 is assumed)
00 : SHARP model (RY5FDO1D is assumed)
D[1] IRUSESEL Selects SIU or FIR for use with IrDA emitter/receptor module
1: FIR uses IrDA module
0: SIU uses IrDA module
D[0] SIRSEL Selects whether the SIU uses the IrDA module or the RS-232-C pins during

communications
1: Use IrDA module
0: Use RS-232-C interface

This register is used to set the IrDA module settings, IrDA module access privileges, and the SIU’s

communication format (IrDA or serial).

The settings of TMICMODE and TMICTX bits are valid only when IRMSEL[1..0] bits are set to 01 (TEMIC model).

478

CHAPTER 24 SIU (SERIAL INTERFACE UNIT)

Figure 24-1. Connection Example between the V

(@) HP product

Vr4102

IRDIN

IRDOUT

FIRDIN#/SEL

IrDA
module

RxDA

TxD

RXDB

The figure below shows the connection examples between the Vr4102 and IrDA modules.

r4102 and IrDA Module

(b) TEMIC product

Vr4102

(c) SHARP product

Vr4102

IRDIN

IRDOUT

FIRDIN#/SEL

IrDA
module

IRDIN

IRDOUT

FIRDIN#/SEL

IrDA
module

NC

RxD

TxD

Remark NC: No Connection

RxD

TxD

SEL

479

[MEMO]

480

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

This chapter describes the HSP unit's operations and register settings.
25.1 GENERAL
The core of the HSP unit uses PCtel's PCT288I chip. The main functions of the PCT288lI is as follows.

<1> CODEC device control and serial <> parallel conversion of the CODEC transmit/receive data
<2> Control of relay lines, hook lines, and other signal lines in DAA (Data Access Arrangement) block

Block diagrams of HSP unit and an example of connection between the VR4102 and external agents are shown
below.

481

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

Figure 25-1. HSP Unit Block Diagram

testhsp
—
i_tclk
cshspb hspiniti bsc
ISpinitre
jadd[4:0] hsp_address P 9 ireset_before
decoder - iafesel_before0
hspinitreg ibyte_before
decode[4:0] iaddr288_before[4:0] ihspout_before[15:0]
_l OPD#
|
e 1
' '

r IRING , | RING
rst_gab : |p|q'\£g2$ ILC-SENSE_, ILCSENSE
= hd Bl IAEN :h"‘i%ENSE '
iiowb ! LIOWCB ISA BUS ol .
iiorb ! IIORCB , OPD !
idin[15:0] v 0IOCS16B INTERFACE | |PARALLEL I/O OOFF-HOOK | | OFFHOOK,

' OIOCHRDYB . OCID-RELAY
b ' — IADDR[11:0 INTERFACE OAFERSTB ' AFERST#'
. — IBD[15:0 OMUTE MUTE
ihspout[15:0] OBD[15:0] . OUT[2] '
'—'d ey OE OUT[1] + | HCo ,
Decoder OuT[0] + | TELECON,
' e OIRQ2
1 To level [L__OIRQ3 OOFF-HOOKE
v Interrupt 7 OIRQ4 ISCLK ' | HSPSCLK
hsp_intr ' OIRQ5 CODEC IFSI " |Fs
l__0IrQ10 INTERRUPT | | SERIAL 110 ISDI s
' _ OIRQ11 IFSX | i
' OIRQ12 OFSX
' l«_OIRQ15 0SDO sbo
OCRYSTL
seclk_hsp] ICRYSTAL + OCLKO :
T
IAFESEL[1] '
' H >0 IAFESEL[0] OCLK1 !_|HSPMCLK
v hd IBYTE CONTROL BLOCK 1 , OCASOUT 1
' ICASIN '
' ISLAVEB '
' IHWPDNB '
' '
e e m m e mm m T T T T T e e e e '

482

Figure 25-2. Circuit Configuration Block Diagram Examples

VR4102
(HSP)

P IRING
P ILCSENSE Line
- OFFHOOK o
TELCON —
> DAA
SDO TXAN
HSPMCLK, TXAP
AFERST# __ RXA
HCO | copec
FS
-t
<« 0
<HSPSCLK
MUTE | Speaker |
-

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

25.2 REGISTER SET

The HSP registers are listed below.

The data registers can be accessed as the control registers by specifying the INDEX number and then reading
from or writing to.

All registers other than the HSPINIT register are original to the PCT288lI.

Table 25-1. HSP Registers

Address R/W Register Symbols Name
0x0C00 0020 R/W HSPINIT HSP Initialize Register
0x0CO00 0022 R/W HSPDATA[7:0] HSP Data Register [7:0]
0x0C00 0023 R/W HSPDATA[15:8] HSP Data Register [15:8]
0x0C00 0024 W HSPINDEX HSP Index Register
0x0C00 0028 R HSPID[7:0] HSP ID Register
0x0C00 0029 R HSPPCSJ[7:0] HSP I/O Address Program Confirmation Register
0x0C00 0029 W HSPPCTEL[7:0] HSP Signature Checking Port

483

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

25.2.1 HSP Initialize Register

(1) HSPINIT (0X0C00 0020)

1: Reset
0: Do not reset

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved OPD AFESEL BYTE BSC HSPRST
R/W R R R R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:5] Reserved Write 0 when writing. 0 is returned after read.

D[4] OPD Power-down CODEC (indicates OPD# pin’s state)
1: High level
0: Low level
D[3] AFESEL CODEC interface mode switch
1: ST7546, STLC7546(SGS), T7525(AT)
0: TLC320C44, TLC320AC01/02(TI)
D[2] BYTE HSP data bus width setting
1: 8 bits
0: 16 bits
D[1] BSC CODEC interface control
1: Normal
0 : Initial value
D[0] HSPRST HSP unit reset (same as hardware reset)

This register is used to control the HSP.
BSC bit is used to control the CODEC interface. This bit must be set to 1 when using the HSP.
The hardware reset and the reset by the HSPRST bit result the same function.

484

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

25.2.2 HSP Data Register, HSP Index Register
HSPDATA[15..0] is a 16-bit data port.

HSPINDEX][15..0] setting.
HSPINDEX][15..0] is a write-only index register. The role of the data register changes according to the values set

This register can be accessed as control registers according to the

to this register.
The correspondence between INDEX numbers and registers is shown below.

Table 25-2. Control Register Definitions

INDEX WRITE READ
Higher Byte Lower Byte Higher Byte Lower Byte

0 HSPTxData[15..8] | HSPTxData[7..0] HSPRxData[15..8] | HSPRxData[7..0]
1 HSPCNTL[9..8] HSPCNTL[7..0] HSPSTSI[15..8] HSPSTS[7..0]
2 Reserved HSPEXTOUT[7..0] | HSPID[7..0] HSPEXTIN[7..0]
3 HSPTOC[3..0] HSPMCLK1[4..0] | HSPERRCNT[11..8]| HSPERRCNT[7..0]
4 Reserved HSPFFSZ[6..0] Reserved

5t0 15 Reserved Reserved

16 to 255 Setting prohibited Setting prohibited

Described below are control registers.

(1) HSPTxData (0xOC00 0022: Index 0, Write)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name TxData[15] | TxData[14] | TxData[13] | TxData[12] | TxData[11l] | TxData[10] TxData[9] TxData[8]
R/W w w W W w W W W
RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
Other resets | Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TxData[7] TxData[6] TxData[5] TxData[4] TxData[3] TxData[2] TxData[1] TxData[0]
R/W w w W W w W W W
RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
Other resets | Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit Name Function
D[15:0] TxData[15:0] Transmit data

485

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

(2) HSPCNTL (0x0C00 0022: Index 1, Write)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW w w w w w w w w
RTCRST 0 0 Undefined Undefined Undefined Undefined Undefined Undefined
Other resets 0 0 Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name NTORST ENIRQ START Reserved ENTX IRQS2 IRQS1 IRQSO
R/IW w w w w w w w w
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:8] Reserved Write 0 when writing.

D[7] NTORST Disable timeout reset
When this bit is “0”, it enables a timeout to occur when a specified number of errors
have been counted, at which point the HSP resets itself.
1: Disable
0: Enable

D[6] ENIRQ Interrupt enable
1: Enable
0: Disable

D[5] START RX/TX FIFO pointer initialization
When this bit is set to “1”, the RX/TX FIFO pointer is set to its initial position.
1: Initialize (at rising edge)
0: Status hold

D[4] Reserved Write 0 when writing.

D[3] ENTX Transfer enable
1: Enable
0: Disable

D[2:0] IRQS[2:0] Interrupt signal select. However, IRQ signal is always selected whatever value is set
to these bits.

Caution If 1 is set to ENTX bit, the only way to stop the operation is by resetting the HSP unit.

486

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

(3) HSPEXTOUT (0x0C00 0022: Index 2, Write)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW w w w w w w w w
RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
Other resets | Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved HCO TELECON Reserved MUTE AFERST Reserved OFFHOOK
R/IW w w w w w w w w
RTCRST Undefined 0 0 0 0 1 0 0
Other resets | Undefined 0 0 0 0 1 0 0

Bit Name Function
D[15:7] Reserved Write 0 when writing.

D[6] HCO Select CODEC mode
This bit is connected to the HCO pin.
1: High-level signal output
0: Low-level signal output
D[5] TELECON Hand set relay control
This bit is connected to the TELECON pin.
1: High-level signal output
0: Low-level signal output
D[4] Reserved Write O when writing.
D[3] MUTE Mute speaker
This bit is connected to the MUTE pin.
1: High-level signal output
0: Low-level signal output
D[2] AFERST CODEGC reset
This bit is connected to the AFERST# pin.
1: High-level signal output
0: Low-level signal output
D[1] Reserved Write 0 when writing.
D[0] OFFHOOK OFF HOOK relay control

This bit is connected to the OFFHOOK pin.
1: High-level signal output
0: Low-level signal output

This register is used to set output values of various signals when the INDEX number is 2.

487

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

(4) HSPTOC and HSPMCLKD (0x0C00 0022: Index 3, Write)

HSPMCLK frequency = 18.432 MHz / (MCLKD[4:0] + 2)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved TOC3 TOC2 TOC1 TOCO
RIW W W W W W W W W
RTCRST Undefined Undefined Undefined Undefined 0 0 0 0
Other resets | Undefined Undefined Undefined Undefined 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved MCLKD4 MCLKD3 MCLKD2 MCLKD1 MCLKDO
R/W w w W W w W w W
RTCRST Undefined Undefined Undefined 1 1 1 1 0
Other resets | Undefined Undefined Undefined 1 1 1 1 0

Bit Name Function
D[15:12] Reserved Write 0 when writing.

D[11:8] TOCI3:0] High-order 4 bits of timeout count
D[7:5] Reserved Write 0 when writing.
D[4:0] MCLKD[4:0] HSPMCLK divisor to clock input

The upper byte of this register sets the timeout counter value and lower byte sets the HSPMCLK'’s division ratio
when the INDEX number is 3.
TOC]I3:0] is used to set the high-order four bits of the final count of the timeout counter. The timeout counter is a

12-bit counter and is incremented once for each interrupt signal that is not serviced. The low-order 8 bits are

automatically set to 0 when TOCJ[3:0] is set.

When the specified timeout count value is reached, TO bit of

HSPSTS register is set to 1. The user is responsible for resetting the HSP core to prevent a system hang-up.
MCLKD[4:0] is used to set the division ratio when the 18.432-MHz clock supplied to HSPMCLK pin can be
output using a programmable division ratio. If MCLKD[4:0] is “0”, there is no clock division and the 18.432-MHz
clock is output. Note that an even number must be set to MCLKD[4:0].

488

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

(5) HSPFFSZ (0x0C00 0022: Index 4, Write)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
RIW W W W W W W W W
RTCRST Undefined Undefined Undefined 0 0 0 0 0
Other resets | Undefined Undefined Undefined 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved FFSZ5 FFSz4 FFSZ3 FFSZ2 FFSZ1 FFSZ0
R/W w w W W w W W W
RTCRST Undefined Undefined 1 0 0 0 0 0
Other resets | Undefined Undefined 1 0 0 0 0 0

Bit Name Function
D[15:6] Reserved Write 0 when writing.

D[5:0] FFSZ[5:0] FIFO size control

When the INDEX number is 4, this register is used to set the transmit/receive buffer size, and can be set up to

32 (0x20). If buffer-full interrupt is enabled, an interrupt will occur when the data in the transmit/receive buffer

reaches to the size set in this register.

489

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

(6) HSPRxData (0x0C00 0022: Index 0, Read)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name RxData[15] | RxData[14] | RxData[13] | RxData[12] | RxData[11] | RxData[10] RxData[9] RxData[8]
RIW R R R R R R R R
RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
Other resets | Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RxData[7] RxData[6] RxData[5] RxData[4] RxData[3] RxData[2] RxData[1] RxData[0]
R/W R R R R R R R R
RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
Other resets | Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit Name Function
D[15:0] RxData[15:0] Receive data from the receive FIFO

This register is used to store the receive data from the receive FIFO when the INDEX number is O.

490

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

(7) HSPSTS (0x0C00 0022: Index 1, Read)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 Undefined Undefined Undefined
Other resets 0 0 0 0 0 Undefined Undefined Undefined

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name AFESEL1 AFESELO IBYTE TO CFGCP IRQS RxOVRUN | TxUDRUN
R/W R R R R R R R R
RTCRST Undefined Undefined Undefined 0 0 0 0 0
Other resets | Undefined Undefined Undefined 0 0 0 0 0

Bit Name Function
D[15:8] Reserved 0 is returned after read.

D[7:6] AFESELJ[1:0] Indicates the AFESEL[1:0] signal (internal) state
D[5] IBYTE Indicates the BYTE signal (internal) state
D[4] TO Error-related timeout
1: Timeout occurred
0: No timeout
D[3] CFGCP CODEC configuration complete
1: Complete
0 : Not complete
D[2] IRQS Pending interrupt exists
1: Exists
0 : No pending interrupts
D[1] RxOVRUN Receive overrun occurred
1: Occurred
0: No receive overruns
D[0] TXUDRUN Transmit underrun occurred

1: Occurred
0 : No transmit overruns

This register is used to indicate the status in communication when the INDEX number is 1.
TO bit is set (to “1") when the timeout counter reaches the value specified by the TOC bit of HSPTOC register.
CFGCP bit indicates whether or not CODEC initialization has been completed. Actually, this bit is set (to “1")
when the START bit of HSPCNTL register has been set as active to reset the FIFO pointer and then 9-word data
has been transmitted (1 word = 16 bits).
IRQS bit indicates whether or not any pending interrupt exists. When an interrupt request from HSP to the CPU

core is in pending, the request is cleared after this register is read.
IRQS, RXOVRUN, TxUDRUN bits are cleared (to “0”) when read.

491

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

(8) HSPID and HSPEXTIN (0x0C00 0022: Index 2, Read)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name ID7 ID6 ID5 ID4 ID3 1D2 ID1 1DO
R/W R R R R R R R R
RTCRST 0 0 0 1 0 0 0 0
Other resets 0 0 0 1 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved ILCS IRING
R/W R R R R R R R R
RTCRST Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
Other resets | Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

Bit Name Function
D[15:8] ID[7:0] Indicates HSP unit's ID and revision number
D[7:2] Reserved 0 is returned after read.

D[1] ILCS ILCSENSE input pin state indication
D[0] IRING IRING input pin state indication

The upper byte of this register is used to indicate the ID of HSP, and the lower byte is used to indicate the status
of the HSP input signals.

ID[7:0] is divided into two parts. The high-order 4 bits ID[7:4] indicate the ID number of HSP, and the low-order
4 bits ID[3:0] indicate the revision number of HSP.

492

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

(9) HSPERRCNT (0x0C00 0022: Index 3, Read)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved | ERRCNT11 | ERRCNT10 [ERRCNT9 ERRCNTS8
RIW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name ERRCNT7 | ERRCNT6 | ERRCNT5 | ERRCNT4 | ERRCNT3 | ERRCNT2 | ERRCNT1 | ERRCNTO
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D[15:12] Reserved 0 is returned after read.

D[11:0] ERRCNT[11:0] Error count

This register is used to indicate the number of errors when the INDEX number is 3.

This register indicates the number of overrun or underrun errors that have occurred.

synchronizing software and hardware.

25.2.3 HSP ID Register, HSP 1/0O Address Program Confirmation Register
The specific values are displayed to HSPID[7:0] and HSPPCS[7:0] registers following normal access of
HSPPCTEL register.

25.2.4 HSP Signature Checking Port

This is used for

HSPPCTEL][7:0] register must be accessed when to start using HSP unit. OxA5 can be read from the HSPPCS
register by writing a certain value. Other registers cannot be accessed unless this processing is executed. It must

be executed during initialization.

493

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

25.3 POWER CONTROL

Power control of the CODEC and AFE can be performed using the OPD# pin and the BSC bit (HSPINIT). The
following is an example of a control method using these units.

Figure 25-3. Block Diagram of HSP Interface Power Control

Voltage

control unit

L: ON
VR4102 °

H: OFF

b
OPD# pin) 4) 4

BSC bit

Telephone

line
<—<]<— N \ » CODEC »> AFE H———p

HSP interface
other than OPD#

T

(1) After RTC reset

Item OPD# pin BSC bit HSP bus state | VrR4102 power | CODEC/AFE
power
1 | When initialized L 0 Note ON OFF
2 | During power-on of CODEC or AFE H 0 Note ON ON
3 | When HSP bus’s gate is set to “ON” H 1 Normal ON ON
4 | Software modem control H 1 Normal ON ON
Note Referto 2.3 PIN STATUS UPON A SPECIFIC STATE.
(2) During power-down (V R4102: Fullspeed/Standby/Suspend mode)
Item OPD# pin BSC bit HSP bus state | VrR4102 power | CODEC/AFE
power
1 | Operation complete H 1 Normal ON ON
2 | When HSP bus’s gate is set to “OFF” H 0 Note ON ON
3 | When CODEC or AFE power is set to L 0 Note ON OFF
“OFF”
4 | If necessary, execute STANDBY/ L 0 Note ON OFF
SUSPEND command

Note Referto 2.3 PIN STATUS UPON A SPECIFIC STATE.

494

CHAPTER 25 HSP (MODEM INTERFACE UNIT)

®)

During recovery from power-down (V

R4102: Fullspeed/Standby/Suspend mode)

Item OPD# pin BSC bit HSP bus state | VrR4102 power | CODEC/AFE
power
1 | Power down status L 0 Note ON OFF
2 | During power-on of CODEC or AFE H 0 Note ON ON
3 | When HSP bus’s gate is set to “ON” H 1 Normal ON ON
4 | Use HSP unit H 1 Normal ON ON

(4)

Note Referto 2.3 PIN STATUS UPON A SPECIFIC STATE.

When changing to Hibernate mode (the following processing must occur before entering Hibernate mode)

Item OPD# pin BSC bit HSP bus state | VrR4102 power | CODEC/AFE
power
1 | Operation complete H 1 Normal ON ON
2 | When HSP bus’s gate is set to “OFF” H 0 Note ON ON
3 | When CODEC or AFE power is set to L 0 Note ON OFF
“OFF”
4 | Execute HIBERNATE command L 0 Note ON OFF
Note Referto 2.3 PIN STATUS UPON A SPECIFIC STATE.
(5) During recovery from Hibernate mode to use HSP unit
Item OPD# pin BSC bit HSP bus state | VrR4102 power | CODEC/AFE
power
1 | During Hibernate mode L 0 Note ON OFF
2 | During power-on of CODEC or AFE H 0 Note ON ON
3 | When HSP bus'’s gate is set to “ON” H 1 Normal ON ON
4 | Use HSP unit H 1 Normal ON ON

Note Referto 2.3 PIN STATUS UPON A SPECIFIC STATE.

495

[MEMO]

496

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

The FIR operation and register settings are described below.

26.1 GENERAL

This unit supports the IrDA 1.1 high-speed infrared communication physical layer standard.
Supported FIR (Fast SIR) transfer rates include 0.576 Mbps, 1.152 Mbps, and 4 Mbps.
SIR (up to 115.2 kbps) is not supported.

497

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2 REGISTER SET

The FIR registers are listed below.

498

Table 26-1. FIR Registers

Address R/W Register symbols Function
0x0C00 0040 R/W FRSTR FIR Reset register
0x0CO00 0042 R/W DPINTR DMA Page Interrupt register
0x0CO00 0044 R/W DPCNTR DMA Control register
0x0C00 0050 W TDR Transmit Data register
0x0C00 0052 R RDR Receive Data register
0x0CO00 0054 R/W IMR Interrupt Mask register
0x0CO00 0056 R/W FSR FIFO Setup register
0x0CO00 0058 R/W IRSR1 Infrared Setup register 1
0x0C00 005C R/W CRCSR CRC Setup register
0x0CO00 005E R/W FIRCR FIR Control register
0x0C00 0060 R/W MIRCR MIR Control register
0x0C00 0062 R/W DMACR DMA Control register
0x0C00 0064 R/W DMAER DMA Enable register
0x0C00 0066 R TXIR Transmit Indication register
0x0C00 0068 R RXIR Receive Indication register
0x0CO00 006A R IFR Interrupt Flag register
0x0C00 006C R RXSTS Receive Status register
0x0C00 006E R/W TXFL Transmit Frame Length
0x0C00 0070 R/W MRXF Maximum Receive Frame Length
0x0CO00 0074 R RXFL Receive Frame Length register

These registers are described in detail below.

CHAPTER 26 FIR (FAST IrDA INTERFACE

UNIT)

26.2.1 FRSTR (0x0CO00 0040)

0: Normal
1: Reset

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved FRST
RIW R R R R R R R RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15to D1 Reserved Write O when writing. 0 is returned after a read.

DO FRST FIR reset. Set 0 when releasing reset.

499

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.2 DPINTR (0x0C00 0042)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved FDPINTS FDPINT4 FDPINT3 FDPINT2 FDPINT1
R/IW R R R R R/W R/W R/IW R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to D5 Reserved Write 0 when writing. 0 is returned after a read.

D4 FDPINTS This bit indicates an FIR macro interrupt occurs. Cleared to 0 when 1 is written.
0: Normal
1: Occurred
D3 FDPINT4 This bit indicates that the DMA buffer (receive side) becomes full (2 pages).
Cleared to 0 when 1 is written.
0: Normal
1: Occurred (DMA request is stopped)
Caution The last data of the transfer data is not guaranteed.
D2 FDPINT3 This bit indicates that the DMA buffer (transmit side) becomes full (2 pages).
Cleared to 0 when 1 is written.
0: Normal
1: Occurred (DMA request is stopped)
Caution The last data of the transfer data is not guaranteed.
D1 FDPINT2 This bit indicates that the DMA buffer (receive side) becomes full (1 page).
Cleared to 0 when 1 is written.
0: Normal
1: Occurred (when bit 0 of DPCNTR is 1, DMA request is stopped)
Caution When 1-page transfer is set, the last data of the transfer data is not
guaranteed.
DO FDPINT1 This bit indicates that the DMA buffer (transmit side) becomes full (1 page).

Cleared to 0 when 1 is written.

0: Normal

1: Occurred (when bit 0 of DPCNTR is 1, DMA request is stopped)
Caution When 1-page transfer is set, the last data of the transfer data is not

guaranteed.

This register is used to indicate the generation of FIR's DMA page interrupt request.

500

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.3 DPCNTR (0x0CO00 0044)

0: 2-page boundary (the last data of the second page is not guaranteed)

1: 1-page boundary (the last data of the first page is not guaranteed)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved FDPCNT
RIW R R R R R R R RIW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15to D1 Reserved Write O when writing. 0 is returned after a read.

DO FDPCNT DMA transfer stopping boundary.

501

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.4 TDR (0x0CO00 0050)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W W w W W w w W W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TDR7 TDR6 TDR5 TDR4 TDR3 TDR2 TDR1 TDRO
R/W W W W W W W W W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 to DO TDR7to O Transmit FIFO
[Function]

This register is used to store the address to which data is written for the transmit data store FIFO.
Up to 64- or 32-byte data (determined by bit 3 of FSR) is stored to the transmit data store FIFO.
Transmit data FIFO is used as follows.

(1) Write

Data is written to the transmit data store FIFO while the IrDA is operating.

When a write operation is completed, the write pointer of the transmit data store FIFO is incremented. However,

if data is written when this write pointer is full, it is not incremented.

After the data of frame size is written to the TXFL register in a status other than the transmit busy status (start
enable), if the data written to this register reaches frame size, data transfer starts even if the number of write to
this register is short of the threshold.

This is Start 1.
After that, data is always transferred if it reaches frame size, even if it is short of the threshold. This is Start 2.

(2) Read

After frame transfer is completed, the sequencer reads the transmit data during the data transfer sequence, and
the read pointer is incremented.

If read is done while the transmit FIFO is empty, a transmit underrun error occurs. This stops the current frame

transmission and then starts the abort frame transmission. The following frames scheduled to be transmitted
next are not transferred.

502

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.5 RDR (0x0C00 0052)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RDR7 RDR6 RDR5 RDR4 RDR3 RDR2 RDR1 RDRO
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to D8 Reserved Write O when writing. 0 is returned after a read.

D7 to DO RDR71t0 0 Receive FIFO
[Function]

1)

)

This regqister is used to store the address from which data is read for the receive data store FIFO.
Up to 64- or 32-byte data (determined by bit 3 of FSR) is stored to the receive data store FIFO.
Receive data is used as follows.

Write

During a frame data reception, the sequencer writes the receive data during the data transfer sequence, and the
write pointer is incremented.

If data is written when the unread data in the receive FIFO reaches the maximum volume, the receive overrun
error occurs and the current frame reception is ended.

The write pointer is not incremented.

After the receive FIFO is cleared, if the number of received frames is less than 7 frames, it is possible to
continue frame reception.

To receive 8 or more frames, read all the data and frames that are already received from the receive FIFO, then
clear the receive FIFO and restart reception.

Read

Data is read from the receive data store FIFO while the IrDA is operating.

When a read operation is completed, the read pointer of the receive data store FIFO is incremented. However, it
is not incremented when the receive FIFO is empty.

When the number of read frames reaches the receive frame size, an interrupt occurs and bit 7 of the RXSTS
register is set to 1.

[Caution]

If data is read when the receive FIFO is empty (read pointer = write pointer), it may contend with the sequencer’s

write operation. This may cause undefined data.

The error generated by read underrun is not reported in this macro.

503

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.6 IMR (0x0CO00 0054)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name IMR7 IMR6 IMR5 IMR4 IMR3 IMR2 IMR1 IMRO
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 to DO IMR7 to O These bits are used to enable/prohibit interrupt output.
This register sets whether or not to inform outside when the interrupt is generated.
Each bit corresponds to the equivalent IFR register bit.
When interrupt output is enabled and corresponding bit is 1, interrupt output is
active.
IMRN Interrupt output
0 Prohibit
1 Enable
[Caution]

The IFR register is set irrespective of this register’s setting.

504

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.7 FSR (0x0C00 0056)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RX_TH1 RX_THO TX_TH1 TX_THO F_SIZE TXF_CLR RXF_CLR TX_STOP
R/IW R/IW R/IW R/IW R/IW R/W R/W R/W R/IW
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to D8 Reserved Write O when writing. 0 is returned after a read.

