

TIC225A, TIC225B, TIC225C, TIC225D, TIC225E, TIC225M, TIC225N, TIC225S

SILICON BIDIRECTIONAL TRIODE THYRISTOR

- Sensitive gate triacs
- 8 A RMS
- 70 A Peak
- Glass Passivated Wafer
- 100 V to 800 V Off-State Voltage
- Max I_{GT} of 50 mA (Quadrants 1)
- Compliance to ROHS

DESCRIPTION

This device is a bidirectional triode thyristor (triac) which may be triggered from the off-state to the on-state by either polarity of gate signal with main Terminal 2 at either polarity.

Symbol	Ratings	Value							Unit	
			В	С	D	Е	М	S	Ν	
V _{DRM}	Repetitive peak off-state voltage (see Note1)	100	200	300	400	500	600	700	800	V
I _{T(RMS)}	Full-cycle RMS on-state current at (or below) 70°C case temperature (see note2)	8					А			
I _{TSM}	Peak on-state surge current full-sine-wave (see Note3)	70					А			
I _{TSM}	Peak on-state surge current half-sine-wave (see Note4)	8				А				
I _{GM}	Peak gate current	± 1				Α				
P _{GM}	eak gate power dissipation at (or below) 5°C case temperature (pulse width ≤200 2.2 s)					W				
$P_{G(AV)}$	Average gate power dissipation at (or 0.9 0.9					W				
T _c	Operating case temperature range		-40 to +110						°C	
T _{stg}	Storage temperature range		-40 to +125						°C	
TL	Lead temperature 1.6 mm from case for 10 seconds	230						°C		

ABSOLUTE MAXIMUM RATINGS

TIC225A, TIC225B, TIC225C, TIC225D, TIC225E, TIC225M, TIC225N, TIC225S

Notes:

- 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
- 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 200 mA/°C.
- 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 4. This value applies for one 50-Hz half-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 5. This value applies for a maximum averaging time of 20 ms.

THERMAL CHARACTERISTICS

Symbol	Ratings	Value	Unit	
R∂JC	Junction to case thermal resistance	≤ 2.5	°C/W	
R∂JA	Junction to free air thermal resistance	≤ 62.5	0/11	

ELECTRICAL CHARACTERISTICS

Symbol	Ratings	Test Condition(s)		Тур	Мх	Unit	
I _{DRM}	Repetitive peak off- state current	V_D = Rated V_{DRM} , , I_G = 0, T_C = 110°C		-	±2	mA	
I _{GT}	Gate trigger current	V_{supply} = +12 V†, R_L = 10 Ω , $t_{p(g)} = > 20 \ \mu s$	μs - 0.8 5				
		V_{supply} = +12 V†, R _L = 10 Ω , $t_{p(g)} = > 20 \ \mu s$	-	-4.5	-20	mA	
		V_{supply} = -12 V†, R _L = 10 Ω, $t_{p(g)}$ = > 20 μs		-3.5	-10		
		V_{supply} = -12 V†, R _L = 10 Ω , $t_{p(g)}$ = > 20 μs	-	11.7	30		
V _{GT}	Gate trigger voltage	V_{supply} = +12 V†, R _L = 10 Ω, $t_{p(g)} = > 20 \ \mu s$	-	0.7	2		
		V_{supply} = +12 V†, R _L = 10 Ω, $t_{p(g)}$ = > 20 μs	-	-0.8	-2	V	
		V_{supply} = -12 V†, R _L = 10 Ω , $t_{p(g)}$ = > 20 μ s	-	-0.8	-2		
		V_{supply} = -12 V†, R _L = 10 Ω , $t_{p(g)}$ = > 20 μ s	-	0.9	2		
I _H	Holding current	V_{supply} = +12 V†, I _G = 0, initiating I _{TM} = 100 mA	- 3 20		mA		
		V_{supply} = -12 V†, I _G = 0, initiating I _{TM} = -100 mA	-	-4.7	-20		
IL	Latching current	V _{supply} = +12 V† (seeNote7)		-	30	mA	
		V _{supply} = -12 V† (seeNote7)	-	-	-30		
V _{TM}	Peak on-state voltage	I_{TM} = ± 12 A, I_G = 50 mA (see Note6)	-	±1.6	±2.1	V	
dv/dt	Critical rate of rise of off-state voltage	V_{DRM} = Rated V_{DRM} , I_G = 0 T_C = 110°C	-	±50	-	V/µs	
dv/dt _©	Critical rise of communication voltage	V_{DRM} = Rated V_{DRM} , I_{TRM} = ± 12A T _C = 70°C	±1	±1.5	±4.5		

TC=25°C unless otherwise noted

[†] All voltages are whit respect to Main Terminal 1.

TIC225A, TIC225B, TIC225C, TIC225D, TIC225E, TIC225M, TIC225N, TIC225S

Note 6: This parameters must be measured using pulse techniques, $t_W = \le 1$ ms, duty cycle ≤ 2 %, voltage-sensing contacts, separate from the courrent-carrying contacts are located within 3.2mm (1/8 inch) from de device body. Note 7: The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics : $R_G = 100\Omega$, $t_{tr(g)} = 20 \mu$ s, $t_r = \le 15$ ns, f = 1 kHz.

MECHANICAL DATA CASE TO-220

