
Process F2

National Semiconductor

DESCRIPTION

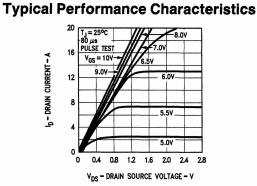
These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

N-Channel Power MOSFET

This process is available in the following device types:

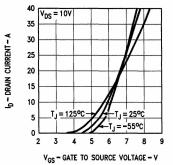
TO-204 (Case 43)	TO-247 (Case 40)			
IRF250CF	IRFP250CF			
IRF250	IRFP250			
IRF251	IRFP251			
IRF252	IRFP252			
IRF253	IRFP253			

Electrical Characteristics T_C = 25°C (unless otherwise noted)

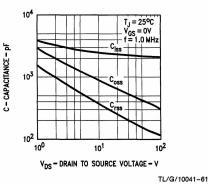

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_{\rm D} = 250 \ \mu \text{A}; V_{\rm GS} = 0 \text{V}$	200		V
IDSS	Zero Gate Voltage Drain	$V_{DS} = Rated Voltage$ $V_{GS} = 0V$		250	μΑ
IGSS	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		±100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_{D} = 250 \ \mu A; V_{DS} = V_{GS}$	2.0	4.0	V
R _{DS(ON)}	Static On-Resistance (Note 2)	$V_{GS} = 10V; I_{D} = 16A$		0.085	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_D = 16A$	8.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		3000	pF
Coss	Output Capacitance			1200	pF
C _{rss}	Reverse Transfer			500	pF
^t d(on)	Turn-On Delay Time	$\begin{split} V_{\text{DD}} &= 95\text{V}; \text{I}_{\text{D}} = 16\text{A} \\ V_{\text{GS}} &= 10\text{V}; \text{R}_{\text{GEN}} = 4.7\Omega \end{split}$		75	ns
t _r	Rise Time	$R_{GS} = 4.7\Omega$		300	ns
t _{d(off)}	Turn-Off Delay Time			275	ns
t _f	Fall Time			150	ns
Qg	Total Gate Charge	$V_{GS} = 10V; I_D = 38A$ $V_{DD} = 100V$		120	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 $\mu s,$ Duty Cycle \leq 1%.


Process F2

Process F2



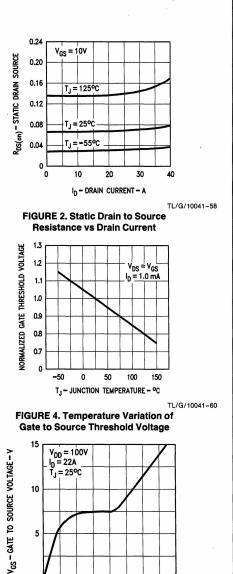


FIGURE 3. Transfer Characteristics

TL/G/10041-59

11-268

0

40

80

Qg - TOTAL GATE CHARGE - nC

FIGURE 6. Gate to Source Voltage vs Total Gate Charge

120

160

TL/G/10041-62

Process F2

Typical Performance Characteristics (Continued)

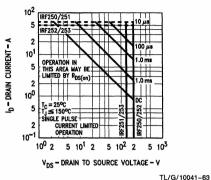
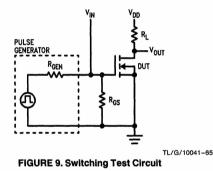
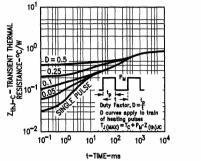
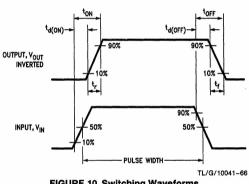




FIGURE 7. Forward Biased Safe Operating Area


Typical Electrical Characteristics

TL/G/10041-64

FIGURE 10. Switching Waveforms

Probe Testing

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips.

These parameters are: Thermal Resistance Forward Voltage Drop at Rated Current Reverse Recovery Characteristics at Rated Current Surge Current