D7 and D6 RX_TH1, 0 These bits are used to specify the receive FIFO’s threshold.
RX_TH1,0 F_SIZE=0 F SIZE=1
00 1 byte 1 byte
01 4 bytes 8 bytes
10 16 bytes 32 bytes
11 26 bytes 48 bytes
D5 and D4 TX_TH1,0 These bits are used to specify the transmit FIFO’s threshold.
TX_TH1,0 F_SIZE=0 F_SIZE=1
00 1 byte 1 byte
01 8 bytes 16 bytes
10 16 bytes 32 bytes
11 26 bytes 48 bytes
D3 F_SIZE This bit is used to specify the maximum size of transmit/receive FIFO.
F_SIZE FIFO maximum
size
0 32 bytes
1 64 bytes
D2 TXF_CLR Transmit FIFO clear trigger (read value = 0)
When this bit is set to 1, the pointers of the transmit data FIFO and transmit frame
size FIFO are initialized.
D1 RXF_CLR Receive FIFO clear trigger (read value = 0)
When this bit is set to 1, the pointers of the receive data FIFO, receive frame size
FIFO, and receive status FIFO are initialized.
DO TX_STOP Transmission stop trigger (read value = 0)

When this bit is set to 1, the current frame transmission is stopped and the abort
frame transmission starts. The following frames scheduled to be transmitted next
are not transferred. Setting 1 to this bit also stops DMA operation and generates
the DMA completion interrupt.

This register is used to specify the settings for the transmit/receive FIFOs.

505

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

[Caution]

During transmission/reception, the contents of bits 7 through 3 of the FSR register must not be changed (refresh
is possible). The data in the FIFO is not cleared by FIFO clear.

Regardless of transmission/reception, after data transfer is completed, set the TX_STOP bit and stop the DMA
operation. When reception, confirm the transfer data command bit and stop the DMA operation.

506

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.8 IRSR1 (0x0CO00 0058)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name IRDA_EN Reserved Reserved Reserved Reserved Reserved IRDA_MD MIR_MD
R/W R/W R R R R R R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to D8 Reserved Write O when writing. 0 is returned after a read.

D7 IRDA_EN This bit is used to control (enable/prohibit) IrDA macro operation.
When this bit is set to 1, peripheral main block’s reset is released and clock supply
starts.
0: Prohibit
1: Enable
D6 to D2 Reserved Write O when writing. 0 is returned after a read.
D1 and DO IRDA_MD/ These bits are used to specify the IrDA/MIR mode.
MIR_MD IRDA_MD MIR_MD Operation mode Frequency Modulation
method
lorO FIR mode 8 MHz 4 PPM
1 0 MIR full mode 1.152MHz Bit stream/stuff
1 1 MIR half mode 0.576 MHz Bit stream/stuff
[Caution]

During transmission/reception, the contents of this register must not be changed (refresh is possible).
When the IRDA_EN bit is set, the peripheral main part reset is released and the clock supply starts.

Pulse output level changes according to operation mode changes.
The operation mode should be changed after changing the IrDA operation to prohibit state (by setting bit (bit 7) to

0).

Once the mode is changed, be sure to switch bit inversion of I/O data ON/OFF by setting bit 0 of the CRCSR

register.

The output level does not change because output latch is reset.

Example) Sequence of changing operation mode from FIR mode to MIR full mode

clrl 0x7, IRSR1
setl 0x1, IRSR1

setl 0x0, CRCSR

setl 0x7, IRSR1

Prohibit IrDA operation
Change the mode

Set bit inversion
Enable IrDA operation

507

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.9 CRCSR (0x0C00 005C)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TX_EN RX_EN 4PPM_DIS | DPLL_DIS | Reserved | NON_CRC | CRC_INV | DATA_INV
R/W R/W R/W R/W R/W R R/W R/W R/W
RTCRST 0 0 0 0 0 1 0 0
Other resets 0 0 0 0 0 1 0 0

Bit Name Function
D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 TX_EN This bit is used to control (enable/prohibit) masking of transmit start enable flag.
Masking sequence transition to transmission enable state entered by writing the
TXFL register is:
0: Prohibited
1: Enabled
D6 RX_EN This bit is used to control (enable/prohibit) receive operation.
Releasing masking of receive line, sampling data, and generating receive clocks are:
0: Prohibited
1: Enabled
D5 4PPM_DIS This bit is used to control (enable/prohibit) the 4PPM modulation (for debugging).
The 4PPM modulation of transmit data is:
0: Enabled
1: Prohibited
D4 DPLL_DIS This bit is used to control (enable/prohibit) the bit correction (for debugging).
Bit correction of received data is:
0: Enabled
1: Prohibited
D3 Reserved Write 0 when writing. O is returned after a read.
D2 NON_CRC This bit is used to control whether or not a CRC is added for frames to be transmitted

(for debugging).
0: Add CRC
1: Do not add CRC

508

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

Bit Name Function
D1 CRC_INV This bit is used to set whether or not a CRC is inverted to create an incorrect CRC
in the normal routine.
0: Normal CRC (not inverted)
1: Inverted CRC
DO DATA_INV This bit is used to set whether or not received/transmitted data /O is inverted.
0: Normal (not inverted)
1: Inverted
Be sure to set as normal in FIR, and set as inverted in MIR.
[Caution]

During transmission/reception, the contents of this register must not be changed (refresh is possible).

26.2.10 FIRCR (0x0CO00 005E)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name PA_LEN2 PA_LEN1 PA_LENO | W_PULSE1 | W_PULSEO | F_WIDTH2 | F_WIDTH1 | F_WIDTHO
R/W R/W R/W R/W R R R/W R/W R/W
RTCRST 1 0 0 0 0 1 0 1
Other resets 1 0 0 0 0 1 0 1

509

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

Bit Name Function
D15 to D8 Reserved Write O when writing. 0 is returned after a read.
D7 to D5 PA_LEN2 to PA_LENO These bits are used to specify the number of PA (preamble) added to FIR’s
transmit frame.
PA_LEN2to 0 Number of PA
001 1
010 2
011 4
100 (default) 16
111 32
Others 16 (reserved)
D4 and D3 W_PULSE1 and These bits are used to specify the undefined receive pulse width area.
W_PULSEO Pulse width within the undefined receive pulse width area = recognized as single pulse
Pulse width within other than the undefined receive pulse width area = recognized as double
pulse
W_PULSE 1and 0 Undefined receive pulse
width area
00 7 to 8 clocks
01 (default) 8 to 9 clocks
10 9 to 10 clocks
11 10 to 11 clocks
D2 to DO F_WIDTH2 to These bits are used to specify FIR pulse modulation width.
F_WIDTHO The FIR’s output pulse is modulated to a pulse consisting of the number of
reference clocks (48 MHz) specified by these bits.
F_WIDTH2to O Single pulse Double pulse
000 1 clock 7 clocks
001 2 clocks 8 clocks
010 3 clocks 9 clocks
011 4 clocks 10 clocks
100 5 clocks 11 clocks
101 (default) 6 clocks 12 clocks
Others Setting prohibited
[Function]

Controls the FIR operation.

[Caution]

During transmission/reception, the contents of this register must not be changed.

510

CHAPTER 26 FIR (FAST IrDA INTERFACE

UNIT)

26.2.11 MIRCR (0x0C00 0060)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name STA LEN2 | STA LEN1 | STA_LENO | M_WIDTH4 | M_WIDTH3 | M_WIDTH2 | M_WIDTH1 | M_WIDTHO
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 1 0 0 1 0 0 1
Other resets 0 1 0 0 1 0 0 1
Bit Name Function
D15 to D8 Reserved Write O when writing. 0 is returned after a read.

D7 to D5 STA_LEN2 to These bits are used to specify the number of STA (start flag) added to MIR’s transmit
STA_LENO frame.
STA LEN2to 0 Number of STA
001 1
010 (default) 2
011 4
100 16
111 32
Others 2 (reserved)
D4 to DO M_WIDTH4 to These bits are used to specify the MIR pulse modulation width.
M_WIDTHO The MIR’s output pulse is modulated to a pulse consisting of the number of reference
clocks (48 MHz) specified by these bits.
F_WIDTH4 to O Single pulse
00000 1 clock
00001 2 clocks
01001 (default) 10 clocks
10100 21 clocks
11111 32 clocks
[Function]

Controls the MIR operation.
The nominal pulse width of MIR is 1/4. Therefore, be sure to set as follows:
MIR full mode (1.152 MHz) = 01001 (rate 10/42)
MIR half mode (0.576 MHz) = 10100 (rate 21/83)

[Caution]

During transmission/reception, the contents of this register must not be changed.

511

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.12 DMACR (0x0CO00 0062)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name ACES_MD | TRANS_MD Reserved Reserved Reserved DEMAND2 | DEMAND1 | DEMANDO
R/W R/W R/W R R R R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to D8 Reserved Write 0 when writing. 0 is returned after a read.

D7 ACES_MD This bit is used to select the access mode. Write O when writing. 0 is returned
after a read.
D6 TRANS_MD This bit is used to specify the transfer direction.
TRANS_MD Transfer direction
0 Memory — TDR
1 RDR — Memory
D5 to D3 Reserved Write O when writing. 0 is returned after a read.
D2 to DO DEMAND?2 to These bits are used to specify the demand size.
DEMANDO DEMAND2 to 0 Demand size
000 1
001 2
010 3
011 4
100 5
101 6
110 7
111 Free size
[Caution]

During the DMA operation (both the master side and IrDA side), the contents of this register must not be changed.

512

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.13 DMAER (0x0CO00 0064)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved Reserved Reserved Reserved Reserved Reserved | DMA_BUSY | DMA_EN
R/W R R R R R R R R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to D2 Reserved Write O when writing. 0 is returned after a read.

D1 DMA_BUSY DMA busy status
1: Busy
0: Not Busy
DO DMA_EN This bit is used as a DMA operation enable trigger.
1: Enable
0: Disable
Note that the DMA is not stopped by clearing this bit (to 0).
[Function]

The DMA_BUSY bit is set automatically by setting the DMA_EN bit to 1.
The DMA_BUSY bit is cleared when bit O of the FSR register is set or when all frame transmit data is written.

513

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.14 TXIR (0x0CO00 0066)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TX_BUSY Reserved LAST _TFL | TX_TH_OV | Reserved | TXF_UNDR | TXF_FULL | TXF_EMP
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D15 to D8 Reserved Write O when writing. 0 is returned after a read.

D7 TX_BUSY Transmission busy.
This bit is set to 1 during the period between PA (in FIR) or STA (in MIR)
transmission and abort transmission.
0: Not Busy
1: Busy

D6 Reserved Write 0 when writing. O is returned after a read.

D5 LAST_TFL Last transmission frame status.
This bit indicates whether data exists or not in the transmission frame size FIFO.
This bit changes when the STA transmission sequence ends. Its initial value is 1.
0: Normal
1: Exists

D4 TX_TH_OV Transmission FIFO threshold over status.
This bit indicates whether or not the data size within the transmission FIFO
exceeds the threshold.
0: Normal
1: Excesses

D3 Reserved Write O when writing. 0 is returned after a read.

D2 TXF_UNDR Transmission FIFO underrun status.
This bit indicates whether or not data is read when there is no data in the
transmission FIFO.
0: Normal
1: Data is read

D1 TXF_FULL Transmission FIFO full status.
This bit indicates that there is no writable space in the transmission FIFO.
0: Normal
1: No writable space

DO TXF_EMP Transmission FIFO empty status.

This bit indicates whether or not data to be read exists in the transmission FIFO.
0: Normal
1: Exists

514

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.15 RXIR (0x0CO00 0068)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RX_BUSY | END_DATA| LAST_RFL RX_TH_O Reserved Reserved RXF_FULL | RXF_EMP
R/IW R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to D8 Reserved Write O when writing. 0 is returned after a read.

D7 RX_BUSY Reception busy.
This bit is set to 1 during the period between when PA (in FIR) or STA (in MIR) is
detected and when reception ends.
0: Not Busy
1: Busy
D6 END_DATA Frame last data status.
This bit indicates whether the last data of frame that is received completely exists
or not in the FIFO.
0: Normal
1: Exists
D5 LAST_RFL Last reception frame status.
This bit is set (to 1) when the reception result (frame size and status) of the 7th
frame is stored.
0: Normal
1: Result is stored
D4 RX_TH_O Reception FIFO threshold over status.
This bit indicates whether or not the data size within the reception FIFO exceeds
the threshold.
0: Normal
1: Excesses
D3 and D2 Reserved Write O when writing. 0 is returned after a read.
D1 RXF_FULL Reception FIFO full status.
This bit indicates that there is no writable space in the reception FIFO.
0: Normal
1: No writable space
DO RXF_EMP Reception FIFO empty status.

This bit indicates whether or not data to be read exists in the reception FIFO.

0: Normal
1: Exists

515

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

[Caution]
This register can be read only in IrDA mode.

[Remark]
Initial value is the value immediately after the IrDA operation is enabled or after the reception FIFO is cleared.
0x00 is read while the operation stops.

516

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.16 IFR (0xOCO00 006A)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TX_ABORT | TX_ERR | RX_VALID | DMA END | RX_END TX_END [TX_WR_RQ [RX_RD_RQ
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to D8 Reserved Write O when writing. 0 is returned after a read.

D7 TX_ABORT Abort frame transmission end interrupt.
This bit indicates that abort frame is transmitted and the following frame’s transfer
reservation is cancelled.
0: Normal
1: Cancelled
D6 TX_ERR Transmission error interrupt.
This bit indicates that the transmission error occurs.
0: Normal
1. Occurs
D5 RX_VALID Reception result valid interrupt.
This bit indicates that the last data of frame is read from the reception FIFO and the
received status becomes valid.
0: Normal
1: valid
D4 DMA_END DMA end interrupt.
This bit indicates that the DMA operation ends.
0: Normal
1: Ends
D3 RX_END Reception end interrupt.
This bit indicates that STO is detected for each reception frame.
0: Normal
1: Detected
D2 TX_END Transmission end interrupt.

This bit indicates that STO is transmitted for each transmission frame.

0: Normal

1: Detected

517

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

Bit

Name

Function

D1

TX_WR_RQ

Transmission data write request interrupt.

This bit indicates that a transmission data write request interrupt has occurred.
0: Normal

1: Occurs

DO

RX_RD_RQ

Reception data read request interrupt.

This bit indicates that a reception data read request interrupt has occurred.
0: Normal

1: Occurs

[Caution]

If bits 7 through 2 of the IFR register are set, the flags that are set to 1 before a read are all cleared to 0.

518

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.17 RXSTS (0x0CO00 006C)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name Valid Reserved Reserved RXF_OV CRC_ERR ABORT MRXF_OV Reserved
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to D8 Reserved Write O when writing. 0 is returned after a read.

D7 Valid Valid status in the indication status.

This bit is set to 1 when received data of one frame is read completely.
0: Received data read not completed
1: Received data read completed

D6 and D5 Reserved Write 0 when writing. 0 is returned after a read.

D4 RXF_OV Receive FIFO overrun error.
This bit is set to 1 when a receive operation is stopped by receive FIFO’s overrun.
0: Normal
1: Overrun

D3 CRC_ERR CRC Error.
This bit is set t 0 1 when the receive result CRC does not match with expected
value.
0: Normal
1: CRC error

D2 ABORT Abort detection error.
This bit is set to 1 when a receive operation is stopped by abort frame detection.
0: Normal

1: Abort error

D1 MRXF_OV Maximum receive frame size error.

This bit is set to 1 when a receive operation is stopped by maximum receive frame
size overrun.

0: Normal

1: Overrun

DO Reserved Write O when writing. 0 is returned after a read.

[Function]
Reads data from the receive status store FIFO, in which data of up to 7 frames can be stored.
The FIFO is initialized by setting bit 1 of the FSR register.
Received status FIFO is used as follows.

519

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

(1) Write (bits 4 to 1)
The receive status is written to this register at the same timing of writing data to the receive frame length
register.
This register shares the write pointer with the receive frame length register.

(2) Write (bit 7)
This bit is set to 1 when the data of receive frame size is read from the FIFO. While this bit is 1, data is
recognized as valid.

(3) Read
This register shares the read pointer with the receive frame length register.
The read pointer is incremented by reading the RXFL (receive frame length) register after valid data is read from
this register.

520

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.18 TXFL (0x0CO00 O06E)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved TXFL12 TXFL11 TXFL10 TXFL9 TXFL8
R/W R R R R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name TXFL7 TXFL6 TXFL5 TXFL4 TXFL3 TXFL2 TXFL1 TXFLO
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to Reserved Write 0 when writing. 0 is returned after a read.

D13
D12 to DO TXFL12 to TXFLO Transmit frame size.
[Function]

This register functions as prebuffer address for data write to the transmit frame size data store FIFO, in which
data of up to 7 frames can be stored.

Setting value = transmit size — 1

Setting range = 1 to 2 Kbytes

The FIFO is initialized by setting bit 2 of the FSR register.

(1) Write
The data transmit size of frames to be transferred is written to this register.
Transmission is enabled when data is written to this register in the state other than transmission busy state (after
FIFO initialization and after transmission completion).
The frames whose number is specified by this register are transferred continuously (back-to-back transfer).
During the single frame transfer, FIFO should be initialized at each 1-frame transfer completion to restart
transmit operation.

(2) Read
The sequencer reads the transmission size from this register after the STA flag of transmission frame is
transmitted completed. Then, the read pointer is incremented.

[Caution]

If data exists in the FIFO when the STO transmit sequence is completed, continuous transfer mode is entered.
When multiple frames are transferred, be sure to write data to the TXFL register before the STO transmit sequence
is completed.

521

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.19 MRXF (0x0C00 0070)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved MRXF12 MRXF11 MRXF10 MRXF9 MRXF8
R/W R R R R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name MRXF7 MRXF6 MRXF5 MRXF4 MRXF3 MRXF2 MRXF1 MRXFO
R/W R/W R/W R/W R/W R/W R/W R/W R/W
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit Name Function
D15 to Reserved Write 0 when writing. 0 is returned after a read.

D13
D12 to DO MRXF12 to MRXFO Specifies receivable maximum frame size.
MRXF MAX Tx Frame length
0x0000 1 byte
0x0001 2 bytes
Ox1FFF 2 Kbytes
[Function]

The maximum frame size is stored in this register.
When a 1-frame receive data is transferred to the receive FIFO exceeding the receivable maximum frame size set
by this register, an error occurs even under frame reception to end the current frame reception. This sets bit 1 of the

RXSTS register.

After the receive FIFO is cleared, if the number of received frames is less than 7 frames, it is possible to continue

frame reception.

To receive 8 or more frames, read all the data and frames that are already received from the receive FIFO, then

clear the receive FIFO and restart reception.

When receiving data via the DMA operation, set the transfer size value by the following expression:

DMA receivable capacitance = set value x 7 frames

Caution

522

The data exceeding the maximum size cannot be transferred to the FIFO.

CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)

26.2.20 RXFL (0x0C00 0074)

Bit D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved Reserved Reserved RXFL12 RXFL11 RXFL10 RXFL9 RXFL8
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0

Bit D7 D6 D5 D4 D3 D2 D1 DO
Name RXFL7 RXFL6 RXFLS RXFL4 RXFL3 RXFL2 RXFL1 RXFLO
R/W R R R R R R R R
RTCRST 0 0 0 0 0 0 0 0
Other resets 0 0 0 0 0 0 0 0
Bit Name Function
D15 to Reserved Write 0 when writing. 0 is returned after a read.

D13
D12 to DO RXFL12 to RXFLO Receive frame size.
[Function]

This register functions as prebuffer address for data read from the receive frame size data store FIFO, in which
data of up to 7 frames can be stored.

Setting value = transmit size — 1

Setting range = 1 to 2 Kbytes

The FIFO is initialized by setting bit 1 of the FSR register.

(1) Write
When the frame reception is completed after its data is transferred (even if only 1 byte) to the receive FIFO, the
sequencer writes the current transfer data size to this register, and the write pointer is incremented.
When the frame reception is completed before its data is transferred to the receive FIFO, write operation is not
performed (lost frame).

(2) Read
The read pointer is enabled to be incremented by reading valid data from the RXSTS register, and the next data
can be read.

[Caution]

If a receive operation ends abnormally, the data size transferred to the receive FIFO at that time is written to this
register.

When the data of 7 frames are stored, the receive line is automatically masked. Therefore, the frame whose
receive result cannot be stored is not transferred to the FIFO.

The update condition of the read pointer of the receive frame size store FIFO is also valid in the test mode.

523

[MEMO]

524

CHAPTER 27 CPU INSTRUCTION SET DETAILS

This chapter provides a detailed description of the operation of each VR4102 instruction in both 32- and 64-bit
modes. The instructions are listed in alphabetical order.

27.1 INSTRUCTION NOTATION CONVENTIONS

In this chapter, all variable subfields in an instruction format (such as rs, rt, immediate, etc.) are shown in
lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in the formats of specific instructions.
For example, we use rs = base in the format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at the end of this chapter, and the bit
encoding also accompanies each instruction.

In the instruction descriptions that follow, the Operation section describes the operation performed by each
instruction using a high-level language notation. The VR4102 can operate as either a 32- or 64-bit microprocessor
and the operation for both modes is included with the instruction description.

Special symbols used in the notation are described in Table 27-1.

525

CHAPTER 27 CPU INSTRUCTION SET DETAILS

Table 27-1. CPU Instruction Operation Notations

Symbol Meaning

<- Assignment.

Il Bit string concatenation.

X’ Replication of bit value x into a y-bit string. x is always a single-bit value.

Xy:z Selection of bits y through z of bit string x. Little-endian bit notation is always used. If yis less
than z, this expression is an empty (zero length) bit string.

+ 2's complement or floating-point addition.

- 2's complement or floating-point subtraction.

* 2’'s complement or floating-point multiplication.

div 2's complement integer division.

mod 2’'s complement modulo.

/ Floating-point division.

< 2’'s complement less than comparison.

and Bit-wise logical AND.

or Bit-wise logical OR.

xor Bit-wise logical XOR.

nor Bit-wise logical NOR.

GPR [X] General-Register x. The content of GPR [0] is always zero. Attempts to alter the content of
GPR [0] have no effect.

CPR [z, X] Coprocessor unit z, general register x.

CCR [z, X] Coprocessor unit z, control register x.

COC [7] Coprocessor unit z condition signal.

BigEndianMem

Big-endian mode as configured at reset (0 -> Little, 1 -> Big). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory), and the endianness of Kernel and
Supervisor mode execution.

However, this value is always 0 since the VR4102 supports the little endian order only.

ReverseEndian

Signal to reverse the endianness of load and store instructions. This feature is available in
User mode only, and is effected by setting the RE bit of the Status register. Thus,
ReverseEndian may be computed as (SR2s and User mode).

However, this value is always 0 since the VR4102 supports the little endian order only.

BigEndianCPU

The endianness for load and store instructions (0O -> Little, 1 -> Big). In User mode, this
endianness may be reversed by setting SR2s. Thus, BigEndianCPU may be computed as
BigEndianMem XOR ReverseEndian.

However, this value is always 0 since the VR4102 supports the little endian order only.

T+

Indicates the time steps between operations. Each of the statements within a time step are
defined to be executed in sequential order (as modified by conditional and loop constructs).
Operations which are marked T + i; are executed at instruction cycle i/ relative to the start of
execution of the instruction. Thus, an instruction which starts at time j executes operations
marked T + j: attime /i +j. The interpretation of the order of execution between two instructions
or two operations which execute at the same time should be pessimistic; the order is not
defined.

526

CHAPTER 27 CPU INSTRUCTION SET DETAILS

(1) Instruction notation examples
The following examples illustrate the application of some of the instruction notation conventions:

Example #1:
GPR [rf] <- immediate || 0*°

Sixteen zero bits are concatenated with an immediate value (typically 16 bits), and the 32-bit string (with
the lower 16 bits set to zero) is assigned to General-purpose register rt.

Example #2:
(immediate1s)* || immediateis..o

Bit 15 (the sign bit) of an immediate value is extended for 16 bit positions, and the result is concatenated
with bits 15 through 0 of the immediate value to form a 32-bit sign extended value.

27.2 LOAD AND STORE INSTRUCTIONS

In the VR4102 implementation, the instruction immediately following a load may use the loaded contents of the
register. In such cases, the hardware interlocks, requiring additional real cycles, so scheduling load delay slots is
still desirable, although not required for functional code.

In the load and store descriptions, the functions listed in Table 27-2 are used to summarize the handling of virtual
addresses and physical memory.

Table 27-2. Load and Store Common Functions

Function Meaning

Address Translation Uses the TLB to find the physical address given the virtual address. The function fails and an

exception is taken if the required translation is not present in the TLB.

Load Memory Uses the cache and main memory to find the contents of the word containing the specified physical
address. The low-order three bits of the address and the Access Type field indicate which of each
of the four bytes within the data word need to be returned. If the cache is enabled for this access,

the entire word is returned and loaded into the cache.

Store Memory Uses the cache, write buffer, and main memory to store the word or part of word specified as data in

the word containing the specified physical address. The low-order three bits of the address and the

Access Type field indicate which of each of the four bytes within the data word should be stored.

As shown in Table 27-3, the Access Type field indicates the size of the data item to be loaded or stored.
Regardless of access type or byte-numbering order (endianness), the address specifies the byte which has the
smallest byte address in the addressed field. This is the rightmost byte in the VR4102 since it supports the little-
endian order only.

527

CHAPTER 27 CPU INSTRUCTION SET DETAILS

Table 27-3. Access Type Specifications for Loads/Stores

Access Type Mnemonic Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

The bytes within the addressed doubleword which are used can be determined directly from the access type and
the three low-order bits of the address.

27.3 JUMP AND BRANCH INSTRUCTIONS

All jump and branch instructions have an architectural delay of exactly one instruction. That is, the instruction
immediately following a jump or branch (that is, occupying the delay slot) is always executed while the target
instruction is being fetched from storage. A delay slot may not itself be occupied by a jump or branch instruction;
however, this error is not detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction during a delay slot, the hardware sets the
EPC register to point at the jump or branch instruction that precedes it. When the code is restarted, both the jump or
branch instructions and the instruction in the delay slot are reexecuted.

Because jump and branch instructions may be restarted after exceptions or interrupts, they must be restartable.
Therefore, when a jump or branch instruction stores a return link value, register r31 (the register in which the link is
stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and Link Register instruction must use a
register which contains an address whose two low-order bits are zero. If these low-order bits are not zero, an
address exception will occur when the jump target instruction is subsequently fetched.

27.4 SYSTEM CONTROL COPROCESSOR (CPO0O) INSTRUCTIONS

There are some special limitations imposed on operations involving CPO that is incorporated within the CPU.
Although load and store instructions to transfer data to/from coprocessors and to move control to/from coprocessor
instructions are generally permitted by the MIPS architecture, CPO is given a somewhat protected status since it has
responsibility for exception handling and memory management. Therefore, the move to/from coprocessor
instructions are the only valid mechanism for writing to and reading from the CPO registers.

Several CPO instructions are defined to directly read, write, and probe TLB entries and to modify the operating
modes in preparation for returning to User mode or interrupt-enabled states.

528

CHAPTER 27 CPU INSTRUCTION SET DETAILS

27.5 CPU INSTRUCTION
This section describes the functions of CPU instructions in detail for both 32-bit mode and 64-bit mode. The

exception that may occur by executing each instruction is shown in the last of each instruction’s description. For
details of exceptions and their processes, see Chapter 6.

529

CHAPTER 27 CPU INSTRUCTION SET DETAILS

ADD Add ADD
31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 ADD
000000 00000 100000
6 5 5 5 5 6
Format:
ADD rd, rs, rt
Description:

The contents of general register rs and the contents of general register rt are added to form the result. The result

is placed into general register rd. In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ (2's complement overflow). The destination

register rd is not modified when an integer overflow exception occurs.

