

TIC206A, TIC206B, TIC206D, TIC206M, TIC206N, TIC206S

SILICON BIDIRECTIONAL TRIODE THYRISTOR

- 4 A RMS
- Glass Passivated Wafer
- 100 V to 800 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrants 1-3)
- Sensitive gate triacs
- Compliance to ROHS

DESCRIPTION

This device is a bidirectional triode thyristor (triac) which may be triggered from the off-state to the on-state by either polarity of gate signal with main Terminal 2 at either polarity.

Symbol	Ratings	Value						Unit
		Α	В	D	М	S	Ν	
V _{DRM}	Repetitive peak off-state voltage (see Note1)	100	200	400	600	700	800	V
I _{T(RMS)}	Full-cycle RMS on-state current at (or below) 70°C case temperature (see note2)	4				А		
I _{TSM}	Peak on-state surge current full-sine-wave (see Note3)	25				А		
I _{TSM}	Peak on-state surge current half-sine-wave (see Note4)	30				А		
I _{GM}	Peak gate current	± 0.2			Α			
P _{GM}	Peak gate power dissipation at (or below) 85°C case temperature (pulse width ≤200 µs)	1.3				w		
P _{G(AV)}	Average gate power dissipation at (or below) 85°C case (see Note5)	0.3				W		
T _c	Operating case temperature range	-40 to +110			С°			
T _{stg}	Storage temperature range	-40 to +125			С°			
TL	Lead temperature 1.6 mm from case for 10 seconds	230			°C			

ABSOLUTE MAXIMUM RATINGS

TIC206A, TIC206B, TIC206D, TIC206M, TIC206N, TIC206S

Notes:

- 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
- 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 160 mA/°C.
- 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 4. This value applies for one 50-Hz half-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 5. This value applies for a maximum averaging time of 20 ms.

THERMAL CHARACTERISTICS

Symbol	Ratings	Value	Unit	
R∂JC	Junction to case thermal resistance ≤ 7.8		°C/W	
R∂JA	Junction to free air thermal resistance	≤ 62.5	0,00	

ELECTRICAL CHARACTERISTICS

TC=25°C unless othe	rwise noted
---------------------	-------------

Symbol	Ratings	Test Condition(s)	Min	Тур	Мх	Unit	
I _{DRM}	Repetitive peak off- state current	V_D = Rated V_{DRM} , , I_G = 0, T_C = 110°C	-	-	±1	mA	
I _{GT}	Gate trigger current	V_{supply} = +12 V†, R _L = 10 Ω , $t_{p(g)}$ = > 20 μ s	-	0.5	5		
		V_{supply} = +12 V†, R_L = 10 Ω , $t_{p(g)}$ = > 20 μs	-	-1.5	-5	mA	
		$V_{supply} = -12 V_{T}^{+}, R_{L} = 10 \Omega, t_{p(g)} = > 20 \mu s$	-	-2	-5		
		V_{supply} = -12 V ⁺ , R _L = 10 Ω, $t_{p(g)}$ = > 20 μs	-	3.6	10		
V _{GT}	Gate trigger voltage	V_{supply} = +12 V†, R _L = 10 Ω, $t_{p(g)}$ = > 20 μs		0.7	2		
		V_{supply} = +12 V†, R _L = 10 Ω, $t_{p(g)}$ = > 20 μs		-0.7	-2	V	
		V_{supply} = -12 V†, R _L = 10 Ω , $t_{p(g)}$ = > 20 μs		-0.8	-2		
		V_{supply} = -12 V†, R _L = 10 Ω , t _{p(g)} = > 20 μ s	-	0.8	2		
I _H	Holding current	V_{supply} = +12 V†, I _G = 0, initiating I _{TM} = 100 mA	-	2	15	- mA	
		V_{supply} = -12 V†, I _G = 0, initiating I _{TM} = -100 mA	-	-4	-15		
IL.	Latching current	V _{supply} = +12 V† (seeNote7) V _{supply} = -12 V† (seeNote7)			30 -30	mA	
V _{TM}	Peak on-state voltage	$I_{TM} = \pm 4.2 \text{ A}, I_G = 50 \text{ mA}$ (see Note6)	-	±1.3	±2.2	V	
dv/dt	Critical rate of rise of off-state voltage	V_{DRM} = Rated V_{DRM} , I_G = 0 T_C = 110°C	-	±50	-		
dv/dt _©	Critical rise of communication voltage	V_{DRM} = Rated V_{DRM} , I_{TRM} = ± 4.2A T_{C} = 85°C	±1	±1.3	±2.5	V/µs	

[†] All voltages are whit respect to Main Terminal 1.

TIC206A, TIC206B, TIC206D, TIC206M, TIC206N, TIC206S

Note 6: This parameters must be measured using pulse techniques, $t_W = \le 1\mu s$, duty cycle ≤ 2 %, voltage-sensing contacts, separate from the courrent-carrying contacts are located within 3.2mm (1/8 inch) from de device body. Note 7: The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics : $R_G = 100\Omega$, $t_{p(g)} = 20 \mu s$, $t_r = \le 15ns$, f = 1 kHz.

MECHANICAL DATA CASE TO-220