Operation:
32 T GPR [rd] <- GPR [rs] + GPR [rt]
64 T: temp <- GPR [rs] + GPR [rt]
GPR [rd] <- (temp31)32 || tempa1..o
Exceptions:

Integer overflow exception

530

CHAPTER 27 CPU INSTRUCTION SET DETAILS

ADDI Add Immediate ADDI

31 26 25 21 20 16 15 0

ADDI
001000

rs rt immediate

6 5 5 16

Format:
ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The
result is placed into general register rt. In 64-bit mode, the operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2’s complement overflow). The destination
register rtis not modified when an integer overflow exception occurs.

Operation:

32 T GPR [rt] <- GPR [rs] + (immediatels)16 || immediatess...o

64 T temp <- GPR [rs] + (immediatels)48 || immediatess...o
GPR [rt] <- (tempa1)* || tempaz...0

Exceptions:
Integer overflow exception

531

CHAPTER 27 CPU INSTRUCTION SET DETAILS

ADDIU

Add Immediate Unsigned

ADDIU

31 26 25 21 20 16 15 0
ADDIU Is rt immediate
001001
6 5 5 16
Format:

ADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The
result is placed into general register rt. No integer overflow exception occurs under any circumstances. In 64-bit

mode, the operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is that ADDIU never causes an integer

overflow exception.

Operation:

32 T GPR [rt] <- GPR [rs] + (immediatels)16 || immediateis..o

64 T temp <- GPR [rs] + (immediatels)48 || immediateis..o
GPR [rt] <- (temp31)* || tempaz..o

Exceptions:
None

532

CHAPTER 27 CPU INSTRUCTION SET DETAILS

ADDU Add Unsigned ADDU

31 26 25 21 20 16 15 11 10 65 0
SPECIAL rs it d 0 ADDU
000000 00000 100001

6 5 5 5 5 6
Format:

ADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result. The result
is placed into general register rd. No integer overflow exception occurs under any circumstances. In 64-bit
mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is that ADDU never causes an integer
overflow exception.

Operation:

32 T GPR [rd] <- GPR [rs] + GPR [rt]

64 T temp <- GPR [rs] + GPR [rt]
GPR [rd] <- (tempa1)* || temps1...0

Exceptions:
None

533

CHAPTER 27 CPU INSTRUCTION SET DETAILS

AND And AND

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 AND
000000 00000 100100

6 5 5 5 5 6
Format:
AND rd, rs, rt
Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise logical AND
operation. The result is placed into general register rd.

Operation:

32 T GPR [rd] <- GPR [rs] and GPR [rt]

64 T GPR [rd] <- GPR [rs] and GPR [rt]

Exceptions:
None

534

CHAPTER 27 CPU INSTRUCTION SET DETAILS

ANDI

And Immediate

ANDI

31 26 25

21 20

16 15

ANDI
001100

rs

rt

immediate

6

16

Format:
ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-wise logical

AND operation. The result is placed into general register rt.

Operation:

32 T GPRI[r]<- 0| (immediate and GPR [rs]zs..0)

64 T: GPR[rt] <- 0% || immediate and GPR [rs]is.0)

Exceptions:
None

535

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BCOF

Branch On Coprocessor 0 False

BCOF

31 26 25 21 20 16 15 0
COPz BC BCF offset
0100X X" 01000 00000
6 5 5 16
Format:
BCOF offset
Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If coprocessor 0’'s condition signal (CpCond: Status register bit-18
CH field), as sampled during the previous instruction, is false, then the program branches to the target address

with a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at least one instruction

between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-L:

64 T-1:

endif

endif

condition <- not SR1s

PC <- PC + target

condition <- not SR1s

PC <- PC + target

T: target <- (offsetis)'* || offset || 0°
T+1: if condition then

T: target <- (offsetis)*® || offset || 0°
T+1: if condition then

Exceptions:

Coprocessor unusable exception

Note See the opcode table below, or 27.6 CPU INSTRUCTION OPCODE BIT ENCODING.

Opcode Table:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0
BCOF| O 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
' e '
Opcode Coprocessor BC sub-opcode Branch condition
number

536

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BCOFL Branch On Coprocessor 0 False Likely BCOFL
31 26 25 21 20 16 15 0
COPz BC BCFL offset
0100XX"™* 01000 00010
6 5 5 16

Format:

BCOFL offset
Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of coprocessor Q’s condition line, as sampled during
the previous instruction, is false, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Because the condition line is sampled during the previous instruction, there must be at least one instruction
between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition <- not SRis
T: target <- (offsetss)** || offset || 0°
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T-1: condition <- not SRis
T: target <- (offsetss)*® || offset || 0°
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:
Coprocessor unusable exception

Note See the opcode table below, or 27.6 CPU INSTRUCTION OPCODE BIT ENCODING.

Opcode Table:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BCOFL | O 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0

e ' e
Opcode Coprocessor BC sub-opcode Branch condition
number

537

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BCOT Branch On Coprocessor 0 True BCOT
31 26 25 21 20 16 15 0
COPz BC BCT offset
0100XX™* 01000 00001
6 5 5 16

Format:

BCOT offset
Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the coprocessor 0’s condition signal (CpCond: Status register bit-
18 CH field) is true, then the program branches to the target address, with a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at least one instruction
between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition <- SR1s
T: target <- (offsetis)'* || offset || 0°
T+1: if condition then
PC <- PC + target
endif

64 T-1: condition <- SR1s
T: target <- (offsetis)*® || offset || 0°
T+1: if condition then
PC <- PC + target
endif

Exceptions:
Coprocessor unusable exception

Note See the opcode table below, or 27.6 CPU INSTRUCTION OPCODE BIT ENCODING.

Opcode Table:

31 3 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BCOT| O 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

' e '
Opcode Coprocessor BC sub-opcode Branch condition
number

538

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BCOTL Branch On Coprocessor 0 True Likely BCOTL
31 26 25 21 20 16 15 0
COPz BC BCTL offset
0100XX™* 01000 00011
6 5 5 16

Format:

BCOTL offset
Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of coprocessor Q’s condition line, as sampled during
the previous instruction, is true, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Because the condition line is sampled during the previous instruction, there must be at least one instruction
between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition <- SR1s
T: target <- (offsetis)™ || offset || 02
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T-1: condition <- SRis
T: target <- (offsetls)46 || offset || 0’
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:
Coprocessor unusable exception

Note See the opcode table below, or 27.6 CPU INSTRUCTION OPCODE BIT ENCODING.

Opcode Table:

3. 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BCOTL| O 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

v ~ ~

Opcode Coprocessor BC sub-opcode Branch condition
number

539

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BEQ Branch On Equal BEQ

31 26 25 21 20 16 15 0
BEQ
000100 rs rt offset
6 5 5 16
Format:

BEQ rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general
register rt are compared. If the two registers are equal, then the program branches to the target address, with a
delay of one instruction.

Operation:

32 T. target <- (offsetis)** || offset || 02
condition <- (GPR [rs] = GPR [rt])
T+1: if condition then
PC <- PC + target
endif

64 T target <- (offsetls)46 || offset || 0’
condition <- (GPR [rs] = GPR [rt])
T+1: if condition then
PC <- PC + target
endif

Exceptions:
None

540

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BEQL Branch On Equal Likely BEQL

31 26 25 21 20 16 15 0
BEQL
010100 rs rt offset
6 5 5 16
Format:

BEQL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general
register rt are compared. If the two registers are equal, the target address is branched to, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T. target <- (offsetis)™ || offset || 02
condition <- (GPR [rs] = GPR [rt])
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T. target <- (offset1s)* || offset || 02
condition <- (GPR [rs] = GPR [rt])
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:
None

541

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BGEZ Branch On Greater Than Or Equal To Zero BGEZ
31 26 25 21 20 16 15 0
REGIMM s BGEZ offset
000001 00001
6 5 5 16
Format:

BGEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit cleared, then
the program branches to the target address, with a delay of one instruction.

Operation:

32 T. target <- (offsetis)** || offset || 02
condition <- (GPR [rs]s1 = 0)
T+1: if condition then
PC <- PC + target
endif

64 T target <- (offsetls)46 || offset || 0’
condition <- (GPR [rs]e3 = 0)
T+1: if condition then
PC <- PC + target
endif

Exceptions:
None

542

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BGEZAL Branch On Greater Than Or Equal To Zero And Link

BGEZAL

31 26 25 21 20 16 15 0
REGIMM s BGEZAL offset
000001 10001
6 5 5 16
Format:

BGEZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is
placed in the link register, r31. If the contents of general register rs have the sign bit cleared, then the program

branches to the target address, with a delay of one instruction.

General register rs may not be general register r31, because such an instruction is not restartable. An attempt to

execute this instruction is not trapped, however.

Operation:
32 T. target <- (offsetis)** || offset || 02
condition <- (GPR [rs]s1 = 0)
GPR [31]<-PC +8
T+1: if condition then
PC <- PC + target
endif
64 T target <- (offsetls)46 || offset || 0’
condition <- (GPR [rs]e3 = 0)
GPR [31]<-PC +8
T+1: if condition then
PC <- PC + target
endif
Exceptions:
None

543

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BG EZALL Branch On Greater Than Or Equal To Zero And Link Likely BG EZALL

31 26 25 21 20 16 15 0
REGIMM s BGEZALL offset
000001 10011
6 5 5 16
Format:

BGEZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is
placed in the link register, r31. If the contents of general register rs have the sign bit cleared, then the program
branches to the target address, with a delay of one instruction. General register rs may not be general register
31, because such an instruction is not restartable. An attempt to execute this instruction is not trapped, however.
If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T target <- (offsetls)14 || offset || 0’
condition <- (GPR [rs]31 = 0)
GPR[31]<-PC +8

T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T: target<- (offsetis)* || offset || 0°
condition <- (GPR [rs]e3 = 0)
GPR[31]<-PC +8

T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

544

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BGEZL Branch On Greater Than Or Equal To Zero Likely BGEZL

31 26 25 21 20 16 15 0
REGIMM s BGEZL offset
000001 00011
6 5 5 16
Format:

BGEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit cleared, then
the program branches to the target address, with a delay of one instruction. If the conditional branch is not taken,
the instruction in the branch delay slot is nullified.

Operation:

32 T. target <- (offsetis)** || offset || 02
condition <- (GPR [rs]s1 = 0)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T. target <- (offsetis)®® || offset || 02
condition <- (GPR [rs]e3 = 0)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

545

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BGTZ Branch On Greater Than Zero BGTZ

31 26 25 21 20 16 15 0
BGTZ rs 0 offset
000111 00000
6 5 5 16
Format:

BGTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs are compared to zero. If the
contents of general register rs have the sign bit cleared and are not equal to zero, then the program branches to
the target address, with a delay of one instruction.

Operation:

32 T. target <- (offsetis)™ || offset || 02
condition <- (GPR [rs]31 = 0) and (GPR [rs] # 032)
T+1: if condition then
PC <- PC + target
endif

64 T: target <- (offsetis)* || offset || 0°
condition <- (GPR [rs]es = 0) and (GPR [rs] = 0°%)
T+1: if condition then
PC <- PC + target
endif

Exceptions:

None

546

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BGTZL Branch On Greater Than Zero Likely BGTZL

31 26 25 21 20 16 15 0
BGTZL rs 0 offset
010111 00000
6 5 5 16
Format:

BGTZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs are compared to zero. If the
contents of general register rs have the sign bit cleared and are not equal to zero, then the program branches to
the target address, with a delay of one instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

Operation:

32 T: target <- (offsetis)™ || offset || 02
condition <- (GPR [rs]s1 = 0) and (GPR [rs] # 032)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T: target <- (offsetls)46 || offset || 0’
condition <- (GPR [rs]es = 0) and (GPR [rs] # 064)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

547

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BLEZ Branch On Less Than Or Equal To Zero BLEZ
31 26 25 21 20 16 15 0
BLEZ rs 0 offset
000110 00000
6 5 5 16
Format:

BLEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs are compared to zero. If the
contents of general register rs have the sign bit set, or are equal to zero, then the program branches to the target
address, with a delay of one instruction.

Operation:

32 T. target <- (offsetis)** || offset || 02
condition <- (GPR [rs]a1 = 1) or (GPR [rs] = 0%)
T+1: if condition then
PC <- PC + target
endif

64 T target <- (offsetls)46 || offset || 0’
condition <- (GPR [rs]es = 1) or (GPR [rs] = 0°%)
T+1: if condition then
PC <- PC + target
endif

Exceptions:

None

548

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BLEZL Branch On Less Than Or Equal To Zero Likely BLEZL

31 26 25 21 20 16 15 0
BLEZL rs 0 offset
010110 00000
6 5 5 16
Format:

BLEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs is compared to zero. If the
contents of general register rs have the sign bit set, or are equal to zero, then the program branches to the target
address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T target <- (offsetls)14 || offset || 0’
condition <- (GPR [rs]s1 = 1) or (GPR [rs] = 032)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T. target <- (offsetis)® || offset || 02
condition <- (GPR [rs]e3 = 1) or (GPR [rs] = 064)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

549

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BLTZ Branch On Less Than Zero BLTZ

31 26 25 21 20 16 15 0
REGIMM s BLTZ offset
000001 00000
6 5 5 16
Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit set, then the
program branches to the target address, with a delay of one instruction.

Operation:

32 T. target <- (offsetis)™ || offset || 02
condition <- (GPR [rs]s1 = 1)
T+1: if condition then
PC <- PC + target
endif

64 T target <- (offsetls)46 || offset || 0
condition <- (GPR [rs]e3 = 1)
T+1: if condition then
PC <- PC + target
endif

Exceptions:

None

550

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BLTZAL Branch On Less Than Zero And Link BLTZAL

31 26 25 21 20 16 15 0
REGIMM s BLTZAL offset
000001 10000
6 5 5 16
Format:

BLTZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is
placed in the link register, r31. If the contents of general register rs have the sign bit set, then the program
branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not restartable. An attempt to
execute this instruction with register 31 specified as rs is not trapped, however.

Operation:

32 T target <- (offsetls)14 || offset || 0’
condition <- (GPR [rs]s1 = 1)
GPR [31]<-PC + 8
T+1: if condition then
PC <- PC + target
endif

64 T: target <- (offsetis)*® || offset || 02
condition <- (GPR [rs]e3 = 1)
GPR [31]<-PC + 8
T+1: if condition then
PC <- PC + target
endif

Exceptions:

None

551

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BLTZALL

Branch On Less Than Zero And Link Likely

BLTZALL

31 26 25 21 20 16 15 0
REGIMM s BLTZALL offset
000001 10010
6 5 5 16
Format:

BLTZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay slot is
placed in the link register, r31. If the contents of general register rs have the sign bit set, then the program

branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not restartable. An attempt to
execute this instruction with register 31 specified as rs is not trapped, however. If the conditional branch is not

taken, the instruction in the branch delay slot is nullified.

Operation:

else

endif

else

endif

32 T target <- (offsetls)14 || offset || 0’
condition <- (GPR [rs]s1 = 1)
GPR [31] <-PC + 8
T+1: if condition then
PC <- PC + target

NullifyCurrentinstruction

64 T: target <- (offsetis)*® || offset || 02
condition <- (GPR [rs]e3 = 1)
GPR [31] <-PC + 8
T+1: if condition then
PC <- PC + target

NullifyCurrentinstruction

Exceptions:

None

552

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BLTZL Branch On Less Than Zero Likely BLTZL

31 26 25 21 20 16 15 0
REGIMM s BLTZL offset
000001 00010
6 5 5 16
Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit set, then the
program branches to the target address, with a delay of one instruction. If the conditional branch is not taken, the
instruction in the branch delay slot is nullified.

Operation:

32 T. target <- (offsetis)** || offset || 02
condition <- (GPR [rs]s1 = 1)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T. target <- (offsetis)®® || offset || 02
condition <- (GPR [rs]e3 = 1)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

553

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BNE Branch On Not Equal BNE

31 26 25 21 20 16 15 0
BNE
000101 rs rt offset
6 5 5 16
Format:

BNE rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general
register rt are compared. If the two registers are not equal, then the program branches to the target address, with
a delay of one instruction.

Operation:

32 T. target <- (offsetis)** || offset || 02
condition <- (GPR [rs] # GPR [rt])
T+1: if condition then
PC <- PC + target
endif

64 T target <- (offsetls)46 || offset || 0’
condition <- (GPR [rs] # GPR [rt])
T+1: if condition then
PC <- PC + target
endif

Exceptions:

None

554

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BNEL Branch On Not Equal Likely BNEL

31 26 25 21 20 16 15 0
BNEL
010101 rs rt offset
6 5 5 16
Format:

BNEL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general
register rt are compared. If the two registers are not equal, then the program branches to the target address, with
a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T target <- (offsetls)14 || offset || 0’
condition <- (GPR [rs] # GPR [rt])
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T. target <- (offsetis)® || offset || 02
condition <- (GPR [rs] # GPR [rt])
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

555

CHAPTER 27 CPU INSTRUCTION SET DETAILS

BREAK Breakpoint BREAK

31 26 25 65 0
SPECIAL code BREAK
000000 001101

6 20 6
Format:
BREAK
Description:

A breakpoint trap occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32,64 T: BreakpointException

Exceptions:

Breakpoint exception

556

CHAPTER 27 CPU INSTRUCTION SET DETAILS

CACHE Cache CACHE

31 26 25 21 20 16 15 0
CACHE
101111 base op offset
6 5 5 16
Format:

CACHE op, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The virtual address is translated to a physical address using the TLB, and the 5-bit sub-opcode specifies a cache
operation for that address.

If CPO is not usable (User or Supervisor mode) and the CPO enable bit in the Status register is clear, a
coprocessor unusable exception is taken. The operation of this instruction on any operation/cache combination
not listed below, or on a secondary cache, is undefined. The operation of this instruction on uncached addresses
is also undefined.

The Index operation uses part of the virtual address to specify a cache block.
For a primary cache of 2“*“"*®™ pytes with 2""*®™ bytes per tag, vAddrcacHesiTs..LiNesiTs specifies the block.

Index Load Tag also uses vAddrunesits..3 to select the doubleword for reading parity. When the CE bit of the
Status register is set, Fill Cache op uses the PErr register to store parity values into the cache.

The Hit operation accesses the specified cache as normal data references, and performs the specified operation
if the cache block contains valid data with the specified physical address (a hit). If the cache block is invalid or
contains a different address (a miss), no operation is performed.

557

CHAPTER 27 CPU INSTRUCTION SET DETAILS

CACHE Cache CACHE

558

(Continued)

Write back from a primary cache goes to memory. The address to be written is specified by the cache tag and
not the translated physical address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For Index operations (where the physical
address is used to index the cache but need not match the cache tag) unmapped addresses may be used to
avoid TLB exceptions. This operation never causes a TLB Modified exception.

Bits 17...16 of the instruction specify the cache as follows:

Code Name Cache
0 | Primary instruction
1 D Primary data
2,3 NA Reserved (undefined)

CHAPTER 27 CPU INSTRUCTION SET DETAILS

CACHE Cache CACHE

(Continued)

Bits 20...18 (this value is listed under the Code column) of the instruction specify the operation as follows:

Code Cache Name Operation
0 | Index_Invalidate Set the cache state of the cache block to Invalid.
0 D Index_Write_Back | Examine the cache state and W bit of the primary data cache block at the index
Invalidate specified by the virtual address. If the state is not Invalid and the W bit is set, then

write back the block to memory. The address to write is taken from the primary
cache tag. Set cache state of primary cache block to Invalid.

1 I,D Index_Load_Tag | Read the tag for the cache block at the specified index and place it into the TagLo
CPO registers, ignoring parity errors. Also load the data parity bits into the ECC
register.

2 I,D Index_Store_Tag | Write the tag for the cache block at the specified index from the TagLo and TagHi
CPO registers.

3 D Create_Dirty This operation is used to avoid loading data needlessly from memory when writing

Exclusive new contents into an entire cache block. If the cache block does not contain the
specified address, and the block is dirty, write it back to the memory. In all cases,
set the cache state to Dirty.

4 I,D Hit_Invalidate If the cache block contains the specified address, mark the cache block invalid.

5 D Hit_Write_Back If the cache block contains the specified address, write back the data if it is dirty, and

Invalidate mark the cache block invalid.

5 | Fill Fill the primary instruction cache block from memory. If the CE bit of the Status
register is set, the contents of the ECC register is used instead of the computed
parity bits for addressed doubleword when written to the instruction cache.

6 D Hit_Write_Back If the cache block contains the specified address and the W bit is set, write back the
data to memory and clear the W bit.

6 | Hit_Write_Back If the cache block contains the specified address, write back the data unconditionally.

559

CHAPTER 27 CPU INSTRUCTION SET DETAILS

CACHE Cache CACHE

(Continued)

Operation:

32,64 T: vAddr <- ((offsetis)*® || offsetss..0) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
CacheOp (op, vAddr, pAddr)

Exceptions:

Coprocessor unusable exception
TLB Refill exception

TLB Invalid exception

Bus Error exception

Address Error exception

Cache Error exception

560

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DADD Doubleword Add DADD

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 DADD
000000 00000 101100

6 5 5 5 5 6
Format:

DADD rd, rs, rt

Description:
The contents of general register rs and the contents of general register rt are added to form the result. The result
is placed into general register rd.

An overflow exception occurs if the carries out of bits 62 and 63 differ (2's complement overflow). The destination
register rd is not modified when an integer overflow exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T GPR [rd] <- GPR [rs] + GPR [r]

Exceptions:

Integer overflow exception
Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

561

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DADDI Doubleword Add Immediate DADDI

31 26 25 21 20 16 15 0
DADDI Is rt immediate
011000
6 5 5 16
Format:

DADDI rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The
result is placed into general register rt.

An overflow exception occurs if carries out of bits 62 and 63 differ (2’s complement overflow). The destination
register rtis not modified when an integer overflow exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T GPR [rt] <- GPR [rs] + (immediatels)48 || immediatess..o

Exceptions:

Integer overflow exception
Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

562

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DADDIU Doubleword Add Immediate Unsigned DADDIU

31 26 25 21 20 16 15 0
DADDIU Is rt immediate
011001
6 5 5 16
Format:

DADDIU rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The
result is placed into general register rt. No integer overflow exception occurs under any circumstances.

The only difference between this instruction and the DADDI instruction is that DADDIU never causes an overflow
exception.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T GPR [rt] <- GPR [rs] + (immediatels)48 || immediatess..o

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

563

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DADDU

Doubleword Add Unsigned

DADDU

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 DADDU
000000 00000 101101

6 5 5 5 5 6
Format:

DADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result. The result

is placed into general register rd.

No overflow exception occurs under any circumstances.

The only difference between this instruction and the DADD instruction is that DADDU never causes an overflow

exception.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user

or supervisor mode causes a reserved instruction exception.

Operation:

64 T:

GPR [rd] <- GPR [rs] + GPR [rt]

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

564

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DDIV Doubleword Divide DDIV

31 26 25 21 20 16 15 65 0
SPECIAL rs it 0 DDIV
000000 00 0000 0O0O0O 011110

6 5 5 10 6
Format:
DDIV rs, rt
Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as 2’'s
complement values. No overflow exception occurs under any circumstances, and the result of this operation is
undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded into special register LO, and the
remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by two or more instructions. This is defined in
this manner to take account of the VrR4000™ hazards (for code compatibility) as well as the VR4100’s own
hazards.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T-2: LO <-undefined
HI <- undefined
T-1: LO <-undefined
HI <- undefined
T: LO <-GPR[rs] div GPR [r]
HI <- GPR [rs] mod GPR [rt]

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

565

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DDIVU Doubleword Divide Unsigned DDIVU

31 26 25 21 20 16 15 65 0
SPECIAL s rt 0 DDIVU
000000 0000000000 011111

6 5 5 10 6
Format:
DDIVU rs, rt
Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as
unsigned values. No integer overflow exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

This instruction may be followed by additional instructions to check for a zero divisor, inserted by the programmer.

When the operation completes, the quotient word of the double result is loaded into special register LO, and the
remainder word of the double result is loaded into special register Hl.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by two or more instructions.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T-2: LO <-undefined
HI <- undefined
T-1: LO <-undefined
HI <- undefined
T: LO <-(0]] GPR[rs]) div (O || GPR [rt])
HI <- (0 || GPR [rs]) mod (0 || GPR [rt])

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

566

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DIV Divide DIV

31 26 25 21 20 16 15 65 0
SPECIAL rs it 0 DIV
000000 00 0000 0O0O0O 011010

6 5 5 10 6
Format:
DIVrs, 1t
Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as 2’'s
complement values. No overflow exception occurs under any circumstances, and the result of this operation is
undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.
This instruction is typically followed by additional instructions to check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded into special register LO, and the
remainder word of the double result is loaded into special register Hl.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by two or more instructions.

Operation:

32 T-2: LO <-undefined
HI <- undefined
T-1: LO <-undefined
HI <- undefined
T: LO <-GPRrs] div GPR [rt]
HI <- GPR [rs] mod GPR [rt]

64 T-2: LO <-undefined
HI <- undefined
T-1: LO <-undefined
HI <- undefined
T: q <- GPR [rs]s1..0 div GPR [rt]s1..0
r <- GPR [rs]s1.0 mod GPR [rt]s1..0
LO <- (q31)32 || gs1..0

HI <- (I’31)32 || r31.0

Exceptions:

None

567

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DIVU

Divide Unsigned

DIVU

31 26 25 21 20 16 15 65 0
SPECIAL rs it 0 DIVU
000000 000000 0O0O00O 011011

6 5 5 10 6
Format:
DIVU rs, rt
Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as
unsigned values. No integer overflow exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor.

When the operation completes, the quotient word of the double result is loaded into special register LO, and the
remainder word of the double result is loaded into special register Hl.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by two or more instructions.

Operation:
32 T-2: LO <-undefined
HI <- undefined
T-1: LO <-undefined
HI <- undefined
T LO <-(0]|] GPR [rs]) div (O || GPR [rt])
HI <- (0]| GPR [rs]) mod (0 || GPR [rt])
64 T-2: LO <-undefined
HI <- undefined
T-1: LO <-undefined
HI <- undefined
T q <- (0 || GPR [rs]s1..0) div (O || GPR [rt]s1..0)
r <- (0 |] GPR [rs]s1.0) mod (0 || GPR [rt]z1..0)
LO <- (q31)32 || 9310
HI <- (r31)32 | r31.0
Exceptions:
None

568

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DMADD16 bpoubleword Multiply and Add 16-bit integer

DMADD16

31 26 25 21 20 16 15 65 0
SPECIAL s t 0 DMADD16
000000 00 0000 000O0O 101001

6 5 5 10 6
Format:

DMADD16 rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 16-bit 2's complement values.
The operand[62:15] must be valid 15-bit, sign-extended values. If not, the result is unpredictable.

This multiplied result and the 64-bit data joined of special register LO is added to form the result as a signed
integer. When the operation completes, the doubleword result is loaded into special register LO.

No integer overflow exception occurs under any circumstances.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user

or supervisor mode causes a reserved instruction exception.

The following table shows hazard cycles between DMADD16 and other instructions.

Instruction sequence No. of cycles
MULT/MULTU -> DMADD16 1 Cycle
DMULT/DMULTU -> DMADD16 4 Cycles
DIV/DIVU -> DMADD16 36 Cycles
DDIV/DDIVU -> DMADD16 68 Cycles
MFHI/MFLO -> DMADD16 2 Cycles
MADD16 -> DMADD16 0 Cycles
DMADD16 -> DMADD16 0 Cycles

569

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DMADD16 Dpoubleword Multiply and Add 16-bit integer

DMADD16

(Continued)
Operation:
64 T-2: LO <-undefined
HI <- undefined
T-1: LO <-undefined
HI <- undefined
T: temp <- GPR [rs] * GPR [r]
temp <-temp +LO
LO <-temp
HI <- undefined
Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

570

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DMFCO Dboubleword Move From System Control Coprocessor

DMFCO

31 26 25 21 20 16 15 11 10 0
COPO DMF t d 0
010000 00001 000 0000 0O0OO
6 5 5 5 11
Format:
DMFCO rt, rd
Description:

The contents of coprocessor register rd of the CPO are loaded into general register rt.

This operation is defined for the VR4102 operating in 64-bit mode and in 32-bit kernel mode. Execution of this
instruction in 32-bit user or supervisor mode causes a reserved instruction exception. All 64-bits of the general

register destination are written from the coprocessor register source.

coprocessor 0 register is undefined.

Operation:

The operation of DMFCO on a 32-bit

64 T data <- CPR [0, rd]
T+1: GPR [rf] <- data

Exceptions:

Coprocessor unusable exception (user mode and supervisor mode if CP0O not enabled)
Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

571

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DMTCO Doubleword Move To System Control Coprocessor

DMTCO

31 26 25 21 20 16 15 11 10 0
COPO DMT t d 0
010000 00101 000 0000 0O0OO
6 5 5 5 11
Format:
DMTCO rt, rd
Description:

The contents of general register rt are loaded into coprocessor register rd of the CPO.

This operation is defined for the VR4102 operating in 64-bit mode or in 32-bit kernel mode. Execution of this
instruction in 32-bit user or supervisor mode causes a reserved instruction exception.

All 64-bits of the coprocessor 0 register are written from the general register source. The operation of DMTCO on

a 32-bit coprocessor 0 register is undefined.

Because the state of the virtual address translation system may be altered by this instruction, the operation of
load instructions, store instructions, and TLB operations immediately prior to and after this instruction are

undefined.

Operation:

64 T data <- GPR [rt]
T+1: CPR [0, rd] <- data

Exceptions:

Coprocessor unusable exception (In user and supervisor mode if CPO not enabled)
Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

572

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DMULT Doubleword Multiply DMULT

31 26 25 21 20 16 15 65 0
SPECIAL rs it 0 DMULT
000000 00 0000 0O0O0O 011100

6 5 5 10 6
Format:
DMULT rs, rt
Description:

The contents of general registers rs and rt are multiplied, treating both operands as 2's complement values. No
integer overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by a minimum of two other instructions.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T-2: LO <-undefined
HI <- undefined
T-1: LO <-undefined
HI <- undefined
T: t <- GPR [rs] * GPR [rt]
LO <-te3.0

HI <-t127.64

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

573

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DMULTU Doubleword Multiply Unsigned DMULTU

31 26 25 21 20 16 15 65 0
SPECIAL s t 0 DMULTU
000000 00 0000 000O0O 011101

6 5 5 10 6
Format:

DMULTU rs, rt

Description:
The contents of general register rs and the contents of general register rt are multiplied, treating both operands as
unsigned values. No overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by a minimum of two instructions.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T-2: LO <-undefined
HI <- undefined
T-1: LO <-undefined
HI <- undefined
T: t <-(0]] GPR [rs]) * (0 || GPR [rt])
LO <-te3.0

HI <-t127.64

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

574

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DSLL Doubleword Shift Left Logical DSLL
31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 t d sa DSLL
000000 00000 111000
6 5 5 5 5 6
Format:

DSLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low-order bits. The result is
placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T s<-0]|| sa
GPR [rd] <- GPR [rt]e3-s).0 || 0°

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

575

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DSLLV

Doubleword Shift Left Logical Variable

DSLLV

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 DSLLV
000000 00000 010100

6 5 5 5 5 6
Format:

DSLLV rd, rt, rs

Description:

The contents of general register rt are shifted left by the number of bits specified by the low-order six bits
contained in general register rs, inserting zeros into the low-order bits. The result is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user

or supervisor mode causes a reserved instruction exception.

Operation:
64 T. s<-GPR[rsls.o
GPR [rd] <- GPR [rt]s-s.0 || 0°
Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

576

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DSLL32 Doubleword Shift Left Logical + 32 DSLL32

31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 t d sa DSLL32
000000 00000 111100

6 5 5 5 5 6
Format:

DSLL32 rd, rt, sa

Description:

The contents of general register rt are shifted left by 32 + sa bits, inserting zeros into the low-order bits. The
result is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T s<-1||sa
GPR [rd] <- GPR [rt]3-s).0 || 0°

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

577

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DSRA Doubleword Shift Right Arithmetic DSRA
31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 , » ca DSRA
000000 00000 111011
6 5 5 5 5 6
Format:

DSRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-extending the high-order bits. The result is
placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T s<-0|| sa
GPR [rd] <- (GPR [rt]e3)° || GPR [rt] 63.s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

578

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DSRAV

Doubleword Shift Right Arithmetic Variable

DSRAV

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 DSRAV
000000 00000 010111

6 5 5 5 5 6
Format:

DSRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order six bits of
general register rs, sign-extending the high-order bits. The result is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user

or supervisor mode causes a reserved instruction exception.

Operation:
64 T. s<-GPR[rsls.o
GPR [rd] <- (GPR [rt]e3)° || GPR [rt] 3.
Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

579

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DSRA32 Doubleword Shift Right Arithmetic + 32 DSRA32

31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 t d sa DSRA32
000000 00000 111111

6 5 5 5 5 6
Format:

DSRA32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, sign-extending the high-order bits. The result
is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T s<-1||sa
GPR [rd] <- (GPR [rt]e3)° || GPR [rt]es.s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

580

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DSRL Doubleword Shift Right Logical DSRL
31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 , » ca DSRL
000000 00000 111010
6 5 5 5 5 6
Format:

DSRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the high-order bits. The result is
placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T s<-0]| sa
GPR [rd] <- 0° || GPR [rt]es.s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

581

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DSRLV

Doubleword Shift Right Logical Variable

DSRLV

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 DSRLV
000000 00000 010110

6 5 5 5 5 6
Format:

DSRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order six bits of

general register rs, inserting zeros into the high-order bits. The result is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user

or supervisor mode causes a reserved instruction exception.

Operation:
64 T: s<-GPR[rsls.o
GPR [rd] <- 0° || GPR [rt]es.s
Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

582

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DSRL32 Doubleword Shift Right Logical + 32 DSRL32

31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 t d sa DSRL32
000000 00000 111110

6 5 5 5 5 6
Format:

DSRL32rd, rt, sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, inserting zeros into the high-order bits. The
result is placed in register rd.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T s<-1]||sa
GPR [rd] <- 0° || GPR [rt]ea.s

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

583

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DSUB

Doubleword Subtract

DSUB

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 DSUB
000000 00000 101110

6 5 5 5 5 6
Format:

DSUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result. The
result is placed into general register rd.

The only difference between this instruction and the DSUBU instruction is that DSUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 62 and 63 differ (2's complement overflow).
The destination register rd is not modified when an integer overflow exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user

or supervisor mode causes a reserved instruction exception.

Operation:

64 T:

GPR [rd] <- GPR [rs] - GPR [rt]

Exceptions:

Integer overflow exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

584

CHAPTER 27 CPU INSTRUCTION SET DETAILS

DSUBU

Doubleword Subtract Unsigned

DSUBU

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 DSUBU
000000 00000 101111

6 5 5 5 5 6
Format:

DSUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result. The
result is placed into general register rd.

The only difference between this instruction and the DSUB instruction is that DSUBU never traps on overflow. No

integer overflow exception occurs under any circumstances.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user

or supervisor mode causes a reserved instruction exception.

Operation:

64 T:

GPR [rd] <- GPR [rs] - GPR [rt]

Exceptions:

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

585

CHAPTER 27 CPU INSTRUCTION SET DETAILS

ERET Exception Return ERET

31 26 25 24 65 0
COPO co 0 ERET
010000 1 000 0000 0000 0000 0000 011000
6 1 19 6
Format:
ERET
Description:

ERET is the VR4102 instruction for returning from an interrupt, exception, or error trap. Unlike a branch or jump
instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR2 = 1), then load the PC from the ErrorEPC register and clear the
ERL bit of the Status register (SR2). Otherwise (SRz = 0), load the PC from the EPC register, and clear the EXL
bit of the Status register (SR1).

Operation:

32,64 T: if SR> = 1 then
PC <- ErrorEPC
SR <-SR31.3|| 0 || SR1.0
else
PC <-EPC
SR <- SR31.2]| 0 || SRo
endif

Exceptions:

Coprocessor unusable exception

586

CHAPTER 27 CPU INSTRUCTION SET DETAILS

HIBERNATE Hibernate HIBERNATE
31 26 25 24 65 0
COPO co 0 HIBERNATE
010000 1 000 000000000000 000OC 100011
6 1 19 6
Format:
HIBERNATE
Description:

HIBERNATE instruction starts mode transition from Fullspeed mode to Hibernate mode.

When the HIBERNATE instruction finishes the WB stage, the VR4102 wait by the SysAD bus is idle state, after
then the internal clocks and the system interface clocks will shut down, thus freezing the pipeline.

Once the VR4102 is in Hibernate mode, the Cold Reset sequence will cause the VR4102 to exit Hibernate mode

and to enter Fullspeed mode.

Operation:

32,64 T:

T+1: Hibernate operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Chapter 15 for details about the operation of the peripheral units at mode transition.

587

CHAPTER 27 CPU INSTRUCTION SET DETAILS

J Jump J
31 26 25 0
J target
000010 9
6 26
Format:
J target
Description:

The 26-bit target address is shifted left two bits and combined with the high-order four bits of the address of the
delay slot. The program unconditionally jumps to this calculated address with a delay of one instruction.

Operation:

32 T temp <- target
T+1: PC <- PCa1.28 || temp || 0

64 T: temp <- target
T+1: PC <- PCes.25 || temp || 07

Exceptions:

None

588

CHAPTER 27 CPU INSTRUCTION SET DETAILS

JAL Jump And Link JAL

31 26 25 0
JAL target
000011 g
6 26
Format:
JAL target
Description:

The 26-bit target address is shifted left two bits and combined with the high-order four bits of the address of the
delay slot. The program unconditionally jumps to this calculated address with a delay of one instruction. The
address of the instruction after the delay slot is placed in the link register, r31.

Operation:

32 T temp <- target
GPR[31] <-PC+8
T+1: PC <- PCa1.2s || temp || 0°

64 T temp <- target
GPR[31] <-PC+8
T+1: PC <- PCe3.28 || temp || 0°

Exceptions:

None

589

CHAPTER 27 CPU INSTRUCTION SET DETAILS

JALR Jump And Link Register JALR

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s 0 d 0 JALR
000000 00000 00000 001001

6 5 5 5 5 6
Format:
JALR rs
JALR rd, rs
Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of one instruction.
The address of the instruction after the delay slot is placed in general register rd. The default value of rd, if
omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction does not have the same effect when
re-executed. However, an attempt to execute this instruction is not trapped, and the result of executing such an
instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register instruction must specify a target register (rs)
which contains an address whose two low-order bits are zero. If these low-order bits are not zero, an address
error exception will occur when the jump target instruction is subsequently fetched.

Operation:

32,64 T: temp <- GPR [rs]
GPR[rd] <-PC + 8
T+1: PC <-temp

Exceptions:

None

590

CHAPTER 27 CPU INSTRUCTION SET DETAILS

JR

Jump Register

JR

31 26 25 21 20 65 0
SPECIAL s 0 JR
000000 000 0000 0000 0OOQOO 001000

6 5 15 6
Format:
JRrs
Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of one instruction.

Since instructions must be word-aligned, a Jump Register
contains an address whose two low-order bits are zero.

exception will occur when the jump target instruction is subsequently fetched.

Operation:

instruction must specify a target register (rs) which
If these low-order bits are not zero, an address error

T+1: PC <- temp

32,64 T: temp <- GPR[rs]

Exceptions:

None

591

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LB Load Byte LB

31 26 25 21 20 16 15 0
LB
100000 base rt offset
6 5 5 16
Format:

LB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the byte at the memory location specified by the effective address are sign-extended and loaded
into general register rt.

Operation:

32 T vAddr <- ((offsetis)™® || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddr2.o xor ReverseEndian®)
mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte <- vAddr2.o xor BigEndianCPU?

24
GPR [rt] <- (Mem7 + s byte)” || MEM7 + 8+ byte 8 byte

64 T: vAddr <- ((offsetis)® || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddr2.0 xor ReverseEndian®)
mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte <- vAddr2.o xor BigEndianCPU®
GPR [rt] <- (memy7 + g byte)56 || memy + g« byte..8* byte

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

592

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LBU Load Byte Unsigned LBU
31 26 25 21 20 16 15 0
LBU
100100 base rt offset
6 5 5 16
Format:

LBU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the byte at the memory location specified by the effective address are zero-extended and loaded

into general register rt.

Operation:

32 T vAddr <- ((offsetis)™® || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize -1.3 || (PAddr2.0 Xor ReverseEndian®)
mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte <- vAddr2.o xor BigEndianCPU®
GPR [rt] <- 0* || memz + g+ byte. 8 byte

64 T: vAddr <- ((offsetis)* || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddr2.o xor ReverseEndian®)
mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte <- VAddr,.o xor BigEndianCPU?
GPR [rt] <- 0°¢ || memz « g+ byte.8 byte

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

593

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LD

Load Doubleword

LD

31 26 25 21 20 16 15 0
LD
110111 base rt offset
6 5 5 16
Format:

LD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the 64-bit doubleword at the memory location specified by the effective address are loaded into
general register rt.

If any of the three least-significant bits of the effective address are non-zero, an address error exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:
64 T: vAddr<- ((offsetis)* || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
data <- LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR [rt] <- data
Exceptions:
TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

594

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LDL

Load Doubleword Left

LDL

31 26 25 21 20 16 15
LDL
011010 base rt offset
6 5 5 16
Format:

LDL rt, offset (base)

Description:

This instruction can be used in combination with the LDR instruction to load a register with eight consecutive
bytes from memory, when the bytes cross a doubleword boundary. LDL loads the left portion of the register with
the appropriate part of the high-order doubleword; LDR loads the right portion of the register with the appropriate
part of the low-order doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the doubleword in memory which contains

the specified starting byte. From one to eight bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-order (left-most) byte of
the register; then it loads bytes from memory into the register until it reaches the low-order byte of the doubleword
in memory. The least-significant (right-most) byte(s) of the register will not be changed.

address 8

address 0

memory
15|14 |13|12|11|10|(9 | 8
7161541312110

register

before |A|B|C|D|E|F|G|H|$24

after |12|11|10|9|8|F|G|H|$24

595

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LDL Load Doubleword Left LDL
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed
between an immediately preceding load instruction which specifies register rt and a following LDL (or LDR)
instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: VAddr <- ((offset;s)* || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (pAddr2.o xor ReverseEndian?’)
if BigEndianMem = 0 then
pAddr <- pAddresize -1.3 || 0°
endif
byte <- vAddr2.o xor BigEndianCPU®
mem <- LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR [rt] <- mem7 + g+ byte..0 || GPR [rt]ss - g« byte..0

596

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LDL

Given a doubleword in a register and a doubleword in memory, the operation of LDL is as follows:

(Continued)

Load Doubleword Left

LDL

Register

Memory

VvAddr, ,

BigEndianCPU = 0

destination

type

offset

(LEM)

~N o o~ WON P O

PBCDEFGH
OPCDEFGH
NOPDEFGH
MNOPEFGH
LMNOPFGH
KLMNOPGH
JKLMNOPH
I JKLMNOP

~N o o0 b W N P O

0

O O O O © o o

LEM

Type
Offset

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

Little-endian memory (BigEndianMem = 0)
AccessType (see Table 3-2) sent to memory
pAddr, , sent to memory

LDL

597

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LDR Load Doubleword Right LDR
31 26 25 21 20 16 15 0
LDR
011011 base rt offset
6 5 5 16
Format:

LDR rt, offset (base)

Description:

This instruction can be used in combination with the LDL instruction to load a register with eight consecutive
bytes from memory, when the bytes cross a doubleword boundary. LDR loads the right portion of the register
with the appropriate part of the low-order doubleword; LDL loads the left portion of the register with the
appropriate part of the high-order doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the doubleword in memory which contains
the specified starting byte. From one to eight bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-order (right-most) byte of
the register; then it loads bytes from memory into the register until it reaches the high-order byte of the
doubleword in memory. The most significant (left-most) byte(s) of the register will not be changed.

address 8

address 0

memory
15|14 |13|12|11|10|(9 | 8
716|15]14]13]12]1]0

w’ register
after |A|B|C|D|E|7|6|5|$24

register

before |A|B|C|D|E|F|G|H|$24

598

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LDR Load Doubleword Right LDR
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed
between an immediately preceding load instruction which specifies register rt and a following LDR (or LDL)
instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: VAddr<- ((offsetis)® || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vVAddr, DATA)
pAddr <- pAddresize - 1.3 || (pAddr2.o xor ReverseEndian®)
if BigEndianMem = 1 then
pAddr <- pAddrpsize - 1.3 || 0®
endif
byte <- vAddrz.o xor BigEndianCPU3
mem <- LoadMemory (uncached, DOUBLEWORD-byte, pAddr, vAddr, DATA)
GPR [rt] <- GPR [rt]63..64 - 8 * byte || ME&M63..8 * byte

599

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LDR Load Doubleword Right LDR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LDR is as follows:

LDR

Register A B (o D E F G H

Memory | J K L M N (0] P

VvAddr, , BigEndianCPU = 0

destination type offset

(LEM)

I JKLMNOP
Al JKLMNO
ABI JKLMN
ABCIJKLM
ABCD Il JKL
ABCDE I JK
ABCDEF I J
ABCDEFGI

N o o0~ N RO
O P N W b 01 O N
N o oo b~ W N PO

LEM Little-endian memory (BigEndianMem = 0)
Type AccessType (see Table 3-2) sent to memory
Offset pAddr, , sent to memory

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

600

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LH Load Halfword LH
31 26 25 21 20 16 15 0
LH
100001 base rt offset
6 5 5 16
Format:

LH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the halfword at the memory location specified by the effective address are sign-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

32 T: VvAddr<- ((offsetis)'° || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddrz..o xor (ReverseEndian || 0))
mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte <- vAddrz._o xor (BigEndianCPU’ || 0)

GPR [rt] <- (MeM45 + 8+ byte) " || MEM15 + 8 * byte..8 * byte

64 T: VvAddr<- ((offsetis)* || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddrz..o xor (ReverseEndian || 0))
mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte <- vAddrz._o xor (BigEndianCPU’ || 0)

8
GPR [rt] <- (MeMas + 8+ byte) " || MEM15 + 8 * byte..5 * byte

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

601

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LHU Load Halfword Unsigned LHU
31 26 25 21 20 16 15 0
LHU
100101 base rt offset
6 5 5 16
Format:

LHU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the halfword at the memory location specified by the effective address are zero-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

32 T: VvAddr<- ((offsetis)'° || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddrz..o xor (ReverseEndian || 0))
mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte <- vAddrz._o xor (BigEndianCPU? || 0)
GPR [rt] <- 0™ || memis + 8+ byte..8 * byte

64 T: vAddr<- ((offsetis)* || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize- 1.3 || (pAddrz..o xor (ReverseEndian? || 0))
mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte <- vAddrz._o Xor (BigEndianCPU? || 0)
GPR [rt] <- 0% [| memis + 8 * byte...8 * byte

Exceptions:

TLB refill exception
TLB invalid exception
Bus Error exception
Address error exception

602

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LUI Load Upper Immediate LUI
31 26 25 21 20 16 15 0
LUl 0 rt immediate
001111 00000
6 5 5 16
Format:

LUI rt, immediate

Description:

The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of zeros. The result is placed into general

register rt. In 64-bit mode, the loaded word is sign-extended.

Operation:

32 T GPR [rt] <- immediate || 0'°

64 T: GPRI[r] < (immediateis)® || immediate || 0*°

Exceptions:

None

603

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LW Load Word LW

31 26 25 21 20 16 15 0
LW
100011 base rt offset
6 5 5 16
Format:

LW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the word at the memory location specified by the effective address are loaded into general
register rt. In 64-bit mode, the loaded word is sign-extended.

If either of the two least-significant bits of the effective address is non-zero, an address error exception occurs.

Operation:

32 T vAddr <- ((offsetis)™® || offsetis._o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddr2..o xor (ReverseEndian || 0%))
mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte <- vAddrz..o xor (BigEndianCPU || 07)

GPR [rt] <- memsy + 8 * byte...8 * byte

64 T: VvAddr <- ((offsetis)*® || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize -1..3 || (PAddr2..o xor (ReverseEndian || 0%))
mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte <- vAddrz__o xor (BigEndianCPU || 07)
GPR [rt] <- (mema1 + g+ byte)32 [| memay + 8 * byte...8 * byte

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

604

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LWL Load Word Left LWL

31 26 25 21 20 16 15 0
LWL
100010 base rt offset
6 5 5 16
Format:

LWL rt, offset (base)

Description:

This instruction can be used in combination with the LWR instruction to load a register with four consecutive bytes
from memory, when the bytes cross a word boundary. LWL loads the left portion of the register with the
appropriate part of the high-order word; LWR loads the right portion of the register with the appropriate part of the
low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the word in memory which contains the
specified starting byte. From one to four bytes will be loaded, depending on the starting byte specified. In 64-bit
mode, the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-order (left-most) byte of
the register; then it loads bytes from memory into the register until it reaches the low-order byte of the word in
memory. The least-significant (right-most) byte(s) of the register will not be changed.

memory
address 4 7 6 5 4 register
address 0 3 2 1 0 before | A | B | C | D |$24

after|4|B|C|D|$24

605

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LWL Load Word Left LWL
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed
between an immediately preceding load instruction which specifies register rt and a following LWL (or LWR)
instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

Operation:

32 T: VvAddr<- ((offsetis)'® || offsetis. o) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddrpsize - 1..3 || (PAddr2..0 xor ReverseEndians)
if BigEndianMem = 0 then

pAddr <- pAddrpsize-1..2 || 0’
endif
byte <- vAddri...0 xor BigEndianCPU2
word <- vAddrz xor BigEndianCPU
mem <- LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp <- Mema2 «word + 8 * byte + 7..32 *word || GPR [rt]23 -8 *byte...0
GPR [rt] <- temp

64 T: VvAddr<- ((offsetis)* || offsetis.o) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddrpsize - 1..3 || (PAddr2..0 xor ReverseEndiana)
if BigEndianMem = 0 then

pAddr <- pAddrpsize-1..2 || 0’
endif
byte <- vAddri_o xor BigEndianCPU?
word <- vAddrz xor BigEndianCPU
mem <- LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp <- mems2 *word + 8 * byte + 7...32 *word || GPR [rt]23 - 8 *byte...0
GPR [rt] <- (temp31)* || temp

606

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LWL

Load Word Left LWL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LWL is as follows:

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LWL
Register A B (o D E F G H
Memory | J K L M N (0] P
VAddr, , BigEndianCPU = 0
destination type offset
(LEM)
0 SSSSPFGH 0 0
1 SSSSOPGH 1 0
2 SSSSNOPH 2 0
3 SSSSMNOP 3 0
4 SSSSLFGH 0 4
5 SSSSKLGH 1 4
6 SSSSJKLH 2 4
7 SSSSIJKL 3 4

LEM
Type
Offset
S

Little-endian memory (BigEndianMem = 0)
AccessType (see Table 3-2) sent to memory
pAddr, ; sent to memory

sign-extend of destination_

607

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LWR Load Word Right LWR

31 26 25 21 20 16 15 0
LWR
100110 base rt offset
6 5 5 16
Format:

LWR rt, offset (base)

Description:

This instruction can be used in combination with the LWL instruction to load a register with four consecutive bytes
from memory, when the bytes cross a word boundary. LWR loads the right portion of the register with the
appropriate part of the low-order word; LWL loads the left portion of the register with the appropriate part of the
high-order word.

The LWR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the word in memory which contains the
specified starting byte. From one to four bytes will be loaded, depending on the starting byte specified. In 64-bit
mode, the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-order (right-most) byte of
the register; then it loads bytes from memory into the register until it reaches the high-order byte of the word in
memory. The most significant (left-most) byte(s) of the register will not be changed.

memory
address 4 7 6 5 4 register
address 0 3 2 1 0 before | A | B | C | D |$24

after|A|3|2|1|$24

608

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LWR

Load Word Right
(Continued)

LWR

The contents of general register rt are internally bypassed within the processor so that no NOP is needed
between an immediately preceding load instruction which specifies register rt and a following LWR (or LWL)
instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

Operation:

32

64

T:

VAddr <- ((offsetis)™® || offsetis_o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddrpsize - 1..3 || (PAddr2..0 xor ReverseEndians)
if BigEndianMem = 1 then
pAddr <- pAddresize-1..3 || 0°
endif
byte <- vAddri_o xor BigEndianCPU?
word <- vAddrz xor BigEndianCPU
mem <- LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp <- GPR [rt]a1..32 - 8 * byte || MEM31 + 32 *word...32 * word + 8 * byte
GPR [rt] <- temp

vAddr <- ((offsetis)*® || offsetis_o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (pAddra. o xor ReverseEndian®)
if BigEndianMem = 1 then
pAddr <- pAddresize-1.3 || 0°
endif
byte <- vAddri_o xor BigEndianCPU?
word <- vAddrz xor BigEndianCPU
mem <- LoadMemory (uncached, WORD-byte, pAddr, vAddr, DATA)
temp <- GPR [rt]a1..32 - 8 * byte || MEM31 + 32 * word...32 * word + 8 * byte
GPR [rt] <- (tempz1)* || temp

609

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LWR Load Word Right LWR
(Continued)

Given a word in a register and a word in memory, the operation of LWR is as follows:

LWR
Register A B (o D E F G H
Memory | J K L M N (0] P
VvAddr, , BigEndianCPU = 0
destination type offset
(LEM)
0 SSSSMNOP 3 0
1 SSSSEMNO 2 1
2 SSSSEFMN 1 2
3 SSSSEFGM 0 3
4 SSSSIJKL 3 4
5 SSSSEIJK 2 5
6 SSSSEF 1 1 6
7 SSSSEFGI 0 7

LEM Little-endian memory (BigEndianMem = 0)

Type AccessType (see Table 3-2) sent to memory
Offset pAddr, ; sent to memory
S sign-extend of destination_

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

610

CHAPTER 27 CPU INSTRUCTION SET DETAILS

LWU Load Word Unsigned LWU

31 26 25 21 20 16 15 0
LWU
101111 base rt offset
6 5 5 16
Format:

LWU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the word at the memory location specified by the effective address are loaded into general
register rt. The loaded word is zero-extended.

If either of the two least-significant bits of the effective address is non-zero, an address error exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

32 T vAddr <- ((offsetis)"® || offsetis..o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize -1..3 || (PAddr2..o xor (ReverseEndian || 0%))
mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte <- vAddrz..o xor (BigEndianCPU || 0%)
GPR [r] <- 0* [| memasz + 8 *byte..8 * byte

64 T: vAddr <- ((offsetis)® || offsetis._o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddr2..o xor (ReverseEndian || 0%))
mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte <- vAddrz..o xor (BigEndianCPU || 07)

GPR [rt] <- 0% [| memasz + g« byte...8 * byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

611

CHAPTER 27 CPU INSTRUCTION SET DETAILS

MADD16 Multiply and Add 16-bit integer MADD16

31 26 25 21 20 16 15 65 0
SPECIAL s t 0 DMADD16
000000 00 0000 000O0O 101000

6 5 5 10 6
Format:

MADD16 rs, rt

Description:
The contents of general registers rs and rt are multiplied, treating both operands as 16-bit 2's complement values.
The operand[62:15] must be valid 15-bit, sign-extended values. If not, the results is unpredictable.
This multiplied result and the 64-bit data joined special register H/to LO are added to form the result.
No integer overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register HI.

The following Table are hazard cycles between MADD16 and other instructions.

Instruction sequence No. of cycles
MULT/MULTU -> MADD16 1 Cycle
DMULT/DMULTU -> MADD16 4 Cycles
DIV/DIVU -> MADD16 36 Cycles
DDIV/DDIVU -> MADD16 68 Cycles
MFHI/MFLO -> MADD16 2 Cycles
DMADD16 -> MADD16 0 Cycles
MADD16 -> MADD16 0 Cycles

Operation:

32,64 T: templ<- GPR [rs] * GPR [rt]
temp2<- templ + (Hiz1..0 || LO31..0)
LO <- (templs1)® || temp2s1.0
HI <- (temp263)32 || temp2e3..32

Exceptions:

None

612

CHAPTER 27 CPU INSTRUCTION SET DETAILS

MFCO

Move From System Control Coprocessor

MFCO

31 0
COPO MF t d 0
010000 00000 000 0000 0O0OO
6 5 5 5 11
Format:
MFCO rt, rd
Description:

The contents of coprocessor register rd of the CPO are loaded into general register rt.

When using a register used by the MFCO by means of instructions before and after it, refer to Chapter 28 and

place the instructions in the appropriate location.

Operation:

32 T data <-CPR [0, rd]
T+1: GPR[rt] <- data

64 T data <-CPR[0, rd]
T+1: GPR [rt] <- (datas1)* || datasi.o

Exceptions:

Coprocessor unusable exception (user and supervisor mode if CPO not enabled)

613

CHAPTER 27 CPU INSTRUCTION SET DETAILS

MFHI Move From HI MFHI

31 26 25 16 15 11 10 65 0
SPECIAL 0 rd 0 MFHI
000000 00 0000 0OOO 00000 010000

6 10 5 5 6
Format:
MFHI rd
Description:

The contents of special register HI are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two instructions which follow a MFHI instruction may
not be any of the instructions which modify the HI register. MULT, MULTU, DIV, DIVU, MTHI, DMULT, DMULTU,
DDIV, DDIVU.

Operation:

32,64 T: GPR[rd] <- HI

Exceptions:

None

614

CHAPTER 27 CPU INSTRUCTION SET DETAILS

MFLO Move From LO MFLO

31 26 25 16 15 11 10 65 0
SPECIAL 0 d 0 MFLO
000000 00 0000 00O0O 00000 010010

6 10 5 5 6
Format:
MFLO rd
Description:

The contents of special register LO are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two instructions which follow a MFLO instruction may
not be any of the instructions which modify the LO register: MULT, MULTU, DIV, DIVU, MTLO, DMULT,

DMULTU, DDIV, DDIVU.

Operation:

32,64 T: GPR[rd] <- LO

Exceptions:

None

615

CHAPTER 27 CPU INSTRUCTION SET DETAILS

MTCO

Move To CoprocessorQ

MTCO

31 26 25 21 20 16 15 11 10 0
COPO MT t d 0
010000 00100 000 0000 0O0OO
6 5 5 5 11
Format:
MTCO rt, rd
Description:

The contents of general register rt are loaded into coprocessor register rd of coprocessor 0.

Because the state of the virtual address translation system may be altered by this instruction, the operation of
load instructions, store instructions, and TLB operations immediately prior to and after this instruction are

undefined.

When using a register used by the MTCO by means of instructions before and after it, refer to Chapter 28 and

place the instructions in the appropriate location.

Operation:

32,64 T: data<-GPRrt]
T+1: CPR[O, rd] <- data

Exceptions:

Coprocessor unusable exception (user and supervisor mode if CPO not enabled)

616

CHAPTER 27

CPU INSTRUCTION SET DETAILS

MTHI Move To HI MTHI
31 26 25 21 20 65 0
SPECIAL s 0 MTHI
000000 000 00000000 O0OOO0O 010001
6 5 15 6
Format:
MTHI rs
Description:

The contents of general register rs are loaded into special register HI.

If a MTHI operation is executed following a MULT, MULTU, DIV, or DIVU instruction, but before any MFLO, MFHI,
MTLO, or MTHI instructions, the contents of special register H/ are undefined.

Operation:

32, 64 T-2: HI <- undefined
T-1: HI <- undefined
T: HI<-GPRrs]

Exceptions:

None

617

CHAPTER 27 CPU INSTRUCTION SET DETAILS

MTLO Move To LO MTLO

31 26 25 21 20 65 0
SPECIAL s 0 MTLO
000000 000 00000000 0000 010011

6 5 15 6
Format:
MTLO rs
Description:

The contents of general register rs are loaded into special register LO.

If an MTLO operation is executed following a MULT, MULTU, DIV, or DIVU instruction, but before any MFLO,
MFHI, MTLO, or MTHI instructions, the contents of special register LO are undefined.

Operation:

32,64 T-2: LO <- undefined
T-1: LO <- undefined
T. LO<-GPR]|rs]

Exceptions:

None

618

CHAPTER 27 CPU INSTRUCTION SET DETAILS

MULT Multiply MULT

31 26 25 21 20 16 15 65 0
SPECIAL rs it 0 MULT
000000 00 0000 0O0O0O 011000

6 5 5 10 6
Format:
MULT rs, rt
Description:

The contents of general registers rs and rt are multiplied, treating both operands as 32-bit 2's complement values.
No integer overflow exception occurs under any circumstances. In 64-bit mode, the operands must be valid 32-
bit, sign-extended values.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by a minimum of two other instructions.

Operation:

32 T-22 LO <-undefined
HI <- undefined
T-1: LO <-undefined
HI <- undefined
T: t <- GPR [rs] * GPR [rt]
LO <-ts1.0

HI <-163..32

64 T-2. LO <-undefined
HI <- undefined
T-1: LO <-undefined
HI <- undefined
T: t <- GPR [rs]s1..0 * GPR [rt]3z..0
LO <- (t31)32 || taz..0

HI <- (tes)32 || te3...32

Exceptions:

None

619

CHAPTER 27 CPU INSTRUCTION SET DETAILS

MULTU Multiply Unsigned MULTU
31 26 25 21 20 16 15 65 0
SPECIAL s t 0 MULTU
000000 00 0000 0OOOO 011001
6 5 5 10 6
Format:
MULTU rs, rt
Description:

The contents of general register rs and the contents of general register rt are multiplied, treating both operands as
unsigned values. No overflow exception occurs under any circumstances. In 64-bit mode, the operands must be
valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by a minimum of two instructions.

Operation:
32 T-2: LO <-undefined
HI <- undefined
T-1: LO <-undefined
Hi <- undefined
T: t <-(0]] GPR [rs]) * (0 || GPR [rt])
LO <-ta1.0
HI <-163..32
64 T-2:. LO <-undefined
HI <- undefined
T-1: LO <-undefined
Hi <- undefined
T: t <-(0]] GPR [rs]s1..0) * (0 || GPR [rt]31..0)
LO <- (t31)32 || t31..0
HI <- (t63)32 [| te3..32
Exceptions:
None

620

CHAPTER 27 CPU INSTRUCTION SET DETAILS

NOR Nor NOR
31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 NOR
000000 00000 100111
6 5 5 5 5 6
Format:
NOR rd, rs, rt
Description:

The contents of general register rs are combined with the contents of general register rtin a bit-wise logical NOR
operation. The result is placed into general register rd.

Operation:

32,64 T:

GPR [rd] <- GPR [rs] nor GPR [rt]

Exceptions:

None

621

CHAPTER 27 CPU INSTRUCTION SET DETAILS

OR Or OR

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 OR
000000 00000 100101

6 5 5 5 5 6
Format:
ORd,rs, 1t
Description:

The contents of general register rs are combined with the contents of general register rtin a bit-wise logical OR
operation. The result is placed into general register rd.

Operation:

32,64 T: GPR[rd] <- GPR [rs] or GPR [rt]

Exceptions:

None

622

CHAPTER 27 CPU INSTRUCTION SET DETAILS

ORI

Or Immediate

ORI

31 26 25 21 20 16 15 0
ORI . .
001101 rs rt immediate
6 5 5 16
Format:

ORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-wise logical
OR operation. The result is placed into general register rt.

Operation:
32 T GPR [rt] <- GPR [rs]s1...16 || (immediate or GPR [rs]1s...0)
64 T GPR [rt] <- GPR [rs]es...16 || (immediate or GPR [rs]1s...0)
Exceptions:
None

623

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SB Store Byte SB

31 26 25 21 20 16 15 0
SB
101000 base rt offset
6 5 5 16
Format:

SB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The least-significant byte of register rtis stored at the effective address.

Operation:

32 T: VAddr<- ((offsetis)'® || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (pAddr2._o xor (ReverseEndian®))
byte <- vAddrz_o xor BigEndianCPU®
data <- GPR [rt]es -8 *byte...0 || 08" bve
StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

64 T: vAddr<- ((offsetis)* || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddrpsize - 1..3 || (PAddr2. 0 xor (ReverseEndianS))
byte <- vAddrz_o xor BigEndianCPU®
data <- GPR [rt]e3z -8 *byte...0 || 8" bve
StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

624

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SD Store Doubleword SD
31 26 25 21 20 16 15 0
SD
111111 base rt offset
6 5 5 16
Format:

SD rt, offset (base)

Description:
The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of general register rt are stored at the memory location specified by the effective address.
If either of the three least-significant bits of the effective address are non-zero, an address error exception occurs.

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T vAddr <- ((oh‘setls)48 || offsetis..0) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
data <- GPR [rt]
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

625

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SDL Store Doubleword Left SDL
31 26 25 21 20 16 15 0
SDL
101100 base rt offset
6 5 5 16
Format:

SDL rt, offset (base)

Description:

This instruction can be used with the SDR instruction to store the contents of a register into eight consecutive
bytes of memory, when the bytes cross a doubleword boundary. SDL stores the left portion of the register into
the appropriate part of the high-order doubleword of memory; SDR stores the right portion of the register into the
appropriate part of the low-order doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which may specify an arbitrary byte. It alters only the word in memory which contains that byte. From

one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the specified byte in memory;

then it copies bytes from register to memory until it reaches the low-order byte of the word in memory.

No address error exceptions due to alignment are possible.

address 8

address 0

address 8

address 0

before

register

lale]|c|o]|e|r|c|n]| s

SDL $24, 8 ($0)

memory
1511413121110 8
716|5]1413]2 0
1511413121110 A
716151432

after

.

626

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SDL Store Doubleword Left SDL
(Continued)

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: VvAddr<- ((offsetis)* || offsetss.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (pAddr. o xor ReverseEndian®)
if BigEndianMem = 0 then
pAddr <- pAddresize-1..3 || 0°
endif
byte <- vAddr2._o xor BigEndianCPU?
data <- 0% 8 Pve || GPR [rt]es..56 - 8 * byte
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

627

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SDL Store Doubleword Left SDL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SDL is as follows:

SDL

Register A B (o D E F G H

Memory | J K L M N (0] P

VvAddr, , BigEndianCPU = 0

destination type offset

(LEM)

I JKLMNOA
I JKLMNAB
I JKLMABC
I JKLABCD
I JKABCDE
I JABCDEF
| ABCDEFG
ABCDEFGH

N o o0~ N RO
N o o W N P O
O O O O o o o o

LEM Little-endian memory (BigEndianMem = 0)
Type AccessType (see Table 3-2) sent to memory
Offset pAddr, ; sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

628

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SDR Store Doubleword Right SDR
31 26 25 21 20 16 15 0
SDR
101101 base rt offset
6 5 5 16
Format:

SDR rt, offset (base)

Description:

This instruction can be used with the SDL instruction to store the contents of a register into eight consecutive
bytes of memory, when the bytes cross a boundary between two doublewords. SDR stores the right portion of
the register into the appropriate part of the low-order doubleword; SDL stores the left portion of the register into
the appropriate part of the low-order doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which may specify an arbitrary byte. It alters only the word in memory which contains that byte. From
one to eight bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it to the specified byte in
memory; then it copies bytes from register to memory until it reaches the high-order byte of the word in memory.
No address error exceptions due to alignment are possible.

memory

address 8 15|14 |13|12|11|10|(9 | 8 register

before

address 0 716|5|4|3|2]1]0 |A|B|C|D|E|F|G|H|$24

SDR $24, 1 ($0)

address 8 15|14 |13 |12|11|10|(9 | 8
after

address 0 B|{CID|E|F|G|H]|]O

629

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SDR Store Doubleword Right SDR
(Continued)

This operation is only defined for the VR4102 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T: VAddr <- ((offsetis)* || offsetis. o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1..3 || (PAddr2..0 xor ReverseEndian3)
if BigEndianMem = 0 then
pAddr <- pAddresize 1.3 || 0°
endif
byte <- vAddr2..o xor BigEndianCPU®
data <- GPR [rt]s3_g by || 0° "™
StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr, DATA)

630

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SDR

Given a doubleword in a register and a doubleword in memory, the operation of SDR is as follows:

Store Doubleword Right
(Continued)

SDR

Register

Memory

VAddr,

2.0

BigEndianCPU = 0

destination

type

offset

(LEM)

~N o o~ W N P O

ABCDEFGH
BCDEFGHP
CDEFGHOP
DEFGHNOP
EFGHMNOP
FGHLMNOP
GHKLMNOP
HIJIKLMNOP

O P N W b 01 O N

~N o o b~ W N P O

LEM

Type
Offset

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

Reserved instruction exception (VR4102 in 32-bit user mode, VR4102 in 32-bit supervisor mode)

Little-endian memory (BigEndianMem = 0)
AccessType (see Table 2-2) sent to memory

pAddr, ; sent to memory

SDR

631

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SH

Store Halfword

SH

31 26 25 21 20 16 15 0
SH
101001 base rt offset
6 5 5 16
Format:

SH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form an unsigned

effective address. The least-significant halfword of register rt is stored at the effective address.

significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

If the least-

32 T:

64 T:

vAddr <- ((offsetis)'® || offsetis._o) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrpsize-1..3 || (pPAddr2. .o xor (ReverseEndian2 [| 0)
byte <- vAddrz.o Xor (BigEndianCPU? || 0)

data <- GPR [rt]ss_s*byte.0 || 0° ™'°

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

vAddr <- ((offsetis)®® || offsetis_o) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddresize - 1..3 || (pAddrz..o xor (ReverseEndian? || 0))
byte <- vAddrz._o xor (BigEndianCPU’ || 0)

data <- GPR [rt]ez -8 *byte..0 || o8 "ove

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

632

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SLL Shift Left Logical SLL

31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 it d sa SLL
000000 00000 000000

6 5 5 5 5 6
Format:
SLL rd, rt, sa
Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low-order bits.
The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register. It is sign extended for
all shift amounts, including zero; SLL with zero shift amount truncates a 64-bit value to 32 bits and then sign
extends this 32-bit value. SLL, unlike nearly all other word operations, does not require an operand to be a
properly sign-extended word value to produce a valid sign-extended word result.

Operation:

32 T GPR[rd] <- GPR [rt]s1-sa.0 || 0%

64 T. s<-0fsa
temp <- GPR [rt]s1-s.0 || O°
GPR [rd] <- (tempa1)® || temp

Exceptions:

None

Remark SLL with a shift amount of zero may be treated as a NOP by some assemblers, at some optimization
levels. If using SLL with a zero shift to truncate 64-bit values, check the assembler you are using.

633

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SLLV

Shift Left Logical Variable

SLLV

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 SLLV
000000 00000 000100

5 5 5 5 6
Format:

SLLV rd, rt, rs

Description:

The contents of general register rt are shifted left the number of bits specified by the low-order five bits contained
in general register rs, inserting zeros into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register. It is sign extended for

all shift amounts, including zero; SLLV with zero shift amount truncates a 64-bit value to 32 bits and then sign

extends this 32-bit value. SLLV, unlike nearly all other word operations, does not require an operand to be a

properly sign-extended word value to produce a valid sign-extended word result.

Operation:
32 T s <- GPR [rs]s..0
GPR [rd] <- GPR [rt]@1-s)..0 || 0°
64 T s<-0]| GPR [rs]s..0
temp <- GPR [rt]z1-5).0 || 0°
GPR [rd] <- (tempz1)** || temp
Exceptions:
None

Remark SLLV with a shift amount of zero may be treated as a NOP by some assemblers, at some optimization
levels. If using SLLV with a zero shift to truncate 64-bit values, check the assembler you are using.

634

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SLT Set On Less Than SLT

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 SLT
000000 00000 101010

6 5 5 5 5 6
Format:
SLT rd, rs, rt
Description:

The contents of general register rt are subtracted from the contents of general register rs. Considering both
guantities as signed integers, if the contents of general register rs are less than the contents of general register rt,
the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction
used during the comparison overflows.

Operation:

32 T if GPR [rs] < GPR [rt] then
GPR[rd] <- 0°']| 1
else
GPR [rd] <- 0%
endif

64 T if GPR [rs] < GPR [rt] then
GPR[rd] <- 0%| 1
else
GPR [rd] <- 0%
endif

Exceptions:

None

635

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SLTI

Set On Less Than Immediate

SLTI

31

26 25 21 20 16 15

SLTI
001010

rs rt

immediate

16

Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs. Considering both
guantities as signed integers, if rs is less than the sign-extended immediate, the result is set to one; otherwise the
result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction
used during the comparison overflows.

Operation:
32 T if GPR [rs] < (immediatels)16 || immediatess..o then
GPR [rt] <- 0% || 1
else
GPR [rf] <- 0%
endif
64 T if GPR [rs] < (immediatels)48 || immediatess..o then
GPR[rt] <- 0% || 1
else
GPR [rf] <- 0**
endif
Exceptions:
None

636

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SLTIU Set On Less Than Immediate Unsigned SLTIU
31 26 25 21 20 16 15 0
0 ()SliTc;li 1 rs rt immediate
6 5 5 16
Format:

SLTIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs. Considering both
guantities as unsigned integers, if rs is less than the sign-extended immediate, the result is set to one; otherwise

the result is set to zero.
The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction

used during the comparison overflows.

Operation:

32 T if(0]| GPR]rs]) < (0 || immediateis)™® || immediatess. o) then
GPR [rt] <- 03| 1
else
GPR [rt] <- 0%
endif

64 T: if(0] GPR]rs]) < (0 || immediateis)*® || immediatess. o) then
GPR[rt] <- 0% || 1
else
GPR [rt] <- 0%
endif

Exceptions:

None

637

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SLTU

Set On Less Than Unsigned

SLTU

31 16 15 11 10 65 0
SPECIAL s t d 0 SLTU
000000 00000 101011

6 5 5 5 5 6
Format:

SLTU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs. Considering both
guantities as unsigned integers, if the contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction

used during the comparison overflows.

Operation:

else

else

GPR [rd] <- 0%
endif

GPR [rd] <- 0%
endif

32 T if (0 || GPR [rs]) <0 || GPR [rt] then
GPR[rd] <- 0°'| 1

64 T if (0]] GPR [rs]) <0 || GPR [rt] then
GPR [rd] <- 0% || 1

Exceptions:

None

638

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SRA

Shift Right Arithmetic

SRA

31
SPECIAL 0 rt rd sa SRA
000000 00000 000011
6 5 5 5 5 6
Format:
SRA rd, rt, sa
Description:

The contents of general register rt are shifted right by sa bits, sign-extending the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:
32 T: GPR|[rd] <- (GPR [rt]a1)* || GPR [rt]s1..sa
64 T s<-0]| sa
temp <- (GPR [rt]a1)° || GPR [rt]s1..s
GPR [rd] <- (temp31)32 || temp
Exceptions:
None

639

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SRAV Shift Right Arithmetic Variable SRAV

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 SRAV
000000 00000 000111

6 5 5 5 5 6
Format:

SRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order five bits of
general register rs, sign-extending the high-order bits.
The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T s <- GPR [rs]s..0
GPR [rd] <- (GPR [rt]s1)° || GPR [t]sz..s

64 T s <- GPR [rs]s..0
temp <- (GPR [rt]s1)° || GPR [rt]s1..s
GPR [rd] <- (temps2)* || temp

Exceptions:

None

640

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SRL

Shift Right Logical

SRL

31 65 0
SPECIAL 0 it d sa SRL
000000 00000 000010

6 5 5 5 5 6
Format:
SRL rd, rt, sa
Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

64 T s<-0]| sa
temp <- 0° || GPR [rt]a1.s
GPR [rd] <- (tempaz)* || temp

32 T: GPRI[rd] <- 0| GPR [rt]s1..sa

Exceptions:

None

641

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SRLV Shift Right Logical Variable SRLV

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 SRLV
000000 00000 000110

6 5 5 5 5 6
Format:

SRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order five bits of
general register rs, inserting zeros into the high-order bits.
The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T s <- GPR [rs]s..0
GPR [rd] <- 0° || GPR [rt]s1.s

64 T s <- GPR [rs]s..0
temp <- 0° || GPR [rt]s.s
GPR [rd] <- (tempa1)** || temp

Exceptions:

None

642

CHAPTER 27 CPU INSTRUCTION SET DETAILS

STANDBY Standby STANDBY

31 26 25 24 65 0
COPO co 0 STANDBY
010000 1 000 0000 0000 0000 0O0OO 100001
6 1 19 6
Format:
STANDBY
Description:

STANDBY instruction starts mode transition from Fullspeed mode to Standby mode.

When the STANDBY instruction finishes the WB stage, the VR4102 wait by the SysAD bus is idle state, after then
the internal clocks will shut down, thus freezing the pipeline. The PLL, Timer/Interrupt clocks and the internal bus
clocks (TClock and MasterOut) will continue to run.

Once the VR4102 is in Standby mode, any interrupt, including the internally generated timer interrupt, NMI, Soft
Reset, and Cold Reset will cause the VR4102 to exit Standby mode and to enter Fullspeed mode.

Operation:

32,64 T:
T+1: Standby operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Chapter 15 for details about the operation of the peripheral units at mode transition.

643

CHAPTER 27

CPU INSTRUCTION SET DETAILS

SUB Subtract SUB
31 16 15 11 10 0
SPECIAL s rt d 0 SUB
000000 00000 100010
6 5 5 5 5 6
Format:
SUBrd, rs, rt
Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result. The
result is placed into general register rd. In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUBU instruction is that SUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 30 and 31 differ (2's complement overflow).
The destination register rd is not modified when an integer overflow exception occurs.

Operation:
32 T GPR [rd] <- GPR [rs] - GPR [rt]
64 T temp <- GPR [rs] - GPR [rt]
GPR [rd] <- (tempal)32 || tempaz..0
Exceptions:

Integer overflow exception

644

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SUBU Subtract Unsigned SUBU

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 SUBU
000000 00000 100011

6 5 5 5 5 6
Format:

SUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result.
The result is placed into general register rd.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUB instruction is that SUBU never traps on overflow. No
integer overflow exception occurs under any circumstances.

Operation:

32 T GPR [rd] <- GPR [rs] - GPR [r]

64 T temp <- GPR [rs] - GPR [rt]
GPR [rd] <- (tempz1)* || tempa1...0

Exceptions:

None

645

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SUSPEND Suspend SUSPEND

31 26 25 24 65 0
COPO co 0 SUSPEND
010000 1 000 0000 0000 0000 00O00O 100010
6 1 19 6
Format:
SUSPEND
Description:

SUSPEND instruction starts mode transition from Fullspeed mode to Suspend mode.

When the SUSPEND instruction finishes the WB stage, the VR4102 wait by the SysAD bus is idle state, after then
the internal clocks including the TClock will shut down, thus freezing the pipeline. The PLL, Timer/Interrupt clocks
and MasterOut, will continue to run.

Once the VR4102 is in Suspend mode, any interrupt, including the internally generated timer interrupt, NMI, Soft
Reset and Cold Reset will cause the VR4102 to exit Suspend mode and to enter Fullspeed mode.

Operation:

32,64 T:
T+1: Suspend operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Chapter 15 for details about the operation of the peripheral units at mode transition.

646

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SW Store Word SW
31 26 25 21 20 16 15 0
SwW
101011 base rt offset
6 5 5 16
Format:

SW rt, offset

Description:

(base)

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The contents of general register rt are stored at the memory location specified by the effective address.

If either of the two least-significant bits of the effective address are non-zero, an address error exception occurs.

Operation:

32 T:

64 T:

vAddr <- ((offsetis)™® || offsets._o) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddr2..o xor (ReverseEndian || 0%))
byte <- vAddrz..o xor (BigEndianCPU || 0%)

data <- GPR [rt]e3-8*byte || o8 rhve

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

vAddr <- ((offsetis)® || offsetis.o) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddr2..o xor (ReverseEndian || 0%))
byte <- vAddrz..o xor (BigEndianCPU || 07)

data <- GPR [rt]e3 -8 *byte || 0®"Pve

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

647

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SWL

Store Word Left

SWL

31 26 25 21 20 16 15 0
SWL
101010 base rt offset
6 5 5 16
Format:

SWL rt, offset (base)

Description:

This instruction can be used with the SWR instruction to store the contents of a register into four consecutive
bytes of memory, when the bytes cross a word boundary. SWL stores the left portion of the register into the
appropriate part of the high-order word of memory; SWR stores the right portion of the register into the

appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which may specify an arbitrary byte. It alters only the word in memory which contains that byte. From
one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the specified byte in memory;

then it copies bytes from register to memory until it reaches the low-order byte of the word in memory.

No address error exceptions due to alignment are possible.

memory
address 4 7 6 5 4
address 0 3 2 1 0
address 4 7 6 5 A
address 0 3 2 1

register

before

SWL $24, 4 ($0)

after

| A | B | C | D |$24

648

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SWL

Operation:

Store Word Left
(Continued)

SWL

32

64

T:

vAddr <- ((offsetis)™® || offsetss..o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddr2. .o xor ReverseEndian®)
if BigEndianMem = 0 then

pAddr <- pAddresize-1..2 || 0°
endif
byte <- vAddri...o xor BigEndianCPU2
if (vAddr2 xor BigendianCPU) = 0 then

data <- 0% || g4 -8rbye [| GPR [rt]s1..24 -8 *byte
else

data <- 0
endif
StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

24-87DY€ || GPR [rt]a1..24 -8 * byee || 0%

vAddr <- ((offsetis)®® || offsetis. o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1..3 || (PAddr2..o xor ReverseEndian®)
if BigendianMem = 0 then
pAddr <- pAddrpsize-1..2 || 0°
endif
byte <- vAddri__o xor BigEndianCPU’
if (vAddr2 xor BigEndianCPU) = 0 then
data <- 0% || 0%*~®"™" || GPR [rt]s1..24- 8 * byte
else
data <- 0% ~8"v® || GPR [rt]s1..24 -8 * byte || 0%
endif
StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

649

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SWL Store Word Left SWL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SWL is as follows:

SWL
Register A B (o D E F G H
Memory | J K L M N (0] P
VvAddr, , BigEndianCPU = 0
destination type offset
(LEM)
0 I JKLMNOE 0 0
1 I JKLMNEF 1 0
2 I JKLMEFG 2 0
3 I JKLEFGH 3 0
4 I JKEMNOP 0 4
5 I JEFMNOP 1 4
6 | EFGMNOP 2 4
7 EFGHMNOP 3 4

LEM Little-endian memory (BigEndianMem = 0)
Type AccessType (see Table 3-2) sent to memory
Offset pAddr, ; sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

650

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SWR

Store Word Right

SWR

31 26 25 21 20 16 15 0
SWR
101110 base rt offset
6 5 5 16
Format:

SWR rt, offset (base)

Description:

This instruction can be used with the SWL instruction to store the contents of a register into four consecutive

bytes of memory, when the bytes cross a boundary between two words.

SWR stores the right portion of the

register into the appropriate part of the low-order word; SWL stores the left portion of the register into the

appropriate part of the low-order word of memory.

The SWR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which may specify an arbitrary byte. It alters only the word in memory which contains that byte. From

one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it to the specified byte in
memory; then copies bytes from register to memory until it reaches the high-order byte of the word in memory.

No address error exceptions due to alignment are possible.

memory
address 4 7 6 5 4
address 0 3 2 1 0
address 4 7 4
address 0 B C D 0

register

before

| A | B | C | D | $24

SWR $24, 1 ($0)

after

651

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SWR

Operation:

Store Word Right
(Continued)

SWR

32

64

T:

vAddr <- ((offsets)™® || offsetis_o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vVAddr, DATA)
pAddr <- pAddresize - 1.3 || (pAddra. o xor ReverseEndian®)
if BigEndianMem = 1 then
pAddr <- pAddrpsize-1..2 || 0?
endif
byte <- vAddri_o xor BigEndianCPU?
if (vAddr2 xor BigEndianCPU) = 0 then
data <- 0°? || GPR [rt]a1 s+ byte..0 || 08 ™"
else
data <- GPR [rt]s1 - byt || 0% ™" || 0%
endif
StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

vAddr <- ((offsetis)*® || offsetis. o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vVAddr, DATA)
pAddr <- pAddresize-1..3 || (pAddr2. o xor ReverseEndian?’)
if BigEndianMem = 1 then
pAddr <- pAddresize-1..2 || 0°
endif
byte <- vAddri...o xor BigEndianCPU2
if (vAddrz xor BigEndianCPU) = 0 then
data <- 0%? || GPR [rt]a1 s byte..0 || 08 ™"
else
data <- GPR [rt]a1_ s byt || 0° ™" || 0%
endif
StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

652

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SWR Store Word Right
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SWR is as follows:

SWR
Register A B (o D E F
Memory | J K L M N
VAddr, , BigEndianCPU = 0

destination type offset
(LEM)

0 I JKLEFGH 3 0

1 Il JKLFGHP 2 1

2 I JKLGHOP 1 2

3 I JKLHNOP 0 3

4 EFGHMNOP 3 4

5 FGHLMNOP 2 5

6 GHKLMNOP 1 6

7 HIKLMNOP 0 7

LEM Little-endian memory (BigEndianMem = 0)
Type AccessType (see Table 3-2) sent to memory

Offset pAddr, ; sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

SWR

653

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SYNC Synchronize SYNC

31 26 25 65 0
SPECIAL 0 SYNC
000000 0000 0000 0000 0000 O0OOO 001111

6 20 6
Format:
SYNC
Description:

The SYNC instruction is executed as a NOP on the VR4102. This operation maintains compatibility with code
compiled for the Vr4000 and Vr4400.

Operation:

32,64 T: SyncOperation ()

Exceptions:

None

654

CHAPTER 27 CPU INSTRUCTION SET DETAILS

SYSCALL System Call SYSCALL

31 26 25 65 0
SPECIAL Code SYSCALL
000000 001100

6 20 6
Format:
SYSCALL
Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32,64 T: SystemCallException

Exceptions:

System Call exception

655

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TEQ Trap If Equal TEQ

31 26 25 21 20 16 15 65 0
SPECIAL rs it code TEQ
000000 110100

6 5 5 10 6
Format:
TEQ s, rt
Description:

The contents of general register rt are compared to general register rs. If the contents of general register rs are
equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32,64 T. if GPR[rs] = GPR [rt] then
TrapException
endif

Exceptions:

Trap exception

656

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TEQ!

Trap If Equal Immediate

TEQ!

31 26 25 21 20 16 15 0
REGIMM Is TEQI immediate
000001 01100
6 5 5 16
Format:

TEQI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.

general register rs are equal to the sign-extended immediate, a trap exception occurs.

If the contents of

Operation:
32 T if GPR [rs] = (immediatels)16 || immediatess..o then
TrapException
endif
64 T if GPR [rs] = (immediatels)48 || immediatess..o then
TrapException
endif
Exceptions:

Trap exception

657

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TGE Trap If Greater Than Or Equal TGE
31 26 25 21 20 16 15 65 0
SPECIAL s t code TGE
000000 110000
6 5 5 10 6
Format:
TGE rs, rt
Description:

The contents of general register rt are compared to the contents of general register rs. Considering both
guantities as signed integers, if the contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32,64 T: if GPR[rs] > GPR [rt] then
TrapException
endif

Exceptions:

Trap exception

658

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TGEI Trap If Greater Than Or Equal Immediate TGEI
31 26 25 21 20 16 15 0
REGIMM rs TGE immediate
000001 01000
6 5 5 16
Format:

TGEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both
guantities as signed integers, if the contents of general register rs are greater than or equal to the sign-extended
immediate, a trap exception occurs.

Operation:
32 T NGPR[m]zﬁmmemawmfGthmemammmomen
TrapException
endif
64 T WGPR[m]zﬁmmemawmfsHhﬂmemammmomen
TrapException
endif
Exceptions:

Trap exception

659

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TGEIU Trap If Greater Than Or Equal Immediate Unsigned TGEIU

31 26 25 21 20 16 15 0
REGIMM Is TGEIU immediate
000001 01001
6 5 5 16
Format:

TGEIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both
guantities as unsigned integers, if the contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation:

32 T if(0] GPR[rs]) > (0 || (immediateis)’® || immediatess. o) then
TrapException
endif

64 T: if (0 || GPR [rs]) > (O || (immediatess)*® || immediatess. o) then
TrapException
endif

Exceptions:

Trap exception

660

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TGEU Trap If Greater Than Or Equal Unsigned TGEU
31 26 25 21 20 16 15 65 0
SPECIAL s rt code TGEU
000000 110001
6 5 5 10 6
Format:
TGEU rs, 1t
Description:

The contents of general register rt are compared to the contents of general register rs. Considering both
guantities as unsigned integers, if the contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32,64 T: if(0|| GPR[rs]) > (0 || GPR [rt]) then
TrapException
endif

Exceptions:

Trap exception

661

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TLBP Probe TLB For Matching Entry TLBP
31 26 25 24 65 0
COPO |co 0 TLBP
010000 |1 000 0000 0000 0000 0000 001000
6 1 19 6

Format:

TLBP
Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi
register. If no TLB entry matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references associated with the instruction immediately
after a TLBP instruction, nor is the operation specified if more than one TLB entry matches.

Operation:

32 T Index<- 1] 0% || Undefined®
foriin0...TLBEntries - 1
if (TLB [iles...77 = EntryHiz1..13) and (TLB [i]z6 or
(TLB [i]71...64 = EntryHiz..0)) then
Index <- 0°° || is..0
endif

endfor

64 T: Index<-1]| 0°°| Undefined®
foriin 0...TLBEntries - 1
if (TLB [i]167..141 and not (0™ || TLB [i]216..205))
= (EntryHiso...13) and not (015 || TLB [i]216...205)) and
(TLB [i]140 or (TLB [i]13s...128 = EntryHi7..0)) then
Index <- 0°° || is..0
endif

endfor

Exceptions:

Coprocessor unusable exception

662

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TLBR Read Indexed TLB Entry TLBR
31 26 25 24 65 0
COPO co 0 TLBR
010000 1 000 0000 0OOOO 0OOOO 0OO0QOO 000001
6 1 19 6

Format:

TLBR
Description:

The G bit (which controls ASID matching) read from the TLB is written into both of the EntryLoO and EntryLol

registers.

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry pointed at by the contents of the
TLB Index register. The operation is invalid (and the results are unspecified) if the contents of the TLB Index

register are greater than the number of TLB entries in the processor.

Operation:

32 T PageMask <- TLB [Indexs..o]127..96
EntryHi <- TLB [IndexXs..o]es..64 and not TLB [Indexs...0]127...96
EntryLol <- TLB [Indexs..g]s3..33 || TLB [Indexs...0o]7e
EntryLoO <- TLB [Indexs..q]31..1 || TLB [Indexs..o]7s

64 T PageMask <- TLB [Indexs...]2s5...192
EntryHi <- TLB [Indexs..o]191..128 and not TLB [Indexs...o]2ss...192
EntryLol <- TLB [Indexs. o]127..65 || TLB [Indexs...0]140
EntryLoO <- TLB [IndexXs..q]e3...1 || TLB [Indexs...0]140

Exceptions:

Coprocessor unusable exception

663

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TLBWI

Write Indexed TLB Entry

TLBWI

31 26 25 24 65 0
COPO co 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010
6 1 19 6
Format:
TLBWI
Description:

The TLB entry pointed at by the contents of the TLB Index register is loaded with the contents of the EntryHi and

EntryLo registers.

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0O and EntryLo1 registers.

The operation is invalid (and the results are unspecified) if the contents of the TLB Index register are greater than
the number of TLB entries in the processor.

Operation:

32,64 T: TLB [Indexs.o] <-

PageMask || (EntryHi and not PageMask) || EntryLol || EntryLoO

Exceptions:

Coprocessor unusable exception

664

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TLBWR

Write Random TLB Entry

TLBWR

31 26 25 24 65 0
COPO co 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110
6 1 19 6
Format:
TLBWR
Description:

The TLB entry pointed at by the contents of the TLB Random register is loaded with the contents of the EntryHi
and EntryLo registers.

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0O and EntryLo1 registers.

Operation:

32,64 T: TLB[Randoms. o] <-

PageMask || (EntryHi and not PageMask) || EntryLol || EntryLoO

Exceptions:

Coprocessor unusable exception

665

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TLT Trap If Less Than TLT

31 26 25 21 20 16 15 65 0
SPECIAL rs it code TLT
000000 110010

6 5 5 10 6
Format:
TLT rs, rt
Description:

The contents of general register rt are compared to general register rs. Considering both quantities as signed
integers, if the contents of general register rs are less than the contents of general register rt, a trap exception
occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32,64 T. if GPR[rs] < GPR [rt] then
TrapException
endif

Exceptions:

Trap exception

666

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TLTI

Trap If Less Than Immediate

TLTI

31 26 25 21 20 16 15 0
REGIMM Is TLTI immediate
000001 01010
6 5 5 16
Format:

TLTI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both
guantities as signed integers, if the contents of general register rs are less than the sign-extended immediate, a

trap exception occurs.

Operation:
32 T if GPR [rs] < (immediatels)16 || immediatess..o then
TrapException
endif
64 T if GPR [rs] < (immediatels)48 || immediatess..o then
TrapException
endif
Exceptions:

Trap exception

667

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TLTIU Trap If Less Than Immediate Unsigned TLTIU
31 26 25 21 20 16 15 0
REGIMM rs TLTIU immediate
000001 01011
6 5 5 16
Format:

TLTIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both
guantities as unsigned integers, if the contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:

32 T if (0] GPR[rs]) < (0 || (immediateis)'® || immediate1s. o) then
TrapException
endif

64 T: if (0| GPR[rs]) < (0 || (immediateis)*® || immediate1s. o) then
TrapException
endif

Exceptions:

Trap exception

668

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TLTU Trap If Less Than Unsigned TLTU

31 26 25 21 20 16 15 65 0
SPECIAL rs it code TLTU
000000 110011

6 5 5 10 6
Format:
TLTU s, rt
Description:

The contents of general register rt are compared to general register rs. Considering both quantities as unsigned
integers, if the contents of general register rs are less than the contents of general register rt, a trap exception
occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32,64 T: if(0|| GPR[rs]) < (0|l GPR [rt]) then
TrapException
endif

Exceptions:

Trap exception

669

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TNE Trap If Not Equal TNE

31 26 25 21 20 16 15 65 0
SPECIAL rs it code TNE
000000 110110

6 5 5 10 6
Format:
TNE rs, 1t
Description:

The contents of general register rt are compared to general register rs. If the contents of general register rs are
not equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

32,64 T:. if GPR[rs] # GPR [rt] then
TrapException
endif

Exceptions:

Trap exception

670

CHAPTER 27 CPU INSTRUCTION SET DETAILS

TNEI

Trap If Not Equal Immediate

TNEI

31 26 25 21 20 16 15 0
REGIMM Is TNEI immediate
000001 01110
6 5 5 16
Format:

TNEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.
general register rs are not equal to the sign-extended immediate, a trap exception occurs.

If the contents of

Operation:
32 T if GPR [rs] # (immediatels)16 || immediateis..o then
TrapException
endif
64 T if GPR [rs] # (immediatels)48 || immediateis..o then
TrapException
endif
Exceptions:

Trap exception

671

CHAPTER 27 CPU INSTRUCTION SET DETAILS

XOR Exclusive Or XOR

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t d 0 XOR
000000 00000 100110

6 5 5 5 5 6
Format:
XORrd, rs, 1t
Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise logical
exclusive OR operation.

The result is placed into general register rd.

Operation:

32,64 T: GPR[rd] <- GPR [rs] xor GPR [rt]

Exceptions:

None

672

CHAPTER 27 CPU INSTRUCTION SET DETAILS

XORI

Exclusive OR Immediate

XORI

31 26 25

21 20

16 15

XORI
001110

rs

rt

immediate

6

16

Format:

XORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-wise logical

exclusive OR operation.

The result is placed into general register rt.

Operation:

32 T GPR|rt] <- GPR [rs] xor (0* || immediate)

64 T GPR [rt] <- GPR [rs] xor (048 || immediate)

Exceptions:

None

673

CHAPTER 27 CPU INSTRUCTION SET DETAILS

27.6 CPU INSTRUCTION OPCODE BIT ENCODING

The remainder of this chapter presents the opcode bit encoding for the CPU instruction set (ISA and extensions),

as implemented by the VR4102. Figure 27-2 lists the VR4102 Opcode Bit Encoding.

674

31...29

~N o o0~ WN P O

~N o o b~ W N O

20...19

0
1
2
3

Figure 27-1. V r4102 Opcode Bit Encoding (1/2)

28...26 Opcode
0 1 2 3 4 5 6 7
SPECIAL | REGIMM J JAL BEQ BNE BLEZ BGTZ
ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
COPO T b1 * BEQL BNEL BLEZL BGTZL
DADDIe | DADDIUe LDLe LDRe * * * *
LB LH LWL LW LBU LHU LWR LWUe
SB SH SWL Sw SDLe SDRe SWR | CACHES
* I b * * b I LDe
* I s * * b T SDe
2..0 SPECIAL function
0 1 2 3 4 5 6 7
SLL * SRL SRA SLLV * SRLV SRAV
JR JALR * * SYSCALL | BREAK * SYNC
MFHI MTHI MFLO MTLO DSLLVe * DSRLVe | DSRAVe
MULT MULTU DIV DIVU DMULTe |DMULTUe| DDIVe DDIVUe
ADD ADDU SUB SUBU AND OR XOR NOR
MADD16 | DMADD16 SLT SLTU DADDe DADDUe DSUBe DSUBUe
TGE TGEU TLT TLTU TEQ * TNE *
DSLLe * DSRLe DSRAe DSLL32¢ * DSRL32¢ | DSRA32¢
18...16 REGIMM rt
0 1 2 3 4 5 6 7
BLTZ BGEZ BLTZL BGEZL * * * *
TGEI TGEIU TLTI TLTIU TEQI * TNEI *
BLTZAL | BGEZAL | BLTZALL | BGEZALL * * * *
* * * * * * * *

CHAPTER 27 CPU INSTRUCTION SET DETAILS

Figure 27-1. V r4102 Opcode Bit Encoding (2/2)

23..21 COPO s
25, 24 0 1 2 3 4 5 6 7
0 MF DMFe Y Y MT DMTe Y Y
1 BC Y Y Y Y Y Y Y
2
3 co
18...16 COPO rt
20...19 0 1 2 3 4 5 6 7
0 BCF BCT BCFL BCTL Y Y Y Y
1 y Y y Y Y y Y y
2 Y Y Y Y Y Y Y Y
3 Y Y Y Y Y Y Y Y
2.0 CPO Function
5..3 0 1 2 3 4 5 6 7
0 o TIBR | TLBWI | ¢ o o | TLBWR | ¢
1 TLBP ¢ ¢ ¢ ¢ ¢ ¢ ¢
2 g ¢ ¢ ¢ ¢ ¢ ¢ ¢
3 ERET ¢ ¢ o ¢ ¢ o ¢ ¢
4 ¢ STANDB | SUSPEND | HIBERNATE [0} ¢ [0} ¢
5 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
6 6 ¢ 6 ¢ ¢ ¢ ¢ ¢
7 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

Key:

Operation codes marked with an asterisk cause reserved instruction exceptions in all current implementations
and are reserved for future versions of the architecture.

Operation codes marked with a gamma cause a reserved instruction exception. They are reserved for future
versions of the architecture.

Operation codes marked with a delta are valid only for VR4102 processors with CPO enabled, and cause a
reserved instruction exception on other processors.

Operation codes marked with a phi are invalid but do not cause reserved instruction exceptions in VR4102
implementations.

Operation codes marked with a xi cause a reserved instruction exception on VR4102 processor.

Operation codes marked with a chi are valid on R4x00 and VR4102 only.

Operation codes marked with epsilon are valid when the processor operating as a 64-bit processor. These
instructions will cause a reserved instruction exception if 64-bit operation is not enabled.

Operation codes marked with a pi are invalid and cause coprocessor unusable exception.

675

[MEMO]

676

CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS

The VR4100 CPU core avoids contention of its internal resources by causing a pipeline interlock in such cases as
when the contents of the destination register of an instruction are used as a source in the succeeding instruction.
Therefore, instructions such as NOP must not be inserted between instructions.

However, interlocks do not occur on the operations related to the CPO registers and the TLB. Therefore,
contention of internal resources should be considered when composing a program which manipulates the CPO
registers or the TLB. The CPO hazards define the number of NOP instructions which is required to avoid contention
of internal resources, or the number of instructions unrelated to contention. This chapter describes the CP0 hazards
of the VR4100 CPU core.

The CPO hazards of the VR4100 CPU core are equally or less stringent than those of the VR4000; Table 28-1 lists
the Coprocessor 0 hazards of the VR4100 CPU core. Code which complies with these hazards will run without
modification on the VR4000.

The contents of the CPO registers or the bits in the “Source” column of this table can be used as a source after
they are fixed.

The contents of the CPO registers or the bits in the “Destination” column of this table can be available as a
destination after they are stored.

Based on this table, the number of NOP instructions required between instructions related to the TLB is computed
by the following formula, and so is the number of instructions unrelated to contention:

(Destination Hazard number of A) - [(Source Hazard number of B) + 1]

As an example, to compute the number of instructions required between an MTCO and a subsequent MFCO
instruction, this is:

(5) - (83 + 1) = 1 instruction

The CPO hazards do not generate interlocks of pipeline. Therefore, the required number of instruction must be
controlled by program.

677

CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS

Table 28-1. VR4102 Coprocessor 0 Hazards

Instruction or Event Source Destination
CPO Data Used, No. of CPO Data Written, No. of
Stage Used cycles Stage Available cycles
MTCO CPR [rd] 5
MFCO CPR [rd]
TLBR Index, TLB PageMask, EntryHi, 5
EntryLoO, EntryLol
TLBWI Index or Random, TLB 5
PageMask, EntryHi,
TLBWR EntryLoO, EntryLol
TLBP PageMask, EntryHi Index 6
ERET EPC or ErrorEPC, TLB Status [EXL, ERL] 4
Status
CACHE Index Load TagLo, TagHi, PErr 5
Tag
CACHE Index Store TagLo, TagHi, PErr
Tag
CACHE Hit ops. cache line cache line 5
Load/Store EntryHi [ASID], Status
[KSU, EXL, ERL, RE],
Config [KOC], TLB
Config [AD, EP]
WatchHi, WatchLo
Load/Store exception EPC, Status, Cause, 5
BadVAddr, Context, XContext
Instruction fetch EPC, Status 4
exception Cause, BadVAddr, Context, 5
XContext
Instruction fetch EntryHi [ASID], Status
[KSU, EXL, ERL, RE],
Config [KOC]
TLB
Coproc. usable test Status [CU, KSU, EXL,
ERL]
Interrupt signals Cause [IP], Status [IM, IE,
sampled EXL, ERL]
TLB shutdown Status [TS] 2 (Inst.),
4 (Data)

678

CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS

bel

1)

)

3

4

®)

(6)

()

Cautions 1. If the setting of the KO bit in the Config register is changed to uncached mode by MTCO, the
accessed memory area is switched to the uncached one at the instruction fetch of the third
instruction after MTCO.

2. A stall of several instructions occurs if a jump or branch instruction is executed
immediately after the setting of the ITS bit in the Status register.

Remarks 1. The instruction following MTCO must not be MFCO.

2. The five instructions following MTCO to Status register that changes KSU and sets EXL and ERL
may be executed in the new mode, and not kernel mode. This can be avoided by setting EXL first,
leaving KSU set to kernel, and later changing KSU.

3. There must be two non-load, non-CACHE instructions between a store and a CACHE instruction
directed to the same primary cache line as the store.

The status during execution of the following instruction for which CPO hazards must be considered is described

ow.
MTCO
Destination: The completion of writing to a destination register (CP0) of MTCO.
MFCO
Source: The confirmation of a source register (CP0) of MFCO.
TLBR
Source: The confirmation of the status of TLB and the Index register before the execution of TLBR.
Destination: The completion of writing to a destination register (CP0) of TLBR.
TLBWI, TLBWR
Source: The confirmation of a source register of these instructions and registers used to specify a TLB entry.
Destination: The completion of writing to TLB by these instructions.
TLBP
Source: The confirmation of the PageMask register and the EntryHi register before the execution of TLBP.
Destination: The completion of writing the result of execution of TLBP to the Index register.
ERET
Source: The confirmation of registers containing information necessary for executing ERET.
Destination: The completion of the processor state transition by the execution of ERET.
CACHE Index Load Tag

Destination: The completion of writing the results of execution of this instruction to the related registers.

679

CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS

(8) CACHE Index Store Tag

Source: The confirmation of registers containing information necessary for executing this instruction.

(9) Coprocessor Usable Test

Source: The confirmation of modes set by the bits of the CPO registers in the “Source” column.

Examples 1. When accessing the CPO registers in User mode after the content of the CUO bit of the Status
register is modified, or when executing an instruction such as TLB instructions, CACHE
instructions, or branch instructions which use the resource of the CPO.

2. When accessing the CPO registers in the operating mode set in the Status register after the
KSU, EXL, and ERL bits of the Status register are modified.

(20) Instruction Fetch

Source: The confirmation of the operating mode and TLB necessary for instruction fetch.

Examples 1. When changing the operating mode from User to Kernel and fetching instructions after the
KSU, EXL, and ERL bits of the Status register are modified.
2. When fetching instructions using the modified TLB entry after TLB modification.

(11) Instruction Fetch Exception

Destination: The completion of writing to registers containing information related to the exception when an
exception occurs on instruction fetch.

(12) Interrupts

Source: The confirmation of registers judging the condition of occurrence of interrupt when an interrupt
factor is detected.

(13) Loads/Sores

Source: The confirmation of the operating mode related to the address generation of Load/Store
instructions, TLB entries, the cache mode set in the KO bit of the Config register, and the registers
setting the condition of occurrence of a Watch exception.

Example = When Loads/Stores are executed in the kernel field after changing the mode from User to Kernel.

(14) Load/Store Exception

Destination: The completion of writing to registers containing information related to the exception when an
exception occurs on load or store operation.

(15) TLB Shutdown

Destination: The completion of writing to the TS bit of the Status register when a TLB shutdown occurs.

680

CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS

Table 28-2 indicates examples of calculation.

Table 28-2. Calculation Example of CPO Hazard and the Number of Instructions Inserted

Destination Source Contending | Number of Formula
internal instructions
resource inserted
TLBWR/TLBWI TLBP TLB Entry 2 5-(2+1)
TLBWR/TLBWI Load or Store using newly modified TLB TLB Entry 1 5-3+1)
TLBWR/TLBWI Instruction fetch using newly modified TLB TLB Entry 2 5-(2+1)
MTCO, Status [CU] Coprocessor instruction which requires the | Status [CU] 2 5-(2+1)
setting of CU
TLBR MFCO EntryHi EntryHi 1 5-(3+1)
MTCO EntryLoO TLBWR/TLBWI EntryLoO 2 5-(2+1)
TLBP MFCO Index Index 2 6-(3+1)
MTCO EntryHi TLBP EntryHi 2 5-(2+1)
MTCO EPC ERET EPC 2 5-(2+1)
MTCO Status ERET Status 2 5-(2+1)
MTCO Status [IE] *** Instruction which causes an interrupt Status [IE] 2 5-(2+1)

Note

The number of hazards is undefined if the instruction execution sequence is changed by exceptions. In

such a case, the minimum number of hazards until the IE bit value is confirmed may be the same as the

maximum number of hazards until an interrupt request occurs which is pending and enabled.

681

[MEMO]

682

CHAPTER 29 PLL PASSIVE COMPONENTS

The Phase Locked Loop circuit requires several passive components for proper operation, which are connected
to VP and GNDP as illustrated in Figure 29-1.

Figure 29-1. Example of Connection of PLL Passive Components

Vop
R
VopP
VR4102 —_— c1 _— 2 —_— cC3
GNDP
R
GND

Remarksl. C1, C2, C3 capacitors and R resistors are mounted on the printed circuit board.
2. Since the value for the components depends upon the application system, the optimum
values for each system should be decided after repeated experimentation.

It is essential to isolate the analog power and ground for the PLL circuit (V,,P/GNDP) from the regular power and
ground (V,,/GND). Initial evaluations have yielded good results with the following values:

R=5Q Cl=1nF C2=2nF C3=10 uF
Since the optimum values for the filter components depend upon the application and the system noise
environment, these values should be considered as starting points for further experimentation within your specific

application. In addition, the chokes (inductors: L) can be considered for use as an alternative to the resistors (R) for
use in filtering the power supply.

683

[MEMO]

684

APPENDIX A DIFFERENCES BETWEEN VR®r4102 AND VRrR4101

A.1 SUMMARY OF DIFFERENCES

Item VR4102 VR4101
Cache size Instruction: 4 Kbytes, data: 1 Kbyte Instruction: 2 Kbytes, data: 1 Kbyte
ISA Bus sizing 16-/8-bit dynamic bus sizing Select 16-/8-bit bus with address spaces
interface Bus hold Available Not available
I/O space 64 Mbytes 4 Mbytes
Memory space 64 Mbytes 4 Mbytes

LCD memory space

Switches between LCD mode and high-speed

memory mode

Supports only LCD mode

Memory Max. DRAM capacity | 32 Mbytes 8 Mbytes
controller | (EDO type)

Max. ROM capacity 32 Mbytes 16 Mbytes

DRAM type 16 Mbits, 64 Mbits 16 Mbits

ROM type 32 Mbits, 64 Mbits 16 Mbits, 32 Mbits

Power-on factor

4 factors

3 factors

DMA controller

Connected to AlU and FIR

Uses a DMA space for each page

Connected to AlU, PIU, KIU, and SIU

Uses a DMA space linearly

Timer, counter

4 channels:

24 bits x 2 (32.768 kHz)

48 bits x 1 (32.768 kHz)

25 bits x 1 (for performance test, TClock)

3 channels:

24 bits x 1 (32.768 kHz)

48 bits x 1 (32.768 kHz)

31 bits x 1 (for performance test, TClock)

Keyboard interface

Supports 64/80/96 keys

Supports up to 64 keys

Audio interface

Supports PCM input/output
On-chip D/A converter

Supports PWM/Buzz output

Touch panel interface

On-chip 10-bit A/D converter
On-chip touch panel controller

External 10/12-bit A/D converter
External touch panel controller

Serial interface

NS16650 compatible x 1

(Max. data rate: 1.152 Mbps)
NEC original x 1

(Max. data rate: 115.2 kbps Max.)

NEC original x 2
(Max. data rate: 115.2 kbps)

Ports for LED lighting

Available

Not available

MODEM interface

On-chip interface supporting software MODEM
(equivalent to PCT288I)

Not available

IrDA interface

FIR (Max. data rate: 4 Mbps)

SIR (Max. data rate: 115.2 kbps)

General-purpose /O ports

49 Max. (including alternate-function pins)

12 Max.

Clock input 32.768 kHz (input to CG), 32.768 kHz (input to CG)
18.432 MHz (input to CG),
48 MHz (directly connected to on-chip IrDA
interface)

Package 216 pin LQFP, 224-pin FBGA 160 pin LQFP

685

APPENDIX A DIFFERENCES BETWEEN VR4102 AND VRr4101

A.2 DETAILS OF DIFFERENCES

A.2.1 CPU Core

(1) Cache Size
The instruction cache of the VR4102 is 4K bytes in size, on the other hand, that of the VR4101 is 2K bytes. The
size of the data cache of the VR4102 is 1K bytes which is the same as that of the VR4101.
To specify cache data address used for CACHE instruction, the VR4102 uses bit 31..12 of the TagLo register, in
contrast to the VR4101 which uses bit 31..11. For data cache, both the VR4102 and the VR4101 use bit 13..10 of
the TagLo register.

(2) Settings of the Config Register
Bit 12 of the Config register (CS) indicates cache size mode, bit 11..9 (IC) indicates instruction cache size, and
bit 8..5 (DC) indicates data cache size. In the VR4102, CS is set to 1 (cache of small capacity), IC to 010 (4K
bytes), and DC to 000 (1K bytes). In the VR4101, bit 12..5 of the Config register are not defined and fix to 0 as a
reserved field.
Bit 27..24 of the Config register (EP) indicates transfer data pattern in the cache writeback. This field must be set
to 0000 (DD) in the VR4102, on the other hand, it must be set to 0011 (DxDx) in the VR4101.

A.2.2 Address Mapping

(1) Memory Area
In the VR4102, 16M and 64M bits are selectable for DRAM space size, though only a 16M-bit DRAM can be
connected to the VR4101.
Similarly, 32M and 64M bits are selectable for ROM space size in the VR4102, though only a 32M-bit ROM can
be connected to the VR4101.

(2) LCD Space
The LCD space is mapped to 16M-byte area of 0OxOA00 0000 through 0xOAFF FFFF in both the VrR4102 and the
VR4101. However, the VR4102 can also use this area as the high speed memory space, and the switching is set
in one of the BCU registers.

(3) ISA Spaces
The ISA memory and I/O spaces have a size of 64M bytes respectively in the VR4102. Those in the VR4101
have 4M bytes in total (2M bytes for 8-bit bus, 2M bytes for 16-bit bus).
In addition, the VR4102 supports 16/8-bit dynamic sizing for the ISA bus.

(4) Internal /O Space

The internal 1/O space is expanded to 32M bytes in the VR4102 compared to that of the VR4101 which has a size
of 16M bytes.

686

APPENDIX A DIFFERENCES BETWEEN VR4102 AND VRr4101

A.2.3 BCU

(1) Setting of BCU Transaction

In the VR4101, the intervals of bus transactions and the number of repetitions in the enabled BCU transaction
intervals can be selectable. This function is deleted in the VR4102.

(2) Memory Access Control

16 and 32 bits are selectable as the data bus width with DBUS32 pin at reset in the VR4102 except for ISA
memory area, on the other hand, the bus width is fixed to 16 bits in the VR4101.

Though both the VrR4102 and the VR4101 can select three memory types which are DRAM, masked ROM, and
Flash memory, their memory sizes and mapping method are different as summarized below.

Memory type VR4102 VR4101
DRAM 16M-bit/64M-bit EDO x 16 bits (access time: 60 ns) | 16M-bit EDO x 16 bits (access time: 60 ns)
Masked ROM 32M-bit/64M-bit ordinary or page type x 16 bits 32M-bit ordinary or page type x 16 bits
16-bit bus mode: selected as banks0/1 or 2/3 The whole ROM space is selected

32-bit bus mode: selected as bankO or 1

Flash memory 16-bit bus mode: selected as banks0/1 or 2/3 To use the whole ROM space can be selected

32-bit bus mode: selected as bankO or 1

(3) LCD Space

The LCD space is used only for LCD access in the VR4101, while it can be used for either LCD access or high-
speed memory access in the VR4102. Which of LCD or high-speed memory the LCD space is used for is
selected in BCUCNT1REG register. When high-speed memory is selected, LCDCS# pin becomes active.

The access time for LCD is selectable among 2, 4, 6, and 8 TClock cycles in both the VR4102 and the VR4101.
For high-speed memory in the VR4102, the access time is selectable among 1, 2, 3, 4, 5, 6, 7, and 8 TClock
cycles. These selections of access time are set in BCUSPEEDREG register.

When transferring LCD data, inverting the data values or not is selectable in the VR4102 and is set in
BCUCNT2REG register. On the other hand, the VR4101 always inverts the values at LCD data transfer.

(4) ISA Space

In the VR4102, the bus size is dynamically controlled at every bus cycle with IOCS# and MEMCS# pins. In the
VR4101, the bus size is fixed to 8 or 16 bits and is distinguished by the accessed address space.

(5) Others

The VR4102 has bus hold function and can make ISA, LCD, and memory interfaces into bus hold state. The
VR4101 has no bus hold function, and therefore the CPU is always master state.

Bit 11..8 and bit 3..0 of PREVIDREG register indicate the revision number of the on-chip peripheral units in both
the VR4102 and the VR4101. In addition, bit 15..12 indicates the processor revision number in the VR4102,
though it is fixed to O in the VR4101. The remaining bits, bit 7..4, are fixed to 0 in both processors.

687

APPENDIX A DIFFERENCES BETWEEN VR4102 AND VRr4101

A.2.4 DMA

(1) Sources of DMA
The VR4102 uses DMA transfer for AlU reception, AlU transmission, and FIR transmission/reception (in priority
order). On the other hand, the VR4101 uses DMA transfer for AlU, PIU, SIU reception, SIU transmission, and
KIU (in priority order).

(2) DMA Operation
The VR4102 reloads the DMA base address every time the DMA transfer reaches page boundary. The VR4101
uses DMA address space linearly which starts at DMA base address. For more details about DMA address
manipulation, see Chapter 11.

A.25 ICU

(1) Sources of Interrupts
Compared with the VR4101, five interrupt sources, HSP, LED, FIR, RTC Long timer 2, and TClock counter, are
newly added in the VR4102 ICU. Three more software interrupts which are caused by setting the SOFTINTREG
register are also added. The number of interrupt factors are changed in eight interrupt sources which are SIU,
DSIU, GIU, KIU, AlU, PIU, KIU in Suspend mode, and PIU in Suspend mode.

(2) Notification to the CPU Core
In the VR4102, NMI and Int[3..0] signals are used to notify interrupt requests to the CPU core, in contrast to the
VR4101 which uses NMI and Int[1..0] signals.

A.2.6 PMU

(1) Power-On Function
Compared with the VR4101, GPIO[3..0] and GPIO[12..9] inputs are added in the VR4102 as a CPU activation
factor. Especially, GPIO[3] can be used without any settings immediately after RTCRST.

(2) BATTLOCK and CARDLOCK Notifications
No dedicated pins for BATTLOCK and CARDLOCK functions are assigned in the VR4102. They must be
assigned to either of GPIO[12..9] pins and they are manipulated as two of GIU interrupts.

A2.7 RTC

(1) RTC Long Timers
The VR4102 has two RTC Long timers, on the other hand the VR4101 has only one.

(2) TClock Counter
TClock counter of the VR4102 is 25-bit long which is 6 bits shorter than that of the VR4101.
TClock counter of the VR4102 is added as one of the interrupt factors, and an interrupt request occurs when its
value becomes 1. In the VR4101, no interrupt request is caused by TClock counter.

688

APPENDIX A DIFFERENCES BETWEEN VR4102 AND VRr4101

A.2.8 GIU

(1) GPIO Pins

The VR4102 has 49 general-purpose 1/0O pins and 33 of them have alternate functions, while the VR4101 has 12

general I/O pins and none of them have alternate functions.
GPIQ[15] pin of the VR4102 is assigned as DCD# input which has dedicated pin in the VrR4101.

VR4102 and the VR4101, GIU controls DCD# input as well as GPIO pins.
GPIO pins are also used as interrupt request inputs except for GP10[49..32] of the VR4102, and in which power
modes an interrupt request is enabled is different from each GPIO pin.
The functions of GPIO pins are as summarized below.

In both the

Pins 1/0 Interrupt input Enabled power mode Alternative Notes
VR4102 VR4101 functions in
VR4102
GPIO[49] @) N/A Standby - -
GPIO[48] I/0 N/A Standby - DBUS32
GPIO[47..44] I/0 N/A Standby - DSIU pins
GPIO[43..32] 0o N/A Standby - KSCAN[11..0]
GPIO[31..16] I/0 A Standby - DATA[31..16]
GPIQ[15] I A Hibernate - DCD# 1
GPI0[14] 1/O A Suspend - -
GPIO[13] I/O A Suspend Hibernate - 2
GPIO[12] 1/O A Suspend - -
GPIO[11] 1/0 A Suspend Standby -
GPI0OJ[10..9] 1/O A Suspend Suspend -
GPIO[8..4] 1/0 A Standby Standby -
GPIOJ[3..0] 1/O A Hibernate Standby -

Notes 1. This pin is assigned as DCD# input in the VR4102.

2. This pin does not exist in the VR4101. DCD input is internally connected to the corresponding
register bits for GPIO[13] in GIU and the VR4101 manipulates those bits as input only.

(2) Interrupt Input Control
In both the VR4102 and the VR4101, either edge, high level, or low level of the input signal is selectable as an
interrupt input trigger.
In the VR4102, whether interrupt requests are held in GIU or not is selectable, while they are not held in the
VR4101.

689

APPENDIX A DIFFERENCES BETWEEN VR4102 AND VRr4101

A.2.9 PIU

PIU of the VR4102 is greatly changed from that of the VR4101 as summarized below.

coordinate data only
Four buffers for A/D scan

Item Vr4102 VRr4101
A/D converter On-chip (10 bits) External (10/12 bits)
Data transfer Transfer to buffer in PIU DMA transfer
Data buffers Four buffers (two pages each) for One buffer

Scan types

Coordinate data scan
Command scan

Coordinate data scan
Command scan

stabilization standby time counter

A/D scan Main battery scan
Sub battery scan
A/D port scan activation states Standby, WaitPen Touch, Interval Standby
Panel applied voltage 6 bits 4 bits

Panel applied voltage during low-
voltage mode

All four touch panel pins are at low
level

All four touch panel pins are at Hi-Z

Panel state during disable state

Touch detection state
(Interrupts do not occur when CPU is
in Hibernate mode.)

All four touch panel pins are at Hi-Z

Handling of valid data when data
loss occurs

Valid data is always retained

Valid data is overwritten

Data interrupt

Three types of special-purpose
interrupts

(two coordinate data interrupts, A/D
scan interrupt, and command scan
interrupt)

Two types of page boundary
interrupts

PIUDataRdyIntr

No

Yes

690

APPENDIX A DIFFERENCES BETWEEN VR4102 AND VRr4101

A.2.10 AlU

(1) Audio Output Mode
The PCM output is employed in the VR4102 as an audio output mode. In the VR4101, Buzzer or PWM output is
selectable.

(2) Audio Input Mode
The VR4102 has an analog audio input which is connected to the on-chip A/D converter. The VR4101 does not
support any audio inputs.

(3) Audio Data Transfer
The VR4102 uses DMA transfer to prepare PCM data in the output operation and to store sampled data in the
input operation. In the VR4101, output frequency and period for the Buzz mode are set in the AlU registers, or
output high level and low level width for the PWM mode are prepared with DMA transfer.

(4) Volume Control
Volume of the audio outputs is controlled by an external circuit or by shifting data input to D/A converter in the
VR4102. In the VR4101, four steps of audio output volume can be set in the AIUMUTEREG register and are
controlled by an external circuit based on the settings in the register.

A.2.11 KIU

(1) Number of Keys Supported

In the VR4102, the number of scan lines used is selectable among 8, 10, and 12 by setting the SCANLINE
register, which determines the number of keys enabled to either of 64, 80, or 96. The VR4102 can detect when
any of enabled keys are pressed using selected scan lines and 8 detection lines. The VR4101 can detect when
any of 64 keys are pressed using 8 scan lines and 8 detection lines.

When the VR4102 uses only 8 or 10 scan lines, the unused scan lines can be used as general-purpose output
ports. When the KIU is disabled in the VR4102, all the scan lines (KSCAN[11..0] pins) can be used as general-
purpose outputs (GPI0[43..32]).

(2) LCD Brightness Control
The VR4101 has LCD brightness control pins which are alternately used as KCSAN[1..0] pins and indicate the
contents of EVVOLREG register to specify brightness. The VrR4102 has no pins for LCD brightness control.

(3) KIU Data Transfer

The VR4102 transfers KIU data by reading data buffers when an interrupt occurs, while the VR4101 transfers with
DMA.

691

APPENDIX A DIFFERENCES BETWEEN VR4102 AND VRr4101

A.2.12 DSIU

(1) Hardware Flow Control
The VR4102 has two pins for hardware flow control, DCTS# and DRTS#, while the VR4101 has no pins for it.

(2) Supported Interrupts
The VR4102 DSIU supports receive error interrupt, receive completion interrupt, transmit completion interrupt,
and CTS interrupt. The VR4101 DSIU supports receive error interrupt, receive completion interrupt, and transmit
completion interrupt.

(3) Alternative Functions of DSIU Pins
The VR4102 DSIU pins can be used as general-purpose output port, GPIO[47..44], when DSIU is disabled.

Those of the VR4101 have no alternative functions.

A.2.13 SIU

The VR4102 SIU is newly designed and is functionally compatible with NS16550 in contrast to that of the VR4101

which is originally designed by NEC. Their differences are as summarized below.

Item VR4102 VR4102
Architecture Functionally compatible with NS16550 NEC original
Maximum data rate 1.15 Mbps 115 kbps
IR communication Available Available
Data transfer Read out of FIFO buffers by software DMA
Character length 5, 6, 7, or 8 hits 7 or 8 hits
Stop bit length 1, 1.5 (for 5 bits), or 2 (for 6, 7, or 8 bits) lor2

Parity check

Checked/generated is selectable

Checked/not generated
(substituted by software)

Framing error

Automatically detected

Automatically detected

Break transmission

Available

Available

Break detection

Automatically detected

Automatically detected

Receive overrun error

Automatically detected

Occurs receive data lost interrupt

Flow control pins

RTS#, CTS#, DTR#, DSR#, DCD#

RTS#, CTS#, DTR#, DSR#, DCD

Transmit data flow

16450 mode: from SIUTH register to transmit
shift register

FIFO mode: from FIFO (16 bytes) to
transmit shift register

From DMA (2K bytes) to SIUTXDATREG

Receive data flow

16450 mode: from receive shift register to
SIURB register

FIFO mode: from receive shift register to
FIFO (16 bytes)

From SIURXDATREG to DMA (2K bytes)

692

APPENDIX A DIFFERENCES BETWEEN VR4102 AND VR4101

A.2.14 Newly Added Units

The VR4102 has three newly designed peripheral units as described below which the VR4101 does not have.

(1) LED
This unit is used to control lighting of an LED. This unit features as below:

® High level width (up to 2 seconds), low level width (up to 8 seconds), and the number of blink can be set
® Supports stop interrupt request

® Enabled during Standby, Suspend, and Hibernate modes

(2) HSP

This unit is used to realize a software MODEM with externally connected CODEC and DAA blocks. The HSP unit
of the VR4102 is compatible with PCT288I produced by PCTel.
The assigned functions of software and each block are as below.

Software: protocol calculation, CODEC control, error correction, and OS interface

HSP unit: serial/parallel conversion of 16-bit data, control of status pins, and FIFO buffer management
CODEC: D/A, A/D conversion and operation clock supply based on MCLK of HSP unit

DAA: interface for CODEC data and telephone circuits

(3) FIR

This unit is used for IrDA communication in high-speed data transfer. Supported transfer rates includes 0.576M,
1.152M, and 4M bps.

693

[MEMO]

694

A/D converter ... 381, 383, 422
A/D port scan ... 404

Access data size ... 247
Address error exception ... 180
Address translation ... 119, 120
Addressing ... 47

AlU ... 31, 409

AlU registers ... 39, 409
AIUIAHREG ... 275
AIUIALREG ... 275
AIUIBAHREG ... 273
AIUIBALREG ... 273
AIUINTREG ... 298
AIUOAHREG ... 278
AIUOALREG ... 278
AIUOBAHREG ... 276
AIUOBALREG ... 276
ASIMOOREG ... 438
ASIMO1REG ... 439
ASISOREG ... 444

Audio Interface Unit (AIU) ... 31, 409

BadVAddr register ... 161
Baud rates and divisors ... 466
BCU ... 31, 235

BCU registers ... 33, 235
BCUCNTREG 1 ... 236
BCUCNTREG 2 ... 238
BCUERRSTREG ... 241
BCURFCNTREG ... 242
BCURFCOUNTREG ... 244
BCUSPEEDREG ... 239

BEV ... 211

Bootstrap exception vector (BEV) ... 211
BPRMOREG ... 446

Branch address ... 93

Branch delay ... 102

Branch instruction ... 92, 528
Breakpoint exception ... 186
Bus Control Unit (BCU) ... 31, 235
Bus error exception ... 185
Bus hold ... 268

Bus interface ... 43

Bus mode ... 247

Bypassing ... 115

APPENDIX B

INDEX

Cache ... 51

Cache data integrity ... 220
Cache error check ... 212

Cache error exception ... 184
Cache error register ... 171
CACHE instruction ... 219, 220
Cache line ... 214, 218

Cache memory ... 213

Cache operations ... 217

Cache organization ... 214

Cache state transition ... 219
Cache states ... 218

Cause register ... 165
CLKSPEEDREG ... 245

Clock generator ... 43

Clock interface ... 53

Clock Mask Unit (CMU) ... 31, 289
Clock oscillator ... 54

CMU ... 31, 289

CMU register ... 34, 289
CMUCLKMSK ... 290

Code compatibility ... 115

Cold reset ... 207

Cold reset exception ... 177
Compare register ... 162
Computational instructions ... 86
Config register ... 150

Connection of address pins ... 246
Context register ... 160
Coordinate detection ... 382
Coprocessor 0 (CPOQ) ... 44, 49, 141
Coprocessor Unusable exception ... 187
Count register ... 161

CPO ... 44, 49, 141

CPO hazards ... 677

CPO registers ... 49, 50, 141, 146
CPU ... 43

CPU bus interface ... 43

CPU core ... 43

CPU Instruction ... 46, 81, 525
CPU Instruction Set ... 46, 81, 525
CPU registers ... 45

CRCSR ... 508

Crystal oscillation ... 54

APPENDIX B INDEX

D/A converter ... 421

Data cache ... 44, 215

Data cache addressing ... 216

Data formats ... 47, 448

Data loss ... 405

DCU ... 31, 281

DCU registers ... 34, 281

Deadman’s SW shutdown ... 320

Deadman’s Switch ... 202

Deadman’s Switch Unit (DSU) ... 31, 355

Debug Serial Interface Unit (DSIU) ... 32, 435
Defining access types ... 82

Direct Memory Access (DMA) ... 271, 421, 422, 513,
522

Direct Memory Access Address Unit (DMAAU) ... 31,
271

Direct Memory Access Control Unit (DCU) ... 31, 281
DMA priority levels ... 281

DMAAU ... 31, 271

DMAAU registers ... 33, 272

DMACR ... 512

DMAER ... 513

DMAIDLEREG ... 283

DMAMSKREG ... 285

DMAREQREG ... 286

DMARSTREG ... 282

DMASENREG ... 284

DPCNTR ... 501
DPINTR ... 500
DRAM ... 140

DRAM access ... 264
DRAM space ... 140
DSIU ... 32, 435

DSIU registers ... 40, 435
DSIUINTREG ... 301
DSIURESETREG ... 447
DSU ... 31, 355

DSU registers ... 37, 355
DSUCLRREG ... 358
DSUCNTREG ... 356
DSUSETREG ... 357
DSUTIMREG ... 359
DVALIDREG ... 418

ECMPHREG ... 340
ECMPLREG ... 339
ECMPMREG ... 339
Elapsed Timer ... 335
Endianness ... 47, 48

696

EntryHi register ... 147

EntryLo register ... 147

EPC register ... 167

ErrorEPC register ... 171
ETIMEHREG ... 338
ETIMELREG ... 337
ETIMEMREG ... 337

Exception ... 109, 173

Exception conditions ... 112
Exception processing ... 157, 191
Exception processing registers ... 159

Exception Program Counter (EPC) register ...

Exception vector locations ... 173
External clock ... 54

Fast IrDA Interface Unit (FIR) ... 32, 497
FIFO interrupt modes ... 470
FIFO polling mode ... 471

FIR ... 32, 497

FIR registers ... 42, 497
FIRAHREG ... 280

FIRALREG ... 280
FIRBAHREG ... 279
FIRBALREG ... 279

FIRCR ... 509

FIRINTREG ... 313

Flash memory ... 247

Flash memory interface ... 249
FRSTR ... 499

FSR ... 505

Fullspeed mode ... 210, 326

General Purpose I/O Unit (GIU) ... 31, 361
GIU ... 31, 361

GIU registers ... 37, 362
GIUINTALSELH ... 374
GIUINTALSELL ... 373
GIUINTENH ... 370
GIUINTENL ... 369
GIUINTHREG ... 312
GIUINTHTSELH ... 376
GIUINTHTSELL ... 375
GIUINTLREG ... 300
GIUINTSTATH ... 368
GIUINTSTATL ... 367
GIUINTTYPH ... 372
GIUINTTYPL ... 371
GIUIOSELH ... 364
GIUIOSELL ... 363

167

APPENDIX B INDEX

GIUPIODH ... 366
GIUPIODL ... 365
GIUPODATH ... 380
GIUPODATL ... 378

HALTimer shutdown ... 204, 320
Hardware interrupts ... 232
Hibernate mode ... 211, 327
Hierarchy of memory ... 213
HSP ... 32,481

HSP registers ... 41, 483
HSPCNTL ... 486
HSPDATA[15..0] ... 485
HSPERRCNT ... 493
HSPEXTIN ... 492
HSPEXTOUT ... 487
HSPFFSZ ... 489

HSPID ... 492

HSPID[7:0] ... 493
HSPINDEX][15..0] ... 485
HSPINIT ... 484
HSPMCLKD ... 488
HSPPCSJ[7:0] ... 493
HSPPCTEL[7:0] ... 493
HSPRxData ... 490
HSPSTS ... 491

HSPTOC ... 488
HSPTxData ... 485

1/0 registers ... 33

ICU ... 31, 291

ICU registers ... 35, 294

IE bit ... 212

IFR ... 517

lllegal access ... 251

IMR ... 504

Index register ... 146

Initialization interface ... 199
Instruction cache ... 43, 214
Instruction cache addressing ... 216
Instruction formats ... 46, 81
Instruction pipeline ... 53

Integer overflow exception ... 189
Interlock ... 109

Internal 1/0O space ... 139

Interrupt ... 231

Interrupt control ... 293

Interrupt Control Unit (ICU) ... 31, 291
Interrupt enable (IE) ... 212

Interrupt exception ... 190
Interrupt request signal ... 232
INTROREG ... 445

INTREG ... 420

IRSR1 ... 507

Joint TLB ... 52
JTLB ... 52
Jump instruction ... 92, 528

Kernel expanded addressing mode ... 211

Kernel mode ... 127
Kernel mode address space ... 128

Keyboard Interface Unit (KIU) ... 32, 423

KIU ... 32, 423

KIU registers ... 40, 423
KIU sequencer ... 427, 428
KIUDATO ... 424
KIUDAT1 ... 424
KIUDAT?2 ... 424
KIUDATS ... 424
KIUDATA ... 424
KIUDATS ... 424
KIUGPEN ... 433
KIUINT ... 431
KIUINTREG ... 299
KIURST ... 432
KIUSCANREP ... 425
KIUSCANS ... 427
KIUWKI ... 430
KIUWKS ... 429

LCD ... 140

LCD control interface ... 250
LCD interface ... 263

LCD space ... 140

LED ... 32, 453

LED Control Unit (LED) ... 32, 453
LED registers ... 41, 453
LEDASTCREG ... 457
LEDCNTREG ... 456
LEDHTSREG ... 454
LEDINTREG ... 458
LEDLTSREG ... 455

Load delay ... 102

Load delay slot ... 82

Load instruction ... 82, 527

Load Linked Address (LLAddr) register ...

151

697

APPENDIX B INDEX

Local loopback ... 473

MAIUINTREG ... 305

MasterOut ... 53

MCNTREG ... 416

MCNVRREG ... 417

MDMADATREG ... 410

MDSIUINTREG ... 308

Memory management system (MMU) ... 52, 117
MFIRINTREG ... 316

MGIUINTHREG ... 315

MGIUINTLREG ... 307

MIDATREG ... 415

MIRCR ... 511

MKIUINTREG ... 306

MODEM Interface Unit (HSP) ... 32, 481
MODEMREG ... 437

MPIUINTREG ... 304

MRXF ... 522

MSYSINT1REG ... 302

MSYSINT2REG ... 314

NMI exception ... 179
NMIREG ... 309
Non-maskable Interrupt (NMI) ... 231

Opcode bit encoding ... 674
Operating modes ... 121
Operation when unbranched ... 93
Ordinary Interrupts ... 231
Ordinary ROM ... 248

PageMask register ... 143, 147
PageROM ... 248

Parity error prohibit ... 212
Parity error register ... 170
PClock ... 53

Phase lock loop (PLL) ... 43
Physical address ... 135

Pin configuration ... 57

Pin functions ... 57, 62
Pipeline ... 99

PIU ... 32, 381

PIU registers ... 38, 386
PIUABOREG ... 400
PIUABL1REG ... 400
PIUAB2REG ... 400

698

PIUAB3REG ... 400
PIUAMSKREG ... 397
PIUASCNREG ...395
PIUCIVLREG ... 398
PIUCMDREG ... 393
PIUCNTREG ... 387
PIUINTREG (ICU) ... 297
PIUINTREG (PIU) ... 390
PIUPBOOREG ... 399
PIUPBO1REG ... 399
PIUPBO2REG ... 399
PIUPBO3REG ... 399
PIUPBO4REG ... 399
PIUPB10REG ... 399
PIUPB11REG ... 399
PIUPB12REG ... 399
PIUPB13REG ... 399
PIUPB14REG ... 399
PIUSIVLREG ... 391
PIUSTBLREG ... 392

PLL ... 43
PLL passive components ... 683
PMU ... 31, 319

PMU registers ... 35, 327
PMUCNT2REG ... 333
PMUCNTREG ... 330
PMUINT2REG ... 332
PMUINTREG ... 328

PORTREG ... 436

Power Management Unit (PMU) ... 31, 319
Power mode ... 210, 325

Power mode state transition ... 325
Power-on control ... 321

Power-on sequence ... 205
Precision of exceptions ... 158
Priority of exceptions ... 176
Privilege mode ... 211

Processor Revision Identifier (PRId) register ...

Random register ... 146

RDR ... 503

Real-time Clock Unit (RTC) ... 31, 335
Refresh ... 267

Reserved Instruction exception ... 188
Reset control ... 319

Reset function ... 199

Reverse endian ... 211

REVIDREG ... 243

ROM ... 137

ROM access ... 252

149

APPENDIX B INDEX

ROM interface ... 248
ROM space ... 137
RSTSW ... 201, 319
RTC ... 31, 335

RTC registers ... 36, 336
RTC reset ... 199, 319
RTCINTREG ... 353
RTCL1CNTHREG ... 344
RTCL1CNTLREG ... 343
RTCL1HREG ... 342
RTCL1LREG ... 341
RTCL2CNTHREG ... 348
RTCL2CNTLREG ... 347
RTCL2HREG ... 346
RTCL2LREG ... 345
RTCLong timer ... 335
RXBOLREG ... 441
RXBORREG ... 440

RXFL ... 523
RXIR ... 515
RXSTS ... 519

Scan sequencer ... 383, 425
SCANLINE ... 434
SCNTREG ... 413
SCNVRREG ... 414
SDMADATREG ... 411
SEQREG ... 419

Serial Interface Unit (SIU) ... 32, 461
Shutdown control ... 320
SIU ... 32, 461

SIU registers ... 41, 461
SIUDLL ... 463

SIUDLM ... 465

SIUFC ... 469

SIVIE ... 464

SIUIID ... 467

SIUIRSEL ... 478

SIULC ... 472

SIULS ... 474

SIUMC ... 473

SIUMS ... 476

SIURB ... 462

SIUSC ... 477

SIUTH ... 462

Slip conditions ... 114
SODATREG ... 412

Soft reset ... 208

Soft reset exception ... 178
SOFTINTREG ... 370

Software interrupts ... 232

Software shutdown ... 203, 320

Special instructions ... 96

Stall conditions ... 113

Standby mode ... 210, 326

Status after reset ... 164

Status register ... 162

Store delay slot ... 82

Store instruction ... 82, 527

Supervisor expanded addressing mode ... 211
Supervisor mode ... 124

Supervisor mode address space ... 125

Suspend mode ... 210, 326

SYSINT1REG ... 295

SYSINT2REG ... 311

System Call exception ... 186

System Control Coprocessor (CPO) ... 44, 49, 141
System Control Coprocessor (CPOQ) instructions ...
97, 528

TagHi register ... 152

TagLo register ... 152
TCLKCNTHREG ... 352
TCLKCNTLREG ... 351
TCLKHREG ... 350
TCLKLREG ... 349

TClock ... 53

Tclock Counter ... 335

TDR ... 502

TDREG ... 287

Timer interrupt ... 232

TLB ... 52,117

TLB entry ... 142

TLB exceptions ... 181

TLB instructions ... 155

TLB Invalid exception ... 182
TLB Misses ... 155

TLB Modified exception ... 183
TLB Refill exception ... 181
Touch panel ... 381

Touch Panel Interface Unit (PIU) ... 32, 381
Touch/release detection ... 404
Translation Lookaside Buffer (TLB) ... 52, 117
Trap exception ... 188

TXFL ... 521

TXIR ... 514

TXSOLREG ... 443
TXSORREG ... 442

699

APPENDIX B INDEX

User expanded addressing mode ... 211
User mode ... 121
User mode address space ... 122

Virtual address ... 117
Virtual-to-physical address translation ... 118

Watch exception ... 189
WatchHi register ... 168
WatchLo register ... 168
Wired register ... 148

XContext register ... 169
XTLB Refill exception ... 181

700

NEC

=] InlllE] Message

Although NEC hastaken all possible steps
toensure thatthe documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that

From: -
errors may occur. Despite all the care and
precautions we®©vetaken, you may

Name encounter problemsinthe documentation.
Please complete this form whenever

Company you@dlike to report errors or suggest
improvements to us.

Tel. FAX

Address

Thank you for your kind support.

North America
NEC Electronics Inc.

Fax: 1-800-729-9288
1-408-588-6130

Europe

NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Corporate Communications Dept.

Hong Kong, Philippines, Oceania

NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea

NEC Electronics Hong Kong Ltd.
Seoul Branch

Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan

NEC Corporation

Semiconductor Solution Engineering Division
Technical Information Support Dept.

Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number:

Page number:

If possible, please fax the referenced page or drawing.

Document Rating
Clarity

Technical Accuracy
Organization

Excellent Good
a a
a a
a a

Acceptable Poor
a a
a a
a a

Cs 97.8

	COVER
	PREFACE
	CHAPTER 1 INTRODUCTION
	1.1 FEATURES
	1.2 ORDERING INFORMATION
	1.3 64-BIT ARCHITECTURE
	1.4 VR4102 PROCESSOR
	1.4.1 Internal Block Structure
	1.4.2 I/O Registers

	1.5 VR4100 CPU CORE
	1.5.1 VR4100 CPU Core
	1.5.2 CPU Registers
	1.5.3 CPU Instruction Set Overview
	1.5.4 Data Formats and Addressing
	1.5.5 Coprocessors (CP0-CP3)
	1.5.6 Floating-Point Unit (FPU)
	1.5.7 Cache

	1.6 CPU CORE MEMORY MANAGEMENT SYSTEM (MMU)
	1.6.1 Translation Lookaside Buffer (TLB)
	1.6.2 Operating Modes

	1.7 INSTRUCTION PIPELINE
	1.8 CLOCK INTERFACE

	CHAPTER 2 PIN FUNCTIONS
	2.1 PIN CONFIGURATION
	2.2 PIN FUNCTION DESCRIPTION
	2.2.1 System Bus Interface Signals
	2.2.2 Clock Interface Signals
	2.2.3 Battery Monitor Interface Signals
	2.2.4 Initialization Interface Signals
	2.2.5 RS-232-C Interface Signals
	2.2.6 IrDA Interface Signals
	2.2.7 Debug Serial Interface Signals
	2.2.8 Keyboard Interface Signals
	2.2.9 Audio Interface Signals
	2.2.10 Touch Panel/General Purpose A/D Interface Signals
	2.2.11 General-purpose I/O Signals
	2.2.12 HSP MODEM Interface Signals
	2.2.13 LED Interface Signal
	2.2.14 Dedicated VDD and GND Signals

	2.3 PIN STATUS UPON SPECIFIC STATES
	2.3.1 Pin Status upon Reset
	2.3.2 Connection of Unused Pins and Pin I/O Circuits
	2.3.3 Pin I/O Circuits

	CHAPTER 3 CPU INSTRUCTION SET SUMMARY
	3.1 CPU INSTRUCTION FORMATS
	3.2 INSTRUCTION CLASSES
	3.2.1 Load and Store Instructions
	3.2.2 Computational Instructions
	3.2.3 Jump and Branch Instructions
	3.2.4 Special Instructions
	3.2.5 System Control Coprocessor (CP0) Instructions

	CHAPTER 4 VR4102 PIPELINE
	4.1 PIPELINE STAGES
	4.1.1 Pipeline Activities

	4.2 BRANCH DELAY
	4.3 LOAD DELAY
	4.4 PIPELINE OPERATION
	4.5 INTERLOCK AND EXCEPTION HANDLING
	4.5.1 Exception Conditions
	4.5.2 Stall Conditions
	4.5.3 Slip Conditions
	4.5.4 Bypassing

	4.6 CODE COMPATIBILITY

	CHAPTER 5 MEMORY MANAGEMENT SYSTEM
	5.1 TRANSLATION LOOKASIDE BUFFER (TLB)
	5.2 VIRTUAL ADDRESS SPACE
	5.2.1 Virtual-to-Physical Address Translation
	5.2.2 32-bit Mode Address Translation
	5.2.3 64-bit Mode Address Translation
	5.2.4 Operating Modes
	5.2.5 User Mode Virtual Addressing
	5.2.6 Supervisor-mode Virtual Addressing
	5.2.7 Kernel-mode Virtual Addressing

	5.3 PHYSICAL ADDRESS SPACE
	5.3.1 ROM Space
	5.3.2 System Bus Space
	5.3.3 Internal I/O Space
	5.3.4 LCD Space
	5.3.5 DRAM Space

	5.4 SYSTEM CONTROL COPROCESSOR
	5.4.1 Format of a TLB Entry

	5.5 CP0 REGISTERS
	5.5.1 Index Register (0)
	5.5.2 Random Register (1)
	5.5.3 EntryHi (10), EntryLO0 (2), EntryLO1 (3), and PageMask (5) Registers
	5.5.4 Wired Register (6)
	5.5.5 Processor Revision Identifier (PRId) Register (15)
	5.5.6 Config Register (16)
	5.5.7 Load Linked Address (LLAddr) Register (17)
	5.5.8 Cache Tag Registers (TagLo (28) and TagHi (29))
	5.5.9 Virtual-to-Physical Address Translation
	5.5.10 TLB Misses
	5.5.11 TLB Instructions

	CHAPTER 6 EXCEPTION PROCESSING
	6.1 HOW EXCEPTION PROCESSING WORKS
	6.2 PRECISION OF EXCEPTIONS
	6.3 EXCEPTION PROCESSING REGISTERS
	6.3.1 Context Register (4)
	6.3.2 BadVAddr Register (8)
	6.3.3 Count Register (9)
	6.3.4 Compare Register (11)
	6.3.5 Status Register (12)
	6.3.6 Cause Register (13)
	6.3.7 Exception Program Counter (EPC) Register (14)
	6.3.8 WatchLo (18) and WatchHi (19) Registers
	6.3.9 XContext Register (20)
	6.3.10 Parity Error Register (26)
	6.3.11 Cache Error Register (27)
	6.3.12 ErrorEPC Register (30)

	6.4 DETAILS OF EXCEPTIONS
	6.4.1 Exception Types
	6.4.2 Exception Vector Locations
	6.4.3 Priority of Exceptions
	6.4.4 Cold Reset Exception
	6.4.5 Soft Reset Exception
	6.4.6 NMI Exception
	6.4.7 Address Error Exception
	6.4.8 TLB Exceptions
	6.4.9 Cache Error Exception
	6.4.10 Bus Error Exception
	6.4.11 System Call Exception
	6.4.12 Breakpoint Exception
	6.4.13 Coprocessor Unusable Exception
	6.4.14 Reserved Instruction Exception
	6.4.15 Trap Exception
	6.4.16 Integer Overflow Exception
	6.4.17 Watch Exception
	6.4.18 Interrupt Exception

	6.5 EXCEPTION PROCESSING AND SERVICING FLOWCHARTS

	CHAPTER 7 INITIALIZATION INTERFACE
	7.1 RESET FUNCTION
	7.1.1 RTC Reset
	7.1.2 RSTSW
	7.1.3 Deadman's Switch
	7.1.4 Software Shutdown
	7.1.5 HALTimer Shutdown

	7.2 POWERON SEQUENCE
	7.3 RESET OF THE CPU CORE
	7.3.1 Cold Reset
	7.3.2 Soft Reset

	7.4 VR4102 PROCESSOR MODES
	7.4.1 Power Modes
	7.4.2 Privilege Mode
	7.4.3 Reverse Endian
	7.4.4 Bootstrap Exception Vector (BEV)
	7.4.5 Cache Error Check
	7.4.6 Parity Error Prohibit
	7.4.7 Interrupt Enable (IE)

	CHAPTER 8 CACHE MEMORY
	8.1 MEMORY ORGANIZATION
	8.2 CACHE ORGANIZATION
	8.2.1 Organization of the Instruction Cache (I-Cache)
	8.2.2 Organization of the Data Cache (D-Cache)
	8.2.3 Accessing the Caches

	8.3 CACHE OPERATIONS
	8.3.1 Cache Write Policy

	8.4 CACHE STATES
	8.5 CACHE STATE TRANSITION DIAGRAMS
	8.5.1 Data Cache State Transition
	8.5.2 Instruction Cache State Transition

	8.6 CACHE DATA INTEGRITY
	8.7 MANIPULATION OF THE CACHES BY AN EXTERNAL AGENT

	CHAPTER 9 CPU CORE INTERRUPTS
	9.1 NON-MASKABLE INTERRUPT (NMI)
	9.2 ORDINARY INTERRUPTS
	9.3 SOFTWARE INTERRUPTS GENERATED IN CPU CORE
	9.4 TIMER INTERRUPT
	9.5 ASSERTING INTERRUPTS
	9.5.1 Detecting Hardware Interrupts
	9.5.2 Masking Interrupt Signals

	CHAPTER 10 BCU (BUS CONTROL UNIT)
	10.1 GENERAL
	10.2 REGISTER SET
	10.2.1 BCUCNTREG 1 (0x0B00 0000)
	10.2.2 BCUCNTREG 2 (0x0B00 0002)
	10.2.3 BCUSPEEDREG (0x0B00 000A)
	10.2.4 BCUERRSTREG (0x0B00 000C)
	10.2.5 BCURFCNTREG (0x0B00 000E)
	10.2.6 REVIDREG (0x0B00 0010)
	10.2.7 BCURFCOUNTREG (0x0B00 0012)
	10.2.8 CLKSPEEDREG (0x0B00 0014)

	10.3 CONNECTION OF ADDRESS PINS
	10.4 NOTES ON USING BCU
	10.4.1 CPU Core Bus Modes
	10.4.2 Access Data Size
	10.4.3 ROM Interface
	10.4.4 Flash Memory Interface
	10.4.5 LCD Control Interface
	10.4.6 Illegal Access Notification

	10.5 BUS OPERATIONS
	10.5.1 ROM Access
	10.5.2 System Bus Access
	10.5.3 LCD Interface
	10.5.4 DRAM Access (EDO Type)
	10.5.5 Refresh
	10.5.6 Bus Hold

	CHAPTER 11 DMAAU (DMA ADDRESS UNIT)
	11.1 GENERAL
	11.2 REGISTER SET
	11.2.1 AIU IN DMA Base Address Registers
	11.2.2 AIU IN DMA Address Registers
	11.2.3 AIU OUT DMA Base Address Registers
	11.2.4 AIU OUT DMA Address Registers
	11.2.5 FIR DMA Base Address Registers
	11.2.6 FIR DMA Address Registers

	CHAPTER 12 DCU (DMA CONTROL UNIT)
	12.1 GENERAL
	12.2 DMA PRIORITY CONTROL
	12.3 REGISTER SET
	12.3.1 DMARSTREG (0x0B00 0040)
	12.3.2 DMAIDLEREG (0x0B00 0042)
	12.3.3 DMASENREG (0x0B00 0044)
	12.3.4 DMAMSKREG (0x0B00 0046)
	12.3.5 DMAREQREG (0x0B00 0048)
	12.3.6 TDREG (0x0B00 004A)

	CHAPTER 13 CMU (CLOCK MASK UNIT)
	13.1 GENERAL
	13.2 REGISTER SET
	13.2.1 CMUCLKMSK (0x0B00 0060)

	CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)
	14.1 GENERAL
	14.2 REGISTER SET
	14.2.1 SYSINT1REG (0x0B00 0080)
	14.2.2 PIUINTREG (0x0B00 0082)
	14.2.3 AIUINTREG (0x0B00 0084)
	14.2.4 KIUINTREG (0x0B00 0086)
	14.2.5 GIUINTLREG (0x0B00 0088)
	14.2.6 DSIUINTREG (0x0B00 008A)
	14.2.7 MSYSINT1REG (0x0B00 008C)
	14.2.8 MPIUINTREG (0x0B00 008E)
	14.2.9 MAIUINTREG (0x0B00 0090)
	14.2.10 MKIUINTREG (0x0B00 0092)
	14.2.11 MGIUINTLREG (0x0B00 0094)
	14.2.12 MDSIUINTREG (0x0B00 0096)
	14.2.13 NMIREG (0x0B00 0098)
	14.2.14 SOFTINTREG (0x0B00 009A)
	14.2.15 SYSINT2REG (0x0B00 0200)
	14.2.16 GIUINTHREG (0x0B00 0202)
	14.2.17 FIRINTREG (0x0B00 0204)
	14.2.18 MSYSINT2REG (0x0B00 0206)
	14.2.19 MGIUINTHREG (0x0B00 0208)
	14.2.20 MFIRINTREG (0x0B00 020A)

	14.3 NOTES FOR REGISTER SETTING

	CHAPTER 15 PMU (POWER MANAGEMENT UNIT)
	15.1 GENERAL
	15.1.1 Reset Control
	15.1.2 Shutdown Control
	15.1.3 Power-on Control
	15.1.4 Power Mode

	15.2 REGISTER SET
	15.2.1 PMUINTREG (0x0B00 00A0)
	15.2.2 PMUCNTREG (0x0B00 00A2)
	15.2.3 PMUINT2REG (0x0B00 00A4)
	15.2.4 PMUCNT2REG (0x0B00 00A6)

	CHAPTER 16 RTC (REALTIME CLOCK UNIT)
	16.1 GENERAL
	16.2 REGISTER SET
	16.2.1 Elapsed Time Registers
	16.2.2 Elapsed Time Compare Registers
	16.2.3 RTC Long 1 Registers
	16.2.4 RTC Long 1 Count Registers
	16.2.5 RTC Long 2 Registers
	16.2.6 RTC Long 2 Count Registers
	16.2.7 TClock Counter Registers
	16.2.8 TClock Counter Count Registers
	16.2.9 RTC Interrupt Register

	CHAPTER 17 DSU (DEADMAN’S SWITCH UNIT)
	17.1 GENERAL
	17.2 REGISTER SET
	17.2.1 DSUCNTREG (0x0B00 00E0)
	17.2.2 DSUSETREG (0x0B00 00E2)
	17.2.3 DSUCLRREG (0x0B00 00E4)
	17.2.4 DSUTIMREG (0x0B00 00E6)

	17.3 REGISTER SETTING FLOW

	CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)
	18.1 GENERAL
	18.2 REGISTER SET
	18.2.1 GIUIOSELL (0x0B00 0100)
	18.2.2 GIUIOSELH (0x0B00 0102)
	18.2.3 GIUPIODL (0x0B00 0104)
	18.2.4 GIUPIODH (0x0B00 0106)
	18.2.5 GIUINTSTATL (0x0B00 0108)
	18.2.6 GIUINTSTATH (0x0B00 010A)
	18.2.7 GIUINTENL (0x0B00 010C)
	18.2.8 GIUINTENH (0x0B00 010E)
	18.2.9 GIUINTTYPL (0x0B00 0110)
	18.2.10 GIUINTTYPH (0x0B00 0112)
	18.2.11 GIUINTALSELL (0x0B00 0114)
	18.2.12 GIUINTALSELH (0x0B00 0116)
	18.2.13 GIUINTHTSELL (0x0B00 0118)
	18.2.14 GIUINTHTSELH (0x0B00 011A)
	18.2.15 GIUPODATL (0x0B00 011C)
	18.2.16 GIUPODATH (0x0B00 011E)

	CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)
	19.1 GENERAL
	19.1.1 Block Diagrams

	19.2 SCAN SEQUENCER STATE TRANSITION
	19.3 REGISTER SET
	19.3.1 PIUCNTREG (0x0B00 0122)
	19.3.2 PIUINTREG (0x0B00 0124)
	19.3.3 PIUSIVLREG (0x0B00 0126)
	19.3.4 PIUSTBLREG (0x0B00 0128)
	19.3.5 PIUCMDREG (0x0B00 012A)
	19.3.6 PIUASCNREG (0x0B00 0130)
	19.3.7 PIUAMSKREG (0x0B00 0132)
	19.3.8 PIUCIVLREG (0x0B00 013E)
	19.3.9 PIUPBnmREG (0x0B00 02A0 to 0x0B00 02AE, 0x0B00 02BC to 0x0B00 02BE)
	19.3.10 PIUABnREG (0x0B00 02B0 to 0x0B00 02B6)

	19.4 REGISTER SETTING FLOW
	19.5 RELATIONSHIPS AMONG TPX, TPY, AND ADIN PINS AND STATES
	19.6 TIMING
	19.6.1 Touch/Release Detection Timing
	19.6.2 A/D Port Scan Timing

	19.7 DATA LOSS INTERRUPT CONDITIONS
	19.8 COMPARISON OF VR4102 AND VR4101

	CHAPTER 20 AIU (AUDIO INTERFACE UNIT)
	20.1 GENERAL
	20.2 REGISTER SET
	20.2.1 MDMADATREG (0x0B00 0160)
	20.2.2 SDMADATREG (0x0B00 0162)
	20.2.3 SODATREG (0x0B00 0166)
	20.2.4 SCNTREG (0x0B00 0168)
	20.2.5 SCNVRREG (0x0B00 016A)
	20.2.6 MIDATREG (0x0B00 0170)
	20.2.7 MCNTREG (0x0B00 0172)
	20.2.8 MCNVRREG (0x0B00 0174)
	20.2.9 DVALIDREG (0x0B00 0178)
	20.2.10 SEQREG (0x0B00 017A)
	20.2.11 INTREG (0x0B00 017C)

	20.3 OPERATION SEQUENCE
	20.3.1 Output (Speaker)
	20.3.2 Input (MIC)

	CHAPTER 21 KIU (KEYBOARD INTERFACE UNIT)
	21.1 GENERAL
	21.2 REGISTER SET
	21.2.1 KIUDATn (0x0B00 0180 to 0x0B00 018A)
	21.2.2 KIUSCANREP (0x0B00 0190)
	21.2.3 KIUSCANS (0x0B00 0192)
	21.2.4 KIUWKS (0x0B00 0194)
	21.2.5 KIUWKI (0x0B00 0196)
	21.2.6 KIUINT (0x0B00 0198)
	21.2.7 KIURST (0x0B00 019A)
	21.2.8 KIUGPEN (0x0B00 019C)
	21.2.9 SCANLINE (0x0B00 019E)

	CHAPTER 22 DSIU (DEBUG SERIAL INTERFACE UNIT)
	22.1 GENERAL
	22.2 REGISTER SET
	22.2.1 PORTREG (0x0B00 01A0)
	22.2.2 MODEMREG (0x0B00 01A2)
	22.2.3 ASIM00REG (0x0B00 01A4)
	22.2.4 ASIM01REG (0x0B00 01A6)
	22.2.5 RXB0RREG (0x0B00 01A8)
	22.2.6 RXB0LREG (0x0B00 01AA)
	22.2.7 TXS0RREG (0x0B00 01AC)
	22.2.8 TXS0LREG (0x0B00 01AE)
	22.2.9 ASIS0REG (0x0B00 01B0)
	22.2.10 INTR0REG (0x0B00 01B2)
	22.2.11 BPRM0REG (0x0B00 01B6)
	22.2.12 DSIURESETREG (0x0B00 01B8)

	22.3 DESCRIPTION OF OPERATIONS
	22.3.1 Data Format
	22.3.2 Transmission
	22.3.3 Reception

	CHAPTER 23 LED (LED CONTROL UNIT)
	23.1 GENERAL
	23.2 REGISTER SET
	23.2.1 LEDHTSREG (0x0B00 0240)
	23.2.2 LEDLTSREG (0x0B00 0242)
	23.2.3 LEDCNTREG (0x0B00 0248)
	23.2.4 LEDASTCREG (0x0B00 024A)
	23.2.5 LEDINTREG (0x0B00 024C)

	23.3 OPERATION FLOW

	CHAPTER 24 SIU (SERIAL INTERFACE UNIT)
	24.1 GENERAL
	24.2 REGISTER SET
	24.2.1 SIURB (0x0C00 0000: LCR[7] = 0, Read)
	24.2.2 SIUTH (0x0C00 0000: LCR[7] = 0, Write)
	24.2.3 SIUDLL (0x0C00 0000: LCR[7] = 1)
	24.2.4 SIUIE (0x0C00 0001: LCR[7] = 0)
	24.2.5 SIUDLM (0x0C00 0001: LCR[7] = 1)
	24.2.6 SIUIID (0x0C00 0002: Read)
	24.2.7 SIUFC (0x0C00 0002: Write)
	24.2.8 SIULC (0x0C00 0003)
	24.2.9 SIUMC (0x0C00 0004)
	24.2.10 SIULS (0x0C00 0005)
	24.2.11 SIUMS (0x0C00 0006)
	24.2.12 SIUSC (0x0C00 0007)
	24.2.13 SIUIRSEL (0x0C00 0008)

	CHAPTER 25 HSP (MODEM INTERFACE UNIT)
	25.1 GENERAL
	25.2 REGISTER SET
	25.2.1 HSP Initialize Register
	25.2.2 HSP Data Register, HSP Index Register
	25.2.3 HSP ID Register, HSP I/O Address Program Confirmation Register
	25.2.4 HSP Signature Checking Port

	25.3 POWER CONTROL

	CHAPTER 26 FIR (FAST IrDA INTERFACE UNIT)
	26.1 GENERAL
	26.2 REGISTER SET
	26.2.1 FRSTR (0x0C00 0040)
	26.2.2 DPINTR (0x0C00 0042)
	26.2.3 DPCNTR (0x0C00 0044)
	26.2.4 TDR (0x0C00 0050)
	26.2.5 RDR (0x0C00 0052)
	26.2.6 IMR (0x0C00 0054)
	26.2.7 FSR (0x0C00 0056)
	26.2.8 IRSR1 (0x0C00 0058)
	26.2.9 CRCSR (0x0C00 005C)
	26.2.10 FIRCR (0x0C00 005E)
	26.2.11 MIRCR (0x0C00 0060)
	26.2.12 DMACR (0x0C00 0062)
	26.2.13 DMAER (0x0C00 0064)
	26.2.14 TXIR (0x0C00 0066)
	26.2.15 RXIR (0x0C00 0068)
	26.2.16 IFR (0x0C00 006A)
	26.2.17 RXSTS (0x0C00 006C)
	26.2.18 TXFL (0x0C00 006E)
	26.2.19 MRXF (0x0C00 0070)
	26.2.20 RXFL (0x0C00 0074)

	CHAPTER 27 CPU INSTRUCTION SET DETAILS
	27.1 INSTRUCTION NOTATION CONVENTIONS
	27.2 LOAD AND STORE INSTRUCTIONS
	27.3 JUMP AND BRANCH INSTRUCTIONS
	27.4 SYSTEM CONTROL COPROCESSOR (CP0) INSTRUCTIONS
	27.5 CPU INSTRUCTION
	27.6 CPU INSTRUCTION OPCODE BIT ENCODING

	CHAPTER 28 VR4102 COPROCESSOR 0 HAZARDS
	CHAPTER 29 PLL PASSIVE COMPONENTS
	APPENDIX A DIFFERENCES BETWEEN VR4102 AND VR4101
	A.1 SUMMARY OF DIFFERENCES
	A.2 DETAILS OF DIFFERENCES
	A.2.1 CPU Core
	A.2.2 Address Mapping
	A.2.3 BCU
	A.2.4 DMA
	A.2.5 ICU
	A.2.6 PMU
	A.2.7 RTC
	A.2.8 GIU
	A.2.9 PIU
	A.2.10 AIU
	A.2.11 KIU
	A.2.12 DSIU
	A.2.13 SIU
	A.2.14 Newly Added Units

	APPENDIX B INDEX